Photoplethysmography with controlled application of sensor pressure

Information

  • Patent Grant
  • 8494606
  • Patent Number
    8,494,606
  • Date Filed
    Wednesday, August 19, 2009
    15 years ago
  • Date Issued
    Tuesday, July 23, 2013
    11 years ago
Abstract
Systems, methods, and devices for obtaining consistently reproducible diagnostic measurements with a photoplethysmographic sensor are provided. In one embodiment, a method for obtaining such a diagnostic measurement includes applying a pressure between a photoplethysmographic sensor and a patient, increasing the pressure until the photoplethysmographic sensor outputs a plethysmographic waveform of minimal amplitude, decreasing the pressure by a predetermined fraction, and obtaining a diagnostic measurement using the photoplethysmographic sensor. The pressure may be applied using a pressure device that includes, for example, a clip, a wrap, an inflatable balloon or bladder, or an inflatable cuff or any combination thereof.
Description
BACKGROUND

The present disclosure relates generally to non-invasive diagnostic measurements dependent on pulse spectra and, more particularly, to photoplethysmographic measurements taken with a controlled application of pressure.


This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.


Diagnostic measurements, such as pulse oximetry and non-invasive measurements of total hemoglobin, may be determined from pulse spectrum measurements at varying wavelengths of light. For example, pulse oximetry may involve measurements at wavelengths of approximately 660 nm and 900 nm, and non-invasive measurements of total hemoglobin may involve measurements of wavelengths of approximately 1320 nm and 800-900 nm. In operation, conventional two-wavelength photoplethysmographic sensors may emit light from one or more emitters (e.g., light emitting diodes (LEDs) or fiber optic cables to one or more remote light sources) into a pulsatile tissue bed and collect the transmitted light with a detector (e.g., a photodiode or fiber optic cables to a remote photodetector). The detected light may then be utilized to estimate, for example, a level of oxygen saturation in the blood that is present in the tissue bed. The emitters and detector may be positioned in various orientations. In a transmission-type photoplethysmographic sensor, the emitters and detector are positioned substantially opposite one another (e.g., on opposite sides of a patient's finger), while in a reflectance-type photoplethysmographic sensor, the emitters and detector are placed adjacent to one another.


Signals from a photodetector of a photoplethysmographic sensor may be decoded to ascertain a plethysmographic waveform, which may be due to the cycling light attenuation caused by the varying amount of arterial blood that the light from the emitters passes through. Various factors may cause diminished signal quality or cause inconsistent or unreliable plethysmographic waveform readings. Specifically, the presence of excessive extravascular fluid or venous blood in a tissue bed of interest may interfere with the detection of arterial blood, producing inaccurate or inconsistent plethysmographic waveforms. The quantity of extravascular fluid or venous blood in a tissue bed of interest may vary from patient to patient or from time to time for the same patient.


SUMMARY

Certain aspects commensurate in scope with the originally disclosed embodiments are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the embodiments might take and that these aspects are not intended to limit the scope of the presently disclosed subject matter. Indeed, the embodiments may encompass a variety of aspects that may not be set forth below.


The present disclosure relates to systems, methods, and devices for obtaining consistently reproducible diagnostic measurements with a photoplethysmographic sensor. In one embodiment, a method for obtaining such a diagnostic measurement includes applying a pressure between a photoplethysmographic sensor and a patient, increasing the pressure until the photoplethysmographic sensor outputs a plethysmographic waveform of minimal amplitude, decreasing the pressure by a predetermined fraction, and obtaining the diagnostic measurement using the photoplethysmographic sensor. The pressure may be applied using a pressure device that includes, for example, a clip, a wrap, an inflatable balloon or bladder, an inflatable cuff, or any combination thereof.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the presently disclosed subject matter may become apparent upon reading the following detailed description and upon reference to the drawings in which:



FIG. 1 is a plot of pulse spectra amplitude at varying levels of applied pressure;



FIG. 2 is a perspective view of a photoplethysmographic system, in accordance with an embodiment;



FIG. 3 is a block diagram of a photoplethysmographic system, in accordance with an embodiment;



FIG. 4 is a flowchart describing a method of determining and applying a pressure with a photoplethysmographic sensor, in accordance with an embodiment;



FIG. 5 is a perspective view of a photoplethysmographic sensor having an adhesive for applying pressure against a patient, in accordance with an embodiment;



FIG. 6 is a perspective view of a photoplethysmographic sensor having an inflatable balloon or bladder for applying pressure to a patient, in accordance with an embodiment;



FIG. 7 is a perspective view of a photoplethysmographic sensor having an inflatable cuff for applying pressure on a patient, in accordance with an embodiment;



FIG. 8 illustrates a perspective view of a system for obtaining a diagnostic measurement using a photoplethysmographic sensor, in accordance with an embodiment; and



FIG. 9 is a flowchart describing a method of obtaining a diagnostic measurement using the system of FIG. 8, in accordance with an embodiment.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

One or more specific embodiments of the present disclosure will be described below. In an effort to provide a concise description of these embodiments, not all features of an actual implementation are described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.


Present embodiments may apply to a variety of photoplethysmographic diagnostic measurements based on pulse spectra detected from patient tissue. For example, pulse oximetry and non-invasive measurements of total hemoglobin may be determined from measurements of pulse spectra on a patient tissue at varying wavelengths of light. Pulse oximetry may involve measurements at wavelengths of approximately 660 nm and 900 nm, and non-invasive measurements of total hemoglobin may involve measurements of wavelengths of approximately 1320 nm and 800-900 nm. As disclosed herein, photoplethysmographic amplitudes were found to vary significantly at certain wavelengths of pulse spectra depending on the amount of pressure with which the sensor is applied to patient tissue. Thus, the present disclosure describes various embodiments of systems, methods, and devices for improving the reliability and reproducibility of measurements taken with photoplethysmographic sensors. Such diagnostic measurements may include pulse oximetry measurements or non-invasive measurements of total hemoglobin.


In experiments carried out to measure pulse spectra on five human subjects, plethysmographic amplitudes were found to vary significantly by pressure. The experiments were carried out using a fiber optic reflectance sensor having a 5 mm diameter ring of illumination fibers surrounded by a bundle of detection fibers. The illumination fibers were illuminated by a 90 W quartz-halogen bulb, and the detection fibers were routed to two different spectrometers to enable the pulse spectra to be measured across the visible and near infer red regions. The first spectrometer (the “Si spectrometer”) included an f/8 monochromator (Acton, Model 275) with a grating of 150 grooves/mm blazed at 500 nm and a linear 512 element silicon array (Hamamatsu C5964-0900). The second spectrometer (the “InGaAs spectrometer”) included an f/2.8 monochromator (American Holographics, Model 492.85) and a 256-element InGaAs linear array (Sensors Unlimited, Model SU256LX-1.7). Long pass filters with cutoff wavelengths of 475 nm and 900 nm were placed at the entrance ports of the Si and InGaAs spectrometers, respectively, to reduce effects due to higher order grating diffraction. The spectral resolutions of the Si and InGaAs Spectrometers were 10 nm and 18 nm, respectively, and the time resolutions of the spectra acquired by the Si and InGaAs Spectrometers were 84 ms and 23 ms, respectively.


Pulse spectra for five healthy, human subjects who were breathing room air were measured at varying levels of pressure. Raw tissue spectra observed on the patients were converted to absorbance spectra by subtracting the spectrum measured with the light source turned off and dividing by the spectrum measured on a solid reflectance standard (Teflon), and subsequently computing the negative logarithm (base 10) of the result. The absorbance spectra were decimated by wavelength, such that the spacing between channels corresponded to approximately one half of the spectral resolution. The absorbance spectra were then temporally bandpass filtered with lower and upper frequency cutoffs of 0.6 and 4.0 Hz, respectively. Additionally, the absorbance spectra were Fourier phase filtered using wavelengths of 500 nm and 1000 nm, respectively, as reference signals for the pulse spectra detected at the Si and InGaAs Spectrometers. Pulse spectra were constructed by computing the slope of a least-squares linear fit to the absorbance at each wavelength versus a reference wavelength.


Measurements of the pulse spectra were collected on the middle or ring finger of five volunteer subjects at three different pressures: “low,” “medium,” and “high.” “Low” pressure was a pressure only just sufficient to contact the finger with the sensor, occurring at approximately 5 mm Hg. “High” pressure was a pressure just below the pressure required to fully extinguish the photoplethysmographic waveform at a certain reference wavelength, such as 900 nm, occurring at approximately 125 mm Hg. “Medium” pressure was a pressure of approximately one-half of the “high” pressure, occurring at approximately 60 mm Hg. Three replicate measurements were performed at each pressure, with pressures being measured using a piezo-resistive sensor (Flexiforce B201, Tekscan) shaped to surround the illumination fiber ring. Table 1 below summarizes the average and standard deviation of the pressures applied to the tissues of the patient, which varied from patient to patient.









TABLE 1







Pressures applied to the tissue at the sensor site (mmHg)











Pressure
Average
Between subj. stand. dev.















High
126
21



Medium
60
9



Low
5
4










As noted above, pulse spectra may be employed for use in various photoplethysmographic diagnostic measurements, such as pulse oximetry and non-invasive total measurement of hemoglobin. In the case of pulse oximetry, the pulse spectrum may be measured at approximately 660 nm and at approximately 900 nm. As such, pulse oximetry may benefit from a consistent relationship between the measured amplitudes at approximately 660 nm and at approximately 900 nm. The pulse spectra experimentally collected from the five human subjects were compared at wavelengths of 660 nm and 900 nm, the results of which are shown below in Table 2.









TABLE 2







Pulse amplitude measured at 660 nm (normalized to 900 nm) as a


function of pressure













Between


Pressure
Mean amplitude
Within subj. std. dev.
subj. std. dev.





Low
0.478
0.030
0.069


Medium
0.444
0.022
0.042


High
0.514
0.039
0.048









Table 2 relates the amplitude of the measured pulse spectra at 660 nm to that of 900 nm. As indicated by Table 2, the mean amplitude at 660 nm may be dependent on the amount of pressure applied to the sensor. In particular, application of “medium” pressure results in the lowest standard deviation of the mean amplitude on a particular human subject which is noted as “within subj.,” as well as across the group of subjects, noted at “between subj.” Since all of the subjects were healthy and breathing room air, their arterial oxygen saturation percentages were all expected to be near 100%. Within-subject and between-subject variations were therefore expected to be indicative of the reproducibility of the measurement. In both cases, the “medium” pressure measurement proved to be the most reproducible of those tested. However, a fraction of the “high” pressure other than the “medium” pressure may be determined to produce more reproducible results. For example, with further experimentation, it may be determined that a pressure equivalent to approximately one-quarter of the “high” pressure or three-quarters of the “high” pressure may produce results more reproducible than results produced using the tested “medium” pressure.


For the purpose of measuring total hemoglobin in blood non-invasively, a pulse amplitude at 1320 nm relative to that at 800-900 nm, as well as other possible wavelengths, may be useful. As such, non-invasive measurement of total hemoglobin may also benefit from a consistent relationship between the measured amplitudes at approximately 1320 nm and at approximately 800-900 nm. The pulse spectra experimentally collected from the five human subjects were compared at wavelengths of 1320 nm and 900 nm, the results of which are shown below in Table 3.









TABLE 3







Pulse amplitude measured at 1320 nm (normalized to 900 nm) as


a function of pressure













Between


Pressure
Mean amplitude
Within subj. std. dev.
subj. std. dev.













Low
0.129
0.061
0.137


Medium
−0.009
0.031
0.038


High
0.059
0.046
0.119









Table 3 relates the amplitude of the measured pulse spectra at 1320 nm to that of 900 nm. As shown in Table 3, the experimental data may indicate that the pulse amplitude at 1320 nm is strongly dependent on the pressure applied to the sensor. The data may also indicate that by applying a “medium” pressure, the amplitude at 1320 nm may be reproducible as measured both on a particular subject and across a group of subjects.



FIG. 1 is a plot 2 of average amplitudes obtained for the three pressures “low,” “medium,” and “high” along a spectrum from 600 nm to 1400 nm. As described above, “low” pressure represents a pressure only just sufficient to contact the finger with the sensor, occurring at approximately 5 mm Hg; “high” pressure represents a pressure just below the pressure required to fully extinguish the photoplethysmographic waveform at a certain reference wavelength, such as 900 nm, occurring at approximately 125 mm Hg; and “medium” pressure represents a pressure of approximately one-half of the “high” pressure, occurring at approximately 60 mm Hg. The ordinate of the plot 2 indicates AC absorbance averaged across all tests as reflected in the photoplethysmographic amplitude (normalized to 900 nm), and the abscissa of the plot 2 indicates wavelength of the spectrum in units of nanometers (nm).


In the plot 2 of FIG. 1, a curve 4 represents averaged AC spectra obtained at the “low” pressure, a curve 6 represents averaged AC spectra obtained at the “medium” pressure, and a curve 8 represents averaged AC spectra obtained at the “high” pressure. Error bars associated with each curve 4, 6, and 8 represent the standard deviation between subjects for pulse spectra obtained at the “low,” “medium,” and “high” pressures, respectively. As is apparent from the plot, the “medium” pressure curve 6 has the least variability across substantially the entire the range of disclosed wavelengths. Thus, it should be understood that a “medium” pressure applied on a plethysmographic sensor may provide the greatest reproducibility between subjects across wavelengths of interest in plethysmographic diagnostic measurements.


With the foregoing in mind, FIG. 2 illustrates a perspective view of a photoplethysmography system 10 in accordance with present embodiments for obtaining consistent and reproducible diagnostic measurements. The system 10 may be employed to observe the blood constituents of a patient's arterial blood by emitting light at particular wavelengths into tissue and detecting the light after dispersion and/or reflection by the tissue. For example, diagnostic measurements for pulse oximetry may involve photoplethysmographic measurements at approximately 660 nm and at approximately 900 nm, and diagnostic measurements for non-invasively measuring total hemoglobin may involve photoplethysmographic measurements at approximately 1320 nm and at approximately 800-900 nm.


The system 10 may include a patient monitor 12 that communicatively couples to a photoplethysmographic sensor 14. The patient monitor 12 may include a display 16, a memory, a processor, and various monitoring and control features. The patient monitor 12 may be configured to perform pulse oximetry measurements, calculations, and control algorithms using high precision values in accordance with present embodiments. The photoplethysmographic sensor 14 may include a sensor cable 18, a connector plug 20, and a sensor assembly or body 22 configured to attach to a patient (e.g., a patient's finger, ear, forehead, or toe). In the illustrated embodiment, the sensor assembly is configured to attach to a finger and to apply a pressure sufficient to exclude extraneous extravascular fluid while permitting arterial blood flow in the pulsatile tissue of the finger. The system 10 may include a separate display feature 24 that is communicatively coupled with the patient monitor 12 to facilitate presentation of plethysmographic data and that may display a plethysmogram, pulse oximetry information, non-invasive measurement of total hemoglobin, and/or related data.


The photoplethysmographic sensor 14 may include an emitter 28 and a detector 30. When attached to patient tissue, the emitter 28 may transmit light at different wavelengths into the tissue and the detector 30 may receive the light after it has passed through or is reflected by the tissue. The amount of light that passes through the tissue and other characteristics of light waves may vary in accordance with the changing amount of certain blood constituents in the tissue and the related light absorption and/or scattering. For example, the system 10 may emit light from two or more LEDs or other suitable light sources, such as lasers or incandescent light sources guided by fiber optics, into the pulsatile tissue. The reflected or transmitted light may be detected with the detector 30, such as a photodiode or photo-detector, after the light has passed through or has been reflected by the pulsatile tissue.


The photoplethysmographic sensor 14 may facilitate certain diagnostic measurements by specifically examining responses by the tissue at certain wavelengths. For example, to conduct pulse oximetry measurements, the emitter 28 of the photoplethysmographic sensor 14 may emit light of wavelengths of approximately 660 nm and 900 nm. To conduct non-invasive measurements of total hemoglobin, the emitter 28 of the photoplethysmographic sensor 14 may emit light of wavelengths of approximately 1320 nm and 800-900 nm. Because the ratio of amplitudes for measurements obtained at one wavelength to another wavelength may vary with pressure, a pressure device 32 may apply an optimum amount of pressure between the photoplethysmographic sensor 14 and the patient tissue, enhancing the reproducibility of measurements taken at the various wavelengths. In the embodiment of FIG. 2, the photoplethysmographic sensor 14 may be shaped as a clip and the pressure device 32 may cause the sensor body 22 to fold or compress around the patient's finger. The pressure device 32 may be controlled manually or automatically by the patient monitor 12.



FIG. 3 is a block diagram of an embodiment of the monitoring system 10 that may be configured to implement the techniques described herein. By way of example, embodiments of the system 10 may be implemented with any suitable patient monitor, such as those available from Nellcor Puritan Bennett LLC. The system 10 may include the patient monitor 12 and the photoplethysmographic sensor 14, which may be configured to obtain a plethysmographic signal from patient tissue at certain predetermined wavelengths at an optimum pressure. The photoplethysmographic sensor 14 may be communicatively connected to the patient monitor 12 via a cable or wireless device. When the system 10 is operating, light from the emitter 28 may pass into a patient 36 and be scattered and detected by the detector 30. The patient monitor 12 may include a microprocessor 38 connected to an internal bus 40. Also connected to the bus 40 may be a RAM memory 42 and a display 44. A time processing unit (TPU) 46 may provide timing control signals to light drive circuitry 48 which may control when the emitter 28 is illuminated, and if multiple light sources are used, the multiplexed timing for the different light sources. The TPU 46 may also control the gating-in of signals from the detector 30 through an amplifier 50 and a switching circuit 52. These signals may be sampled at the proper time, depending upon which of multiple light sources is illuminated, if multiple light sources are used. The received signal from the detector 30 may be passed through an amplifier 54, a low pass filter 56, and an analog-to-digital converter 58. The digital data may then be stored in a queued serial module (QSM) 60, for later downloading to the RAM 42 as the QSM 60 fills up. In one embodiment, there may be multiple parallel paths of separate amplifier, filter and A/D converters for multiple light wavelengths or spectra received.


In an embodiment, the photoplethysmographic sensor 14 may also contain an encoder 62 that provides signals indicative of the wavelength of one or more light sources of the emitter 28 to allow the patient monitor 12 to select appropriate calibration coefficients for calculating a physiological parameter such as blood oxygen saturation. By way of example, present embodiments may be implemented with any suitable photoplethysmographic sensor, such as those available from Nellcor Puritan Bennett LLC. The encoder 62 may, for instance, be a coded resistor, EEPROM or other coding devices (such as a capacitor, inductor, PROM, RFID, a barcode, parallel resonant circuits, or a colorimetric indicator) that may provide a signal to the processor 38 related to the characteristics of the photoplethysmographic sensor 14 that may allow the processor 38 to determine the appropriate calibration characteristics for the photoplethysmographic sensor 14. Further, the encoder 62 may include encryption coding that prevents a disposable part of the photoplethysmographic sensor 14 from being recognized by a processor 38 that is not able to decode the encryption. For example, a detector/decoder 64 may be required to translate information from the encoder 62 before it can be properly handled by the processor 38.


In various embodiments, based at least in part upon the value of the received signals corresponding to the light received by detector 30, the microprocessor 38 may calculate a physiological parameter using various algorithms. These algorithms may utilize coefficients, which may be empirically determined, corresponding to, for example, the wavelengths of light used. These may be stored in a ROM 66. In a two-wavelength system, the particular set of coefficients chosen for any pair of wavelength spectra may be determined by the value indicated by the encoder 62 corresponding to a particular light source in a particular sensor 14. For example, the first wavelength may be a wavelength that is highly sensitive to small quantities of deoxyhemoglobin in blood, and the second wavelength may be a complimentary wavelength. Specifically, for example, such wavelengths may be produced by orange, red, infrared, green, and/or yellow LEDs. Different wavelengths may be selected with control inputs 68. The control inputs 68 may be, for instance, a switch on the monitor, a keyboard, or a port providing instructions from a remote host computer.


The patient monitor 12 may be connected to a network via a network interface 70. The network interface 70 may implement any suitable networking technology or protocol, such as Ethernet, wireless Ethernet, and so forth. The network interface 70 may be connected to a network port 72 via a network cable or via a wireless connection. Additionally, the patient monitor 12 may include a non-volatile memory 74 that may store caregiver preferences, patient information, or any other information useful for configuring the patient monitor 12. The software for performing the configuration of the patient monitor 12 and retrieval of information over the network interface 70 may also be stored on the memory 74, or may be stored on the ROM 66.


The photoplethysmographic sensor 14 may include the pressure device 32 and/or the pressure sensor 34, which may operably connect to the patient monitor 12. Specifically, the pressure device 34 may be controlled by a pressure device controller 76 in the patient monitor 12, which may increase or decrease the pressure of the photoplethysmographic sensor 14 on the patient 36 to achieve a desired pressure. The pressure device controller 76 may transmit an electronic signal or a signal of supplied liquid or gas to control the pressure device 34. Based on routines stored in RAM 42, ROM 66, and/or nonvolatile memory 74 that may be executed by the microprocessor 38, the pressure device controller 76 may increase or decrease pressure until an optimum pressure for a desired diagnostic measurement is obtained. The pressure sensor 34 may provide an indication of the current pressure to a sensor pressure decoder 78 in the patient monitor 12. As the pressure device controller 76 instructs the pressure device 32 to increase or decrease the pressure applied to the patient 36, sensor pressure decoder 78 may provide the microprocessor 38 with data indicating the current applied pressure. Such data may be used, for example, to provide closed-loop feedback to the microprocessor 38. Based on such closed-loop feedback, the microprocessor 38 may suitably control the applied pressure with a PID controller or a PID control algorithm, which may be implemented in software running on the microprocessor 38.


In one embodiment, the pressure device controller 76 may instruct the pressure device 32 to maintain the pressure of the photoplethysmographic sensor 14 against the patient 36 at a low level when plethysmographic diagnostic measurements are not being obtained. When such plethysmographic diagnostic measurements are being obtained, (e.g., just prior to and during measurement of the pulse amplitude of the patient 36), the pressure device controller 76 may instruct the pressure device 32 to increase the pressure against the patient 36 to an optimal value of pressure (e.g., approximately half of a maximal value). In this way, the electronic patient monitor 12 may obtain reproducible results across a range of subjects and time periods, and the effect of the pressure applied by the photoplethysmographic sensor 14 on the blood circulation in the tissue of the patient 36 may be minimized.



FIG. 4 is a flowchart 80 of an embodiment of a method for performing a desired photoplethysmographic diagnostic measurement at an optimum pressure. At the optimum pressure, the photoplethysmographic sensor 14 may provide reproducible photoplethysmographic waveforms across a range of patients and times, which may translate into reproducible diagnostic measurements. Steps of the flowchart 80 may be performed manually by a medical practitioner or automatically by the photoplethysmography system 10, as identified in the discussion below.


The flowchart 80 may begin with a first step 82, when a medical practitioner may attach the photoplethysmographic sensor 14 with minimal pressure to a tissue site, such as a finger, on the patient 36. Such a minimal pressure may be, for example, approximately 1-10 mm Hg. In step 84, the medical practitioner may manually increase the pressure or the patient monitor 12 may control the pressure device 32 to increase the pressure against the patient 36 while observing a photoplethysmographic waveform for a predetermined wavelength of light. The predetermined wavelength of the photoplethysmographic waveform may be chosen based on the type of diagnostic measurement that is intended. For example, if the desired diagnostic measurement includes pulse oximetry, the predetermined wavelength of the photoplethysmographic waveform may be approximately 660 nm or 900 nm. If the desired diagnostic measurement includes non-invasive measurement of total hemoglobin, the predetermined wavelength of the photoplethysmographic waveform may be approximately 1320 nm or 900 nm. As the pressure is increased in the step 86, the earliest point at which the photoplethysmographic waveform reaches a minimum at the predetermined wavelength may represent a maximal sensor pressure. Such a maximal pressure is believed to cause extravascular fluid to exit the tissue site and arterial blood flow to substantially cease when applied against the tissue site of the patient 36, and may be, for example, approximately 100-150 mm Hg.


In step 86, the medical practitioner or the patient monitor 12 may record the maximal pressure using the pressure sensor 34. In step 88, the medical practitioner or the patient monitor 12 may cause the pressure of the photoplethysmographic sensor 14 against the patient 36 to be a predetermined fraction of the maximal pressure recorded in step 86. For example, the pressure may be decreased to approximately half of the maximal pressure, since a “medium” pressure has been experimentally shown to be reproducible across a range of subjects and time periods. At such a medium pressure, it is believed that most extravascular fluid is excluded from the tissue site while most arterial blood continues to flow. It should be appreciated, however, that other predetermined fractions of the maximal pressure recorded in step 86 may be applied in step 88. Such predetermined fractions may be any fraction of the maximal pressure greater than the minimal pressure and less than the maximal pressure, and may be, for example, approximately one-quarter, one-third, two-thirds, or three-quarters of the maximal pressure. For example, if the pressure recorded in step 86 is approximately 100-150 mm Hg, the medium pressure applied in step 88 may be approximately 50-70 mm Hg for patients with normal blood pressure.


In step 90, one or more diagnostic measurements of interest may be taken while the predetermined fraction of the maximal pressure is being applied. For example, while the predetermined fraction of the maximal pressure is being applied, the photoplethysmographic system 10 may take a pulse oximetry reading based on, for example, wavelengths of approximately 660 nm and 900 nm. Additionally or alternatively, the photoplethysmographic system 10 may take measurements of total hemoglobin based on, for example, wavelengths of approximately 1320 nm and 800-900 nm.


Steps 84-88 above may be performed only when the photoplethysmographic sensor 14 is first placed on the patient 36. Alternatively, to further increase measurement reproducibility, steps 84-88 may be repeated each time a diagnostic measurement is to be obtained, and after the measurement has been obtained, the pressure may be reduced to the minimal pressure. In another embodiment, steps 84-86 may be performed at a periodic interval (e.g., once every hour, half hour, 15 minutes, etc.) or after a predetermined number of diagnostic measurements have been obtained, and step 88 may be performed each time a diagnostic measurement is to be obtained.



FIGS. 5-7 represent various alternative embodiments of the photoplethysmographic sensor 14 for practicing the embodiment of the method of the flowchart 80 of FIG. 4. In particular, FIG. 5 illustrates a photoplethysmographic sensor with a manually-controlled wrap-based pressure device 32, FIG. 6 illustrates a photoplethysmographic sensor with an inflatable-balloon-based pressure device 32, and FIG. 7 illustrates a photoplethysmographic sensor with an inflatable-cuff-based pressure device 32. Turning first to FIG. 5, a wrap-based photoplethysmographic sensor 94 may enable a medical practitioner to manually perform the method described in flowchart 80. The sensor 94 may include any underlying photoplethysmographic sensor 96, which may include, for example, an emitter 28 and a detector 30 in either a transmission-type or reflectance-type configuration. The sensor 96 may be formed from a flexible material, such as cloth or soft plastic, and may include adhesive straps 98 to attach the sensor 96 to the patient 36.


A medical practitioner may use a wrap-based pressure device 32, illustrated in FIG. 5 as a foam adhesive 100, to maintain pressure on the sensor 96. Additionally or alternatively, the foam adhesive 100 may be or include any material that may be wrapped around the sensor 96, such as gauze, tape, elastic bands, bands of Velcro-type hook-and-loop fasteners, and so forth. A pressure sensor 34 may be placed beneath or attached to the sensor 96 to monitor the amount of pressure applied. To carry out the steps of the flowchart 80 using the wrap-based photoplethysmographic sensor 94, a medical practitioner may first loosely attach the sensor 96 to the patient 36 by attaching the adhesive straps 98; the pressure sensor 34 should indicate a minimal pressure of approximately 1-10 mm Hg. Next, the medical practitioner may apply pressure on the sensor 96 at the locations of the admitter 28 and detector 30, observing the plethysmographic waveform displayed on the patient monitor 12 at the predetermined wavelength. When the plethysmographic waveform extinguishes to a minimum, the medical practitioner may record the maximal pressure indicated by the pressure sensor 34. The medical practitioner may subsequently attach the foam adhesive 100 tightly enough to achieve a pressure of approximately half of the maximal pressure before taking a diagnostic measurement of interest.



FIG. 6 illustrates a photoplethysmographic sensor 102 with an inflatable-balloon-based pressure device 32, which may represent another embodiment of the photoplethysmographic sensor 14 and which may also enable the method of the flowchart 80. The sensor 102 may include, for example, the flexible sensor 96 having the emitter 28 and detector 30, which may attach to a tissue site of the patient 36 using the adhesive straps 98. As in the sensor 94 of FIG. 5, the pressure sensor 34 beneath the sensor 96 may enable monitoring of the pressure applied to the patient 36. The pressure device 32 of the photoplethysmographic sensor 102 may be include an inflatable balloon or bladder 104 attached to an inflation tube 105 and surrounded by an inflexible casing 106. The inflatable balloon or bladder 104 may be formed from any flexible material capable of holding a gas or liquid supplied via the inflation tube 105, such as latex or flexible plastic. The inflexible casing 106 may include, among other things, rigid plastic or metal to hold the inflatable balloon or bladder 104 against the patient 36 while inflated.


The sensor 102 of FIG. 6 may be used to carry out the method of the flowchart 80 of FIG. 4 in a variety of manners. For example, the inflatable balloon or bladder 104 may be pumped manually by a medical practitioner, who may carry out the method of the flowchart 80 in a manner similar to that described above with reference to FIG. 5. Additionally or alternatively, the patient monitor 12 may automatically control the sensor 102 to catty out the steps 84-90 of the flowchart 80. For example, the pressure device controller 76 of the patient monitor 12 may be configured to inflate the balloon or bladder 104. When a plethysmographic waveform signal from the photoplethysmographic sensor 102 extinguishes to a minimum at a predetermined wavelength, the patient monitor 12 may record the pressure indicated by the pressure sensor 34 and as determined by the sensor pressure decoder 78, storing the pressure value in the RAM 42 or the nonvolatile memory 74. The pressure device controller 76 may next cause the balloon or bladder 104 to deflate to approximately half of the stored pressure value. Having obtained an approximately optimum “medium” pressure, the patient monitor 12 may next obtain a diagnostic measurement of interest, such as a pulse oximetry measurement or a non-invasive measurement of total hemoglobin.



FIG. 7 illustrates a photoplethysmographic sensor 108 with an inflatable-cuff-based pressure device 32, which may represent another embodiment of the photoplethysmographic sensor 14 and which may also enable the method of the flowchart 80. As shown in FIG. 7, the photoplethysmographic sensor 108 may include the flexible sensor 96, over which an inflatable cuff 110 may be placed. Additionally or alternatively, the inflatable cuff 110 may incorporate the elements of the flexible sensor 96, such as the emitter 28 and the detector 30, which may be sewn into the inflatable cuff 110. The inflatable cuff 110 may function in a substantially similarly manner as a blood pressure cuff, by inflating or deflating in response to a supplied liquid or gas from an inflation tube 111. Like the inflatable balloon or bladder 104 shown in FIG. 6, the inflatable cuff 110 may be controlled manually by a medical practitioner or automatically via the patient monitor 12.



FIGS. 8 and 9 relate to an alternative method of determining an optimal “medium” pressure to achieve reproducible photoplethysmographic data across patients and times. Specifically, FIGS. 8 and 9 describe embodiments that determine an optimum pressure by proxy using measured thicknesses of a photoplethysmographic sensor against patient tissue. As shown in FIG. 8, a thickness-measurement-based photoplethysmographic sensor system 112 may include a photoplethysmographic sensor 114, which may be a finger clip photoplethysmographic sensor similar to the photoplethysmographic sensor 14, and a thickness-measuring device 116, which may be a micrometer. The thickness measuring device 116 may apply pressure at a point 118, representing an approximate location of an emitter 28 and detector 30 in the sensor 114. In some embodiments, the thickness-measuring device 116 may be electronic and controllable by the patient monitor 12 in the same general manner as the pressure control device 32, and may additionally or alternatively provide thickness measurements to the patient monitor 12 in the same general manner as the pressure sensor 34. A medical practitioner or the patient monitor 12 may generally obtain an approximately optimum predetermined fraction of the maximal pressure with the thickness-measurement-based photoplethysmographic sensor system 112 using an embodiment of a method described with reference to FIG. 9.


A flowchart 120, shown in FIG. 9, describes an embodiment of a method for obtaining a reproducible diagnostic measurement using the thickness-measurement-based photoplethysmographic sensor system 112 of FIG. 8. The embodiment of the method of FIG. 9 may be particularly useful when a pressure sensor 34 is not available. The flowchart 120 may begin with a first step 122, when the medical practitioner may attach the photoplethysmographic sensor 114 with minimal pressure. Using the thickness-measuring device 116, the medical practitioner or the patient monitor 12 may ascertain and record a first thickness around the sensor 114. In step 126, the medical practitioner or the patient monitor 12 may increase the pressure of the photoplethysmographic sensor 114 on the patient 36, which may result in a decreased thickness. In step 128, at the point at which a plethysmographic waveform signal from the photoplethysmographic sensor 114 reaches a minimum, the medical practitioner or the patient monitor 12 may record a second thickness of the photoplethysmographic sensor 114 using the thickness-measuring device 116.


In step 130, the medical practitioner or the patient monitor 12 may allow pressure to decrease by setting the thickness to be approximately equal to a predetermined fractional distance between the first thickness and the second thickness. For example, the thickness may be set to be approximately midway between the first recorded thickness and the second recorded thickness. Such a thickness may generally approximate an optimum “medium” pressure against the patient 36. While continuing to apply the pressure provided by the thickness applied in step 130, the medical practitioner or the patient monitor 12 may begin taking a diagnostic measurement of interest in step 132. The diagnostic measurement of interest may include, for example, a pulse oximetry measurement or a non-invasive measurement of total hemoglobin.


Steps 124-128 above may be performed each time that the photoplethysmographic sensor 14 is first placed on the patient 36. Alternatively, to increase measurement reproducibility, steps 124-128 may be repeated each time a diagnostic measurement is to be obtained, and after the measurement has been obtained, the pressure may be reduced to the minimal pressure. In another embodiment, steps 124-126 may be performed at a periodic interval (e.g., once every hour, half hour, 15 minutes, etc.) or after a predetermined number of diagnostic measurements have been obtained, and step 128 may be performed each time a diagnostic measurement is to be obtained.


While the embodiments set forth in the present disclosure may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. The disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the following appended claims.

Claims
  • 1. A method comprising: applying a pressure between a photoplethysmographic sensor and a patient;increasing the pressure to a maximal pressure that occurs when the photoplethysmographic sensor outputs a plethysmographic waveform of minimal amplitude;decreasing the pressure by a predetermined fraction of the maximal pressure; andobtaining a diagnostic measurement using the photoplethysmographic sensor after decreasing the pressure by the predetermined fraction.
  • 2. The method of claim 1, wherein the predetermined fraction is approximately one half.
  • 3. The method of claim 2, wherein decreasing the pressure by approximately half comprises decreasing a pressure of between approximately 100 and 150 mm Hg to a pressure of between approximately 50 and 70 mm Hg.
  • 4. The method of claim 1, wherein the pressure is applied using a pressure device comprising a clip, a wrap, an inflatable balloon or bladder, or an inflatable cuff or any combination thereof.
  • 5. The method of claim 1, wherein the pressure is applied using a pressure device controlled by an electronic patient monitor.
  • 6. The method of claim 1, wherein the pressure is increased until the photoplethysmographic sensor outputs a waveform of minimal amplitude at a predetermined wavelength.
  • 7. The method of claim 6, wherein the predetermined wavelength is suitable for a pulse oximetry measurement or for a measurement of total hemoglobin.
  • 8. The method of claim 1, wherein the obtained diagnostic measurement comprises a pulse oximetry measurement or a measurement of total hemoglobin, or a combination thereof.
  • 9. A system comprising: a photoplethysmographic sensor configured to be applied to a tissue site on a patient and configured to provide a plethysmographic signal associated with the patient;a pressure device coupled to the photoplethysmographic sensor and configured to apply a pressure against the tissue site;a pressure sensor coupled to the photoplethysmographic sensor and configured to indicate the pressure applied by the pressure device; andan electronic patient monitor configured to receive and to monitor the plethysmographic signal, and to control the pressure device to increase the pressure applied to a maximal pressure that occurs when the plethysmographic signal reaches a minimal amplitude, and to control the pressure device to decrease the pressure applied by a predetermined fraction of the maximal pressure to enable a diagnostic measurement using the photoplethysmographic sensor.
  • 10. The system of claim 9, wherein the pressure device comprises a clip, a wrap, an inflatable balloon or bladder, or an inflatable cuff, or any combination thereof.
  • 11. The system of claim 9, wherein the pressure sensor comprises a piezo-resistive pressure sensor.
  • 12. The system of claim 9, wherein the electronic patient monitor is configured to regularly determine the maximal pressure at a predetermined interval.
  • 13. The system of claim 9, wherein the electronic patient monitor is configured to control the pressure device such that the applied pressure is between approximately 50 and 70 mm Hg when the maximal pressure is between approximately 100 and 150 mm Hg when the patient has a blood pressure in a normal range.
  • 14. The system of claim 9, wherein the electronic patient monitor is configured to control the pressure device such that the applied pressure is a low pressure that is less than the predetermined percentage of the maximal pressure when a diagnostic measurement based at least in part on the plethysmographic signal is not being obtained.
  • 15. A method comprising: measuring a first thickness of a photoplethysmographic sensor while attached around a patient tissue site at a minimal pressure sufficient to establish contact between the patient and the sensor;compressing the photoplethysmographic sensor attached around the patient tissue site until a maximal pressure is reached, wherein the maximal pressure is a lowest pressure that causes the arterial blood flow at the tissue site to substantially stop and the plethysmographic sensor to output a plethysmographic waveform of minimal amplitude;measuring a second thickness of the photoplethysmographic sensor while attached around the patient tissue site at the maximal pressure;decompressing the photoplethysmographic sensor attached around the patient tissue site until the photoplethysmographic sensor has an intermediate thickness between the first thickness and the second thickness, wherein the intermediate thickness is a predetermined fractional distance between the first and second thickness; andobtaining a diagnostic measurement of interest using the photoplethysmographic sensor after the photoplethysmographic sensor is decompressed to the intermediate thickness.
  • 16. The method of claim 15, wherein the method is performed while the photoplethysmographic sensor is attached to the patient tissue site, wherein the photoplethysmographic sensor comprises a finger clip.
  • 17. The method of claim 15, wherein the method is performed using the photoplethysmographic sensor, wherein the photoplethysmographic sensor is configured to perform the method based on control signals from an electronic patient monitor.
  • 18. A method comprising: applying a pressure to a patient tissue site;increasing the pressure applied to the patient tissue site to a first pressure, wherein the first pressure is a lowest pressure at which arterial blood flow in the patient tissue site substantially stops;decreasing the pressure applied to the patient tissue site to a second pressure such that a majority of extravascular fluid normally present in the patient tissue site is not present in the patient tissue site while a majority of arterial blood normally present in the patient tissue site remains in the patient tissue site, wherein the second pressure is approximately half of the first pressure; andobtaining a diagnostic measurement using the photoplethysmographic sensor at the patient tissue site while the second pressure is being applied.
  • 19. The method of claim 18, wherein the first pressure and the second pressure are applied by a pressure device on the photoplethysmographic sensor, wherein the pressure device is controlled by an electronic patient monitor.
  • 20. The method of claim 18, wherein the obtained diagnostic measurement comprises a pulse spectrum measurement for pulse oximetry.
  • 21. The method of claim 18, wherein the obtained diagnostic measurement comprises a pulse spectrum measurement for determination of total hemoglobin.
US Referenced Citations (213)
Number Name Date Kind
3638640 Shaw Feb 1972 A
4714341 Hamaguri et al. Dec 1987 A
4805623 Jöbsis Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4927264 Shiga et al. May 1990 A
4936679 Mersch Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4971062 Hasebe et al. Nov 1990 A
4972331 Chance Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5028787 Rosenthal et al. Jul 1991 A
5065749 Hasebe et al. Nov 1991 A
5084327 Stengel Jan 1992 A
5119815 Chance Jun 1992 A
5122974 Chance Jun 1992 A
5167230 Chance Dec 1992 A
5190038 Polson et al. Mar 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5263244 Centa et al. Nov 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5297548 Pologe Mar 1994 A
5355880 Thomas et al. Oct 1994 A
5372136 Steuer et al. Dec 1994 A
5385143 Aoyagi Jan 1995 A
5390670 Centa et al. Feb 1995 A
5413099 Schmidt et al. May 1995 A
5437275 Amundsen Aug 1995 A
5452717 Branigan Sep 1995 A
5469845 DeLonzor et al. Nov 1995 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5522388 Ishikawa et al. Jun 1996 A
5553614 Chance Sep 1996 A
5564417 Chance Oct 1996 A
5575285 Takanashi et al. Nov 1996 A
5611337 Bukta Mar 1997 A
5630413 Thomas et al. May 1997 A
5645059 Fein et al. Jul 1997 A
5645060 Yorkey Jul 1997 A
5680857 Pelikan et al. Oct 1997 A
5692503 Keunstner Dec 1997 A
5730124 Yamauchi Mar 1998 A
5758644 Diab et al. Jun 1998 A
5779631 Chance Jul 1998 A
5782757 Diab et al. Jul 1998 A
5786592 Hök Jul 1998 A
5792052 Isaacson Aug 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830139 Abreu Nov 1998 A
5831598 Kauffert et al. Nov 1998 A
5842981 Larsen et al. Dec 1998 A
5871442 Madarasz et al. Feb 1999 A
5873821 Chance et al. Feb 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995859 Takahashi Nov 1999 A
6011986 Diab et al. Jan 2000 A
6064898 Aldrich May 2000 A
6078828 Yasuda et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6120460 Abreu Sep 2000 A
6134460 Chance Oct 2000 A
6150951 Olejniczak Nov 2000 A
6154667 Miura et al. Nov 2000 A
6163715 Larsen et al. Dec 2000 A
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6222189 Misner et al. Apr 2001 B1
6230035 Aoyagi et al. May 2001 B1
6266546 Steuer et al. Jul 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6312393 Abreu Nov 2001 B1
6353750 Kimura et al. Mar 2002 B1
6397091 Diab et al. May 2002 B2
6415236 Kobayashi et al. Jul 2002 B2
6419671 Lemberg Jul 2002 B1
6438399 Kurth Aug 2002 B1
6461305 Schnall Oct 2002 B1
6466809 Riley Oct 2002 B1
6487439 Skladnev et al. Nov 2002 B1
6501974 Huiku Dec 2002 B2
6501975 Diab et al. Dec 2002 B2
6526301 Larsen et al. Feb 2003 B2
6544193 Abreu Apr 2003 B2
6546267 Sugiura et al. Apr 2003 B1
6549795 Chance Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6591122 Schmitt Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6606509 Schmitt Aug 2003 B2
6606511 Ali et al. Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6618042 Powell Sep 2003 B1
6622095 Kobayashi et al. Sep 2003 B2
6654621 Palatnik et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6658277 Wasserman Dec 2003 B2
6659941 Weber Dec 2003 B2
6662030 Khalil et al. Dec 2003 B2
6668183 Hicks et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6690958 Walker et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
6708048 Chance Mar 2004 B1
6711424 Fine et al. Mar 2004 B1
6711425 Reuss Mar 2004 B1
6714245 Ono Mar 2004 B1
6731274 Powell May 2004 B2
6785568 Chance Aug 2004 B2
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6801798 Geddes et al. Oct 2004 B2
6801799 Mendelson Oct 2004 B2
6829496 Nagai et al. Dec 2004 B2
6850053 Daalmans et al. Feb 2005 B2
6863652 Huang et al. Mar 2005 B2
6873865 Steuer et al. Mar 2005 B2
6889153 Dietiker May 2005 B2
6898451 Wuori May 2005 B2
6939307 Dunlop Sep 2005 B1
6947780 Scharf Sep 2005 B2
6949081 Chance Sep 2005 B1
6961598 Diab Nov 2005 B2
6983178 Fine et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7024235 Melker et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7035697 Brown Apr 2006 B1
7047056 Hannula et al. May 2006 B2
7127278 Melker et al. Oct 2006 B2
7162306 Caby et al. Jan 2007 B2
7209775 Bae et al. Apr 2007 B2
7236811 Schmitt Jun 2007 B2
7254434 Schulz et al. Aug 2007 B2
7263395 Chan et al. Aug 2007 B2
7272426 Schmid Sep 2007 B2
7373193 Al-Ali et al. May 2008 B2
20010005773 Larsen et al. Jun 2001 A1
20010020122 Steuer et al. Sep 2001 A1
20010039376 Steuer et al. Nov 2001 A1
20010044700 Kobayashi et al. Nov 2001 A1
20020026106 Khalil et al. Feb 2002 A1
20020035318 Mannheimer et al. Mar 2002 A1
20020038079 Steuer et al. Mar 2002 A1
20020042558 Mendelson Apr 2002 A1
20020049389 Abreu Apr 2002 A1
20020062071 Diab et al. May 2002 A1
20020111748 Kobayashi et al. Aug 2002 A1
20020133068 Huiku Sep 2002 A1
20020156354 Larson Oct 2002 A1
20020161287 Schmitt Oct 2002 A1
20020161290 Chance Oct 2002 A1
20020165439 Schmitt Nov 2002 A1
20020198443 Ting Dec 2002 A1
20030023140 Chance Jan 2003 A1
20030036690 Geddes Feb 2003 A1
20030055324 Wasserman Mar 2003 A1
20030060693 Monfre et al. Mar 2003 A1
20030139687 Abreu Jul 2003 A1
20030144584 Mendelson Jul 2003 A1
20030220548 Schmitt Nov 2003 A1
20030220576 Diab Nov 2003 A1
20040010188 Wasserman Jan 2004 A1
20040054270 Pewzner et al. Mar 2004 A1
20040087846 Wasserman May 2004 A1
20040107065 Al-Ali Jun 2004 A1
20040127779 Steuer et al. Jul 2004 A1
20040171920 Mannheimer et al. Sep 2004 A1
20040176670 Takamura et al. Sep 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040230106 Schmitt et al. Nov 2004 A1
20050080323 Kato Apr 2005 A1
20050101850 Parker May 2005 A1
20050113651 Wood et al. May 2005 A1
20050113656 Chance May 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050177034 Beaumont Aug 2005 A1
20050192488 Bryenton et al. Sep 2005 A1
20050203357 Debreczeny et al. Sep 2005 A1
20050228248 Dietiker Oct 2005 A1
20050267346 Faber et al. Dec 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20050283082 Geddes et al. Dec 2005 A1
20060009688 Lamego et al. Jan 2006 A1
20060015021 Cheng Jan 2006 A1
20060020181 Schmitt Jan 2006 A1
20060030763 Mannheimer et al. Feb 2006 A1
20060052680 Diab Mar 2006 A1
20060058683 Chance Mar 2006 A1
20060058690 Bartnik Mar 2006 A1
20060064024 Schnall Mar 2006 A1
20060195028 Hannula et al. Aug 2006 A1
20060224058 Mannheimer Oct 2006 A1
20060247501 Ali Nov 2006 A1
20060258921 Addison et al. Nov 2006 A1
20070043276 Mannheimer Feb 2007 A1
20070078316 Hoarau Apr 2007 A1
20070142717 Lowery Jun 2007 A1
20080045846 Friedman Feb 2008 A1
20080200785 Fortin Aug 2008 A1
20080249393 Finarov Oct 2008 A1
Foreign Referenced Citations (11)
Number Date Country
69123448 May 1997 DE
0630203 Dec 1994 EP
3124073 Dec 1991 JP
5049624 Mar 1993 JP
2004113353 Apr 2004 JP
25168600 Jun 2005 JP
26075354 Mar 2006 JP
27330708 Dec 2007 JP
WO2006110488 Oct 2006 WO
WO2006110488 Oct 2006 WO
WO2006110488 Oct 2006 WO
Non-Patent Literature Citations (6)
Entry
Buschman, J.P., et al.; “Principles and Problems of Calibration of Fetal Oximeters,” Biomedizinische Technik, vol. 42, pp. 265-266 (1997).
Lutter, N., et al.; “Accuracy of Noninvasive Continuous Blood Pressure; Measurement Utilising the Pulse Transit Time,” Journal of clinical Monitoring and Computing, vol. 17, Nos. 7-8, pp. 469 (2002).
Lopez-Silva, S.M., et al.; “Transmittance Photoplethysmography and Pulse Oximetry With Near Infrared Laser Diodes,” IMTC 2004—Instrumentation and Measurement Technology Conference, Como, Italy, May 18-20, 2004; pp. 718-723.
Schmitt, Joseph M., et al.; “Measurement of Blood Hematocrit by Dual-Wavelength Near-IR Photoplethysmography”; SPIE vol. 1641, 1992, pp. 150-161.
Kumar, Gitesh, et al.; “Optimum Wavelengths for Measurement of Blood Hemoglobin Content and Tissue Hydration by NIR Spectrophotometry”; SPIE vol. 2678, 1996, pp. 442-453.
Debreczeny, Martin P., et al.; “Feasibility Assessment of Optical Non-Invasive Total Hemoglobin Measurement”; SPIE vol. 4965, 2003, pp. 122-133.
Related Publications (1)
Number Date Country
20110046464 A1 Feb 2011 US