Photosensitive ink compositions and transparent conductors and method of using the same

Information

  • Patent Grant
  • 9534124
  • Patent Number
    9,534,124
  • Date Filed
    Friday, February 4, 2011
    13 years ago
  • Date Issued
    Tuesday, January 3, 2017
    8 years ago
Abstract
This disclosure is related to photosensitive ink compositions comprising conductive nanostructures and a photosensitive compound, and method of using the same.
Description
BACKGROUND

Technical Field


This disclosure is related to photosensitive ink compositions comprising conductive nanostructures, as well as methods of using or patterning the same.


Description of the Related Art


Transparent conductors are optically clear and electrically conductive films. They are in widespread use in areas of display, touch-panel, photovoltaic (PV), various types of e-paper, electrostatic shielding, heating or anti-reflective coatings (e.g., windows), etc. Various technologies have produced transparent conductors based on one or more conductive media such as metallic nanostructures, transparent conductive oxides (e.g., via sol-gel approach), conductive polymers, and/or carbon nanotubes.


To prepare a nanostructure-based conductive film, an ink composition, which is a suspension of conductive nanostructures in a suspending fluid, is deposited on a transparent substrate. In general, a transparent conductor further includes the transparent substrate on which the conductive film is deposited or coated.


Depending on the end use, the transparent conductors can be created with predetermined electrical and optical properties, as well as pre-determined patterns. There is a need for direct patterning nanostructure-based conductive films.


BRIEF SUMMARY

Described herein are photosensitive ink compositions suitable for forming nanostructure-based conductive films, as well as methods of direct photo-patterning of the same.


One embodiment provides an ink composition comprising: a plurality of conductive nanostructures; a binding material; a photosensitive compound; and a polar solvent. In more specific embodiments, the crosslinkable polymer is polyvinylpyrrolidone or hydroxypropylmethyl cellulose.


A further embodiment provides a method comprising: depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a crosslinkable polymer, a photoinitiator, and a polar solvent; forming a thin film of interconnecting nanowires by removing the polar solvent; and exposing a portion of the thin film to a UV light source to cause the crosslinkable polymer in the exposed portion of the thin film to crosslink.


Another embodiment provides a conductive film comprising: a plurality of interconnecting conductive nanostructures; a binding material, wherein the interconnecting conductive nanostructures are embedded in the binding material; and a photosensitive compound.


Yet another embodiment provides a method comprising: forming a thin film of interconnecting conductive nanostructures on a substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a binder material, a heat-activatable photosensitive compound, and a polar solvent; and removing the polar solvent; placing a mask above the thin film, wherein the mask includes an opening and defines the thin film into a masked region and an unmasked region, the unmasked region corresponding to the opening; exposing the thin film to a UV light source through the opening of the mask at a first temperature to cause photo-degradation of the photosensitive compound in the unmasked region; and exposing the thin film to a heat source in the dark at a second temperature to cause thermal-degradation of the photosensitive compound in the masked region.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been selected solely for ease of recognition in the drawings.



FIG. 1A shows a mask placed above a conductive film prepared according to one embodiment.



FIG. 1B shows a patterned conductive film following direct photo-patterning.



FIG. 2 shows an embodiment of the present disclosure in which an invisible or low-visibility pattern is formed in a transparent conductor having a heat-activatable photosensitive compound.



FIG. 3A shows a standard transparent conductor without any photosensitive compound.



FIG. 3B shows broken or damaged nanowires in a transparent conductor including a heat-activatable photosensitive compound following a heat treatment in the dark.



FIG. 3C shows intact nanowires in a transparent conductor including a photosensitive compound following photo-irradiation.





DETAILED DESCRIPTION

In various embodiments, the transparent conductors described herein are thin films cast from liquid suspensions of conductive nanostructures, which are also referred to as “ink compositions” or “ink.” In addition to the conductive nanostructures, the ink composition comprises a binder material (e.g., a crosslinkable polymer), a photosensitive compound (e.g., photoinitiator), and a polar solvent. As described herein in further detail, the ink composition and the transparent conductor (conductive film) formed from the same are photosensitive owing to the presence of the photosensitive compound, which absorbs photons and undergoes a chemical or physical transformation. Depending on the types of the photosensitive compound in the ink and the resulting transparent conductor, various approaches can be taken to develop photo images in the transparent conductor.


Nanostructures


As used herein, “conductive nanostructures” or “nanostructures” generally refer to electrically conductive nano-sized structures, at least one dimension of which (i.e., width or diameter) is less than 500 nm, more typically, less than 100 nm or 50 nm. In various embodiments, the width or diameter of the nanostructures are in the range of 10 to 40 nm, 20 to 40 nm, 5 to 20 nm, 10 to 30 nm, 40 to 60 nm, 50 to 70 nm.


Lengthwise, the nanostructures are more than 500 nm, or more than 1 μm, or more than 10 μm in length. In various embodiments, the lengths of the nanostructures are in the range of 5 to 30 μm, or in the range of 15 to 50 μm, 25 to 75 μm, 30 to 60 μm, 40 to 80 μm, or 50 to 100 μm.


The nanostructures can be of any shape or geometry. One way for defining the geometry of a given nanostructure is by its “aspect ratio,” which refers to the ratio of the length and the width (or diameter) of the nanostructure. In certain embodiments, the nanostructures are isotropically shaped (i.e., aspect ratio=1). Typical isotropic or substantially isotropic nanostructures include nanoparticles. In preferred embodiments, the nanostructures are anisotropically shaped (i.e., aspect ratio≠1). The anisotropic nanostructure typically has a longitudinal axis along its length. Exemplary anisotropic nanostructures include nanowires (solid nanostructures having an aspect ratio of at least 10, and more typically, at least 50), nanorod (solid nanostructures having an aspect ratio of less than 10) and nanotubes (hollow nanostructures).


The nanostructures can be of any conductive material. More typically, the nanostructures are formed of a metallic material, including elemental metal (e.g., transition metals) or a metal compound (e.g., metal oxide). The metallic material can also be a bimetallic material or a metal alloy, which comprises two or more types of metal. Suitable metals include, but are not limited to, silver, gold, copper, nickel, gold-plated silver, platinum and palladium.


In various embodiments, the nanostructures are silver nanowires.


In other embodiments, the nanostructures are gold nanotubes.


In further embodiments, the nanostructures are gold-plated silver nanowires.


The nanostructures suitable for forming the ink compositions described herein can be prepared according to the methods described in, for example, co-pending and co-owned applications, U.S. application Ser. Nos. 11/766,552, 11/504,822, and 12/106,2446, all the in the name of Cambrios Technologies Corporation, which applications are incorporated herein by reference in their entireties.


In further embodiments, the nanostructures in an ink composition have a pre-determined size distribution, in which a certain percentage of the entire population of the nanostructures (e.g., more than 90%) is within a size (length and/or width) limit. More detailed description directed to controlling size distribution in a given population of nanostructures can be found in a co-pending and co-owned application, U.S. patent application Ser. No. 13/007,305, in the name of Cambrios Technologies Corporation, which application is incorporated herein by reference in its entirety.


In various embodiments, the nanostructures are present in the ink composition at about 0.1-0.5% (w/w), 0.5-1% (w/w), 1-5% (w/w) or 5-10% (w/w). Preferably, the nanostructures are present in the ink composition at about 0.1 (w/w), 1% (w/w), or 10% (w/w).


Binding Material


In addition to the nanostructures, the ink composition further comprises a binding material, which is typically soluble or miscible in a polar solvent, a major component of the ink composition. In a conductive film formed from the ink composition, the binding material serves to bind the nanostructures together as well as promote adhesion of the nanostructures to a substrate. In various embodiments, the physical characteristics of a given binding material may influence the viscosity, cohesiveness and adhesiveness of the conductive film. Under certain circumstances (e.g., patterning), the binding material (also referred to as “binder”) in the conductive film may further undergo physical or chemical transformations such as curing or crosslinking.


In certain embodiments, the binding material is a crosslinkable polymer. As used herein, a “crosslinkable polymer” or “polymer” refers to a substantially linear polymer that, in the presence of a photosensitive compound (e.g., a photoinitiator) and in response to photo-irradiation in the ultra violet (UV) range (10-400 nm) or visible range (400-750 nm), forms chemical bonds between two or more polymer chains.


In accordance with various embodiments, the crosslinkable polymer is soluble or miscible in the ink composition and functions as, in part, a viscosity modifier, which regulates the viscosity of the ink and the dispersibility of the nanostructures therein.


The linear polymer chains of the polymer can crosslink under photo-irradiation. In certain embodiments, photo-irradiation causes the photosensitive compound (e.g., photoinitiator) to release highly reactive species (e.g., radicals, cations or anions). The reactive species generated from the initial photo-irradiation trigger formations of reactive species in the polymer chains, which result in the formations of chemical bonds that bridge or crosslink two or more polymer chains. Polymer chains that contain chemical moieties such as hydroxyl groups, carbonyl groups, carboxy groups, and olefin groups are photosensitive as these groups are either susceptible to or can cause their neighboring atoms (e.g., carbon) to be susceptible to free radical reactions.


Depending on the specific chemical structures of the crosslinkable polymer, the crosslinking process causes the formations of at least one type of chemical bonds, namely, covalent, ionic or hydrogen bond. The specific chemical structures of the crosslinkable polymer further affect the degree of crosslinking, i.e., the number of bonds formed that bridge the polymer chains.


The crosslinking process typically promotes a modification in the properties of the crosslinkable polymer. Thus, following irradiation, the crosslinkable polymer is converted to a crosslinked polymer, the properties of which differ from those of the crosslinkable polymer. Notably, the crosslinked polymer loses all or part of the flexibility of the original linear polymer chain. In addition, the crosslinked polymer is substantially less soluble in a given solvent, as compared to a linear crosslinkable polymer. Other properties of the crosslinkable polymer that may differ from those of the linear polymer include, for example, increased viscosity and adhesiveness.


In certain embodiments, suitable crosslinkable polymers can be hydroxyl-containing or carboxy-containing cellulosic polymers, such as hydroxypropylmethyl cellulose (HPMC), hydroxypropylmethyl cellulose phthalate, hydroxypropyl cellulose (HPC), hydroxybutylmethyl cellulose, ethylhydroxyethyl cellulose, sodium carboxymethyl-hydroxyethyl cellulose, and carboxymethylethyl cellulose.


In other embodiments, suitable crosslinkable polymers can be a hydrophilic polymer, including, without limitation, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylamides, polyacrylates, polyethylene oxides, polyethylene imine, anionic and cationic polyelectrolytes (i.e., charged water-soluble polymers such as sodium salt of polyacrylic acid), and poly (2-ethyl-2-oxazoline).


In a preferred embodiment, the crosslinkable polymer is PVP. Typically, the molecular weight of PVP is in the range of 50,000 to 2,000,000 Daltons. PVP suitable for the ink compositions described herein include, for example, LUVITEC® K, which is commercially available from BASF (Germany).


In a further preferred embodiment, the crosslinkable polymer is HPMC. Typically, the molecular weight of HPMC is in the range of 120,000 Daltons. HPMC suitable for the ink compositions described herein include, for example, METHOCEL 311®, which is commercially available from Dow Chemicals, and may be optionally purified according to the methods described in co-pending and co-owned U.S. patent application Ser. No. 12/773,734, which application is incorporated herein by reference in its entirety.


It should be understood that a crosslinkable polymer may be capable of crosslinking under one condition, but incapable of crosslinking under another condition.


In various embodiments, the crosslinkable polymer is present in the ink composition at about 0.1-0.5% (w/w), 0.5-1% (w/w), 1-5% (w/w) or 5-10% (w/w). Preferably, the crosslinkable polymer is present in the ink composition at about 0.1 (w/w), 1% (w/w), or 10% (w/w).


Photosensitive Compound


As used herein, “photosensitive compound” refers to a chemical compound that, upon absorption of light (in the UV range or visible range), undergoes a rapid photoreaction to produce highly reactive species, such as free radicals and charged species (cations or anions). Typically, the photosensitive compound contains one or more photo-labile bonds, which are highly reactive or unstable when exposed to the UV-VIS light. In addition, the photosensitive compound suitable for the ink compositions described herein are soluble or miscible in the ink composition, i.e., they are soluble in a polar solvent, as described herein.


In certain embodiments, the photosensitive compound is also referred to as a “photoinitiator” because it generates reactive species that are capable of triggering further formations of reactive species in the binder material (e.g., crosslinkable polymer), causing the formation of chemical bonds among the polymer chains. Thus, photosensitive transparent conductor can be patterned in a manner similar to photoresist patterning. For example, the binder material (e.g., crosslinkable polymer) in regions of the transparent conductor that are exposed to the photo-irradiation forms a crosslinked polymer; whereas the binder material in the non-exposed region can be removed along with the nanowires embedded therein. Thus, a latent image in the transparent conductor following photo-irradiation may be developed in a solution phase to obtain conductive regions in which nanostructures are embedded in a crosslinked polymer and non-conductive regions that are devoid of nanostructures.


Suitable photoinitiators include, for example, the water soluble benzoylphenyl carboxylate compounds described in WO 2007/044184, which reference is incorporated herein by reference in its entirety


Other suitable photoinitiators include azo-type water-soluble photoinitiators, including those that are commercially available from Wako Pure Chemical Industry, Ltd, Japan). One example is 4,4′-Diazido-2,2′-stilbenedisulfonic acid disodium salt.


A preferred photoinitiator is IRGACURE® 754, i.e., oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester (Ciba Specialty Chemicals, NY, USA, part of BASF).


In various embodiments, the photoinitiator is present in the ink composition at about 0.005-0.01% (w/w), 0.01-0.05% (w/w), 0.05-0.1% (w/w), 0.1-0.5% (w/w), 0.5-1% (w/w). Preferably, the photoinitiator is present in the ink composition at about 0.01% (w/w), 0.1% (w/w), or 1% (w/w).


In other embodiments, the photosensitive compound undergoes photo-degradation without an apparent effect on the binder material or the nanostructures at a first temperature. However, such a photosensitive compound may be thermally degraded at a second, higher temperature, producing degradation products that are caustic and damaging to the nanostructures.


As discussed in further detail herein, transparent conductor comprising a heat-activatable photosensitive compound can be patterned by sequential exposures to photo-irradiation and heat. As a result, the photosensitive compound in regions that are exposed to the photo-irradiation (e.g., through openings of a mask) degrades or self-destructs without affecting the binder material or the nanowires. In the subsequent thermal treatment in the dark, the photosensitive compound in the previously masked regions is activated by heat, whereby thermal degradation products effectively etch or otherwise cause damage to the nanowires, leading to a higher resistance in the masked region. The resistance in the unmasked region, on the other hand, remains unaffected because the initial photo-irradiation has destroyed any heat-activatable photosensitive compound therein.


In various embodiments, heat-activatable photosensitive compounds include cationic photosensitive compounds or anionic photosensitive compounds. In particular, cationic photosensitive compounds include photo acid generators, which are commonly used in connection with chemically amplified photoresists. Moon S. Y. et al., Journal of Polymer Science: Part C: Photochemistry Reviews, (8): 157-173, (2007). These photosensitive compounds are typically soluble in a polar solvent and degrade into acids (cations) upon photo-irradiation. The acid produced is generally not sufficiently concentrated to damage the metal nanostructures or cause the binder material to crosslink. On the other hand, when heated in the absence of the light irradiation, photo acid generators of the present disclosure degrade into caustic degradation products that are capable of damaging the metal nanostructures, thereby reducing the conductivity of individual nanostructures as well as the interconnectivity between nanostructures.


Exemplary cationic photosensitive compounds include, without limitation, onium salts such as diaryl iodonium salts, triaryl sulfonium salts and diazonium salts. Crivello J. V., Journal of Polymer Science: Part A: Polymer Chemistry, (37): 4241-4254, (1999), which reference is incorporated by reference in its entirety.


A diaryl iodonium salt comprises a diaryl iodonium cation and a counter ion. Typically, the diaryl moiety is diphenyl, dinaphthyl or phenylnaphthyl, in which the phenyl or the naphthyl moieties may be optionally substituted with alkyl, aryl, halogen, alkoxy, carboxy and the like. The counter ion may be chloride, nitrate, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, or hexafluoroantimonate. A preferred photo acid generator is diphenyliodonium nitrate (DPIN). Additional exemplary diaryliodonium salts include, for example, bis(4-tert-butylphenyl)iodonium p-toluenesulfonate, bis(4-tert-butylphenyl)iodonium p-toluenesulfonate, bis(4-tert-butylphenyl)iodonium triflate, bis(4-tert-butylphenyl)iodonium perfluoro-1-butanesulfonate, bis(4-tert-butylphenyl)iodonium triflate, diphenyliodonium p-toluenesulfonate and diphenyliodonium perfluoro-1-butanesulfonate.


A triaryl sulfonium salt comprises a triaryl sulfonium cation and a counter ion. Typically, the triaryl moiety is triphenyl, trinaphthyl, diphenylnaphthyl, or phenyl-dinaphthyl, in which the phenyl or the naphthyl moieties may be optionally substituted with alkyl, aryl, halogen, alkoxy, carboxy and the like. The counter ion may be chloride, nitrate, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, or hexafluoroantimonate. Exemplary triaryl sulfonium salts include, for example, (4-bromophenyl)diphenylsulfonium triflate, (4-chlorophenyl)diphenylsulfonium triflate, (4-fluorophenyl)diphenylsulfonium triflate, (4-iodophenyl)diphenylsulfonium triflate, (4-methoxyphenyl)diphenylsulfonium triflate, (4-methylphenyl)diphenylsulfonium triflate, (4-methylthiophenyl)methyl phenyl sulfonium triflate, (4-phenoxyphenyl)diphenylsulfonium triflate, (4-phenylthiophenyl)diphenylsulfonium triflate, (4-tert-butylphenyl)diphenylsulfonium triflate, (tert-butoxycarbonylmethoxynaphthyl)-diphenylsulfonium triflate, 1-naphthyl diphenylsulfonium triflate, boc-methoxyphenyldiphenylsulfonium triflate, triarylsulfonium hexafluoroantimonate, triarylsulfonium hexafluorophosphate, triphenylsulfonium perfluoro-1-butanesulfonate, triphenylsulfonium triflate, tris(4-tert-butylphenyl)sulfonium perfluoro-1-butanesulfonate, and tris(4-tert-butylphenyl)sulfonium triflate.


In addition to the diaryl iodonium salts and triaryl sulfonium salts described above, other exemplary cationic photosensitive compounds include 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine, N-hydroxynaphthalimide triflate, and N-hydroxy-5-norbornene-2,3-dicarboximide perfluoro-1-butanesulfonate. All of the cationic photosensitive compounds described herein are commercially available from Sigma-Aldrich® (St. Louis, Mo.).


Polar Solvent


The bulk of the ink composition is composed of a polar solvent, which solubilizes the constituents of the ink as well as prevents the nanostructures from aggregating. As used herein, “polar solvent” refers to a fluid that has a Snyder polarity index of at least 4. A Snyder polarity index is a relative measure of the degree of interaction of the solvent with various polar test solutes (see Snyder L. R. “Classification of the Solvent Properties of Common Liquids,” Journal of Chromatography Science, 16: 223, (1978), incorporated herein by reference).


In various embodiments, the polar solvent is a protic solvent, which is a chemical compound comprising a hydrogen atom bound to an electro-negative atom such as an oxygen and a nitrogen. Thus, a protic solvent typically includes a hydroxyl group and/or an amino group.


In preferred embodiments, the polar solvent contains at least one hydroxyl group. In this regard, “monohydric polar solvent” refers to a polar solvent (as defined herein) that contains a single hydroxyl group, whereas “polyhydric polar solvent” refers to a polar solvent (as defined herein) that contains at least two hydroxyl groups (e.g., glycols).


In various embodiments, the polar solvent has a boiling point of no more than 250° C., typically, no more than 200° C., more typically, no more than 150° C.


Suitable polar solvents include, for example, water, monohydric and polyhydric alcohols like methanol, ethanol, n-propanol, propane-2-diol and glycerol, ethylene glycol, propylene glycol, propane-1,3-diol, butane-1,4-diol, 2-butene-1,4-diol, and the like, or mixtures of two or more such glycols.


In certain embodiments, suitable polar solvents can be polyhydric alcohols that are further modified with one or more ether moieties, so long as at least one hydroxyl group still remains. These polar solvents include propylene glycol monomethyl ether (PGME), ethylene glycol monomethyl ether (EGME), propane-1,3-diol monomethyl ether, and the like.


Optional Components


In addition to the above components, the ink composition may further comprise optional components including a surfactant, and one or more co-solvents.


Typical surfactants such as ethoxylates, alkoxylates, ethylene oxide and propylene oxide and their copolymers, sulfonates, sulfates, disulfonate salts, sulfosuccinates, phosphate esters, and fluorosurfactants (e.g., Zonyl® by DuPont). In one embodiment, the surfactant is present at about 0.01% of the total weight of the ink composition.


Representative examples of suitable surfactants include fluorosurfactants such as ZONYL® surfactants, including ZONYL® FSN, ZONYL® FSO, ZONYL® FSA, ZONYL® FSH (DuPont Chemicals, Wilmington, Del.), and NOVEC™ (3M, St. Paul, Minn.). Other exemplary surfactants include non-ionic surfactants based on alkylphenol ethoxylates. Preferred surfactants include, for example, octylphenol ethoxylates such as TRITON™ (X-100, X-114, X-45), and nonylphenol ethoxylates such as TERGITOL™ (Dow Chemical Company, Midland Mich.). Further exemplary non-ionic surfactants include acetylenic-based surfactants such as DYNOL® (604, 607) (Air Products and Chemicals, Inc., Allentown, Pa.) and n-dodecyl β-D-maltoside.


A co-solvent can be a second polar solvent, as described herein. For example, in various embodiments, the ink composition comprises both water and PGME, or PGME and methanol.


Ink Compositions


The ink composition combines the components described herein in pre-determined ratios, which can vary depending on the substrate and the method of depositions used.


In various embodiments, the ratio of the crosslinkable polymer to the nanostructures (e.g., metal nanowires) is preferably in the range of about 5 to about 0.000625, more typically, about 1; and the ratio of the photoinitiator to the crosslinkable polymer is about 0.01 to 0.1.


The ink composition typically has a viscosity in the range of 1-1000 cP. A preferred viscosity range is between about 1 and 100 cP (e.g., for spin coating).


In other various embodiments, the ink composition comprises the following components (in percentage weight of the total weight of the ink composition):


metal nanowires: 0.1% to 1% or 1% to 10%;


binder material: 0.1% to 1%, or 1% to 10%;


photosensitive compound: 0.01% to 0.1%, or 0.1% to 1%; and


surfactant: 0%-0.001% or 0.01% to 0.1%.


A typical ink composition for depositing metal nanowires comprises, by weight, from 0.0025% to 0.1% surfactant (e.g., a preferred range is from 0.0025% to 0.05% for ZONYL® FSO-100 or 0.005% to 0.025% for TRITON™ X-100), from 0.02% to 4% crosslinkable polymer (e.g., a preferred range is 0.02% to 0.5% for HPMC), from 0.01 to 1.5% metal nanowires, from 0.005 to 0.5% of photoinitiator and from 94.5% to 99.0% polar solvent.


Certain embodiments provide that in each of the above embodiments, the nanostructures are metal nanowires (e.g., silver nanowires).


One embodiment provides an ink composition that comprises a plurality of nanostructures, a crosslinkable polymer comprising HPMC, a photoinitiator, water and optionally PGME. More specifically, the nanostructures are silver nanowires.


In one embodiment, the ink composition comprises 12 mg IRGACURE® 754, 5 g of PGME, and 5 g of a formulation that comprises 0.38%-0.4% silver nanowires, 0.4% HPMC, 0.0025% TRITON™ X-100, and water.


A further embodiment provides an ink composition that comprises a plurality of nanostructures, a crosslinkable polymer comprising PVP, a photoinitiator, water and optionally PGME. More specifically, the nanostructures are silver nanowires.


In one embodiment, the ink composition comprises, by weight percentage, 0.1% IRGACURE® 754, 1% PVP (MW=1,300,000), 0.5% silver nanowires, 85% PGME and 14% water.


In another embodiment, the ink composition comprises, by weight percentage, 0.4% diphenyliodonium nitrate, 0.4% HPMC, 0.2% silver nanowires, 100 ppm of TRITON™ X-100, and water.


Thin Film Formation


The ink composition can be deposited on the substrate according to, for example, the methods described in co-pending U.S. patent application Ser. No. 11/504,822.


Thus, described herein is a method that comprises: depositing an ink composition on a substrate, wherein the ink composition comprises a plurality of nanostructures, a crosslinkable polymer, a photoinitiator, and a polar solvent; and allowing the solvent to dry.


Spin coating is a typical technique for depositing a uniform film on a substrate. By controlling the loading amount, spin speed and time, thin films of various thicknesses can be formed. It is understood that the viscosity and the shear behavior of the suspending fluid, as well as the interactions between the nanowires, may affect the distribution and interconnectivity of the nanowires deposited.


For example, the ink compositions described herein can be spin-coated on a glass substrate at a speed of 400-2000 rpm for 60 seconds, with acceleration 1000 rpm/s. The thin film can be further subjected to certain post-treatments, including baking at 50° C. for 90 seconds and 140° C. for 90 seconds. Pressure treatment with or without heat can be further employed to adjust the final film specifications.


As understood by one skilled in the art, other deposition techniques can be employed, e.g., sedimentation flow metered by a narrow channel, die flow, flow on an incline, slit coating, gravure coating, microgravure coating, bead coating, dip coating, slot die coating, and the like. Printing techniques can also be used to directly print an ink composition onto a substrate with or without a pattern. For example, inkjet, flexoprinting and screen printing can be employed.


The substrate can be any material onto which nanowires are deposited. The substrate can be rigid or flexible. Preferably, the substrate is also optically clear, i.e., light transmission of the material is at least 80% in the visible region (400 nm-700 nm).


Examples of rigid substrates include glass, polycarbonates, acrylics, and the like. In particular, specialty glass such as alkali-free glass (e.g., borosilicate), low alkali glass, and zero-expansion glass-ceramic can be used. The specialty glass is particularly suited for thin panel display systems, including liquid crystal display (LCD).


Examples of flexible substrates include, but are not limited to: polyesters (e.g., polyethylene terephthalate (PET), polyester naphthalate, and polycarbonate), polyolefins (e.g., linear, branched, and cyclic polyolefins), polyvinyls (e.g., polyvinyl chloride, polyvinylidene chloride, polyvinyl acetals, polystyrene, polyacrylates, and the like), cellulose ester bases (e.g., cellulose triacetate, cellulose acetate), polysulphones such as polyethersulphone, polyimides, silicones and other conventional polymeric films.


Drying can be carried out by air drying, drying under nitrogen purging, or baking in an oven. The polar solvents described herein have relatively low boiling points (e.g., no more than 250° C.) such that they can be removed with ease. Typically, drying (e.g., baking) at 140° C. or below is sufficient to promote solvent removal and film formation.


The thin films thus formed are electrically conductive, in which one or more electrically conductive paths are established through continuous physical contacts among the nanostructures.


The electrical conductivity of the conductive film is often measured by “film resistance,” “resistivity” or “sheet resistance,” which is represented by ohm/sq (or “Ω/□”). The film resistance is a function of at least the surface loading density, the size/shapes of the nanostructures, and the intrinsic electrical property of the nanostructure constituents. As used herein, a thin film is considered conductive if it has a sheet resistance of no higher than 108Ω/□. Preferably, the sheet resistance is no higher than 104Ω/□, 3,000Ω/□, 1,000Ω/□ or 350Ω/□, or 100Ω/□. Typically, the sheet resistance of a conductive network formed by metal nanostructures is in the ranges of from 10Ω/□ to 1000Ω/□, from 100Ω/□ to 750Ω/□, from 50Ω/□ to 200Ω/□, from 100Ω/□ to 500Ω/□, or from 100Ω/□ to 250Ω/□, or from 10Ω/□ to 200Ω/□, from 10Ω/□ to 50Ω/□, or from 1Ω/□ to 10Ω/□.


Optically, the nanostructure-based transparent conductors have high light transmission in the visible region (400-700 nm). Typically, the transparent conductor is considered optically clear when the light transmission is more than 85% in the visible region. More typically, the light transmission is more than 90%, or more than 93%, or more than 95%.


Haze is another index of optical clarity. It is generally recognized that haze results from light scattering and reflection/refraction due to both bulk and surface roughness effects. In various embodiments, the haze of the transparent conductor is no more than 10%, no more than 8%, no more than 5% or no more than 1%.


Thus, one embodiment provides a conductive thin film comprising a plurality of interconnecting nanostructures, a binder material (e.g., a crosslinkable polymer), and a photosensitive compound. In further embodiments, the conductive thin film has a light transmission of more than 85% and a sheet resistance of no more than 1000Ω/□. Various other embodiments are directed to conductive thin films having a sheet resistance of no more than 750Ω/□, no more than 500Ω/□, no more than 400Ω/□, no more than 200Ω/□, or no more than 100 Ω/□.


Photo-Patterning


1. Solvent Development


In certain embodiments, the photosensitive thin films described herein can be directly photo-patterned. Typically, the thin film comprises a photoinitiator that is capable of causing the binder material (e.g., crosslinkable polymer) to crosslink upon photo-irradiation. More specifically, as shown in FIG. 1A, following the formation of a thin film 10, a mask 20 is used to define a pattern on the thin film according to one or more openings or apertures 30 in the mask. The thin film 10 is thus defined into a masked region and an unmasked region, whereby the unmasked region corresponds to the one or more openings 30 in the mask. Thereafter, as shown in FIG. 1B, the thin film is exposed to a UV light source to allow only the crosslinkable polymer in the unmasked region 40 to crosslink. The masked region 50, in which the polymer fails to crosslink, can be dissolved (e.g., film development) and the nanowires removed. The film development thus reveals a pattern of a conductive region 40 corresponding to the opening 30 in the mask.


Thus, one embodiment provides a method that comprises: forming a thin film of interconnecting conductive nanostructures on a substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a crosslinkable polymer, a photoinitiator, and a polar solvent; and removing the polar solvent; and exposing a portion of the thin film to a UV light source to cause the crosslinkable polymer in the exposed portion of the thin film to crosslink.


In a further embodiment, described herein is a method that comprises: forming a thin film of interconnecting conductive nanostructures on a substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a crosslinkable polymer, a photoinitiator, and a polar solvent; and removing the polar solvent; placing a mask above the thin film, wherein the mask includes an opening and defines the underlying thin film into a masked region and an unmasked region, the unmasked region corresponding to the opening; exposing the thin film to a UV light source through the opening of the mask to cause the crosslinkable polymer in the unmasked region to crosslink; and dissolving the masked region of the thin film to provide a conductive region in a pattern that corresponds to the opening of the mask.


In various embodiments, the nanostructures are silver nanowires, and the crosslinkable polymer is PVP or HPMC.


The UV exposure is typically about 3-5 seconds (e.g., Fusion UV Systems). Following the UV exposure, the thin film can be developed by washing with a polar solvent, which is typically the same polar solvent in the ink composition (e.g., water). Optionally, the polar solvent can be heated to expedite the thin film dissolution in the masked region.


The unmasked region, i.e., the conductive region, comprises interconnected silver nanowires and crosslinked polymer (e.g., crosslinked PVP). Optical and electrical properties can be assessed according to known methods in the art.


Thus, in yet further embodiments, patterned conductive films are provided. One embodiment provides a patterned conductive film comprising a first region and a second region, wherein the crosslinkable polymer in the first region is crosslinked, and the crosslinkable polymer in the second region is removed. In a further embodiment, the first region is more conductive than the second region.


2. Thermal Development


In other embodiments, the photosensitive thin film described herein can be directly photo-patterned by sequential exposures to photo-irradiation and heat. Typically, the thin film comprises a photosensitive compound that is photo-degradable and heat-activatable.


More specifically, as shown in FIG. 2, a transparent conductor 100 is first formed by spin-coating on a substrate 110 a thin film 120, which includes interconnecting metal nanostructures, a binder material and a heat-activatable photosensitive compound. A mask 130 is placed over the transparent conductor 100 and exposed to photo-irradiation at a first temperature. A latent image is formed and defined by an unmasked region 140 and a masked region 150. In the unmasked regions 140, the photosensitive compound is destroyed without affecting the structural integrity of the interconnecting metal nanostructures or the binder material. In the masked region 150, the photosensitive compound remains. Thereafter, the latent image of the photo-irradiation is thermally developed by thermally activating the photosensitive compound in the dark at a second temperature, whereby the photosensitive compound thermally degrades and one or more degradation products damage the nanostructures in the masked region 150, resulting in a less conductive region 160 as compared to the unmasked region 140.


The degree of damage with which the thermally degraded photosensitive compound causes the nanostructure may be associated with a number of factors, including the second temperature, the duration of the thermal activation at the second temperature, and the type of the photosensitive compound. Typically, the second temperature is higher than the first temperature.


Advantageously, because the nanostructures are not removed but merely rendered less conductive, the conductive region 140 and the less conductive region 160 are substantially uniform in their light transmissions and haze values. Such an invisible or low visibility pattern is desirable in many applications of the transparent conductor, including touch screens and flat panel displays.


Thus, one embodiment provides a method that comprises: forming a thin film of interconnecting conductive nanostructures on a substrate by depositing an ink composition on the substrate, wherein the ink composition comprises a plurality of conductive nanostructures, a binder material, a heat-activatable photosensitive compound, and a polar solvent; and removing the polar solvent; placing a mask above the thin film, wherein the mask includes an opening and defines the thin film into a masked region and an unmasked region, the unmasked region corresponding to the opening; exposing the thin film to a UV light source through the opening of the mask at a first temperature to cause photo-degradation of the photosensitive compound in the unmasked region; and exposing the thin film to a heat source in the dark at a second temperature to cause thermal-degradation of the photosensitive compound in the masked region.


In further embodiments, the nanostructures in the unmasked region are no less conductive after the UV irradiation, indicating that the photosensitive compound is destroyed without damaging the nanostructures. In other embodiments, following the thermal activation, the nanostructures in the masked region are damaged by the thermal degradation products of the photosensitive compound, as a result of which the thin film in the masked region is less conductive that the unmasked region.


In a further embodiment, the masked region and the unmasked region have substantially the same optical appearance such that the patterns are invisible or of low visibility. In various embodiments, the difference in the light transmissions in the respective regions is no more than 10%, or 8%, or 5%, or 3%. Similarly, the difference in the haze values in the respective regions is no more than 10%, or 8%, or 5%, or 3%.


Thus, in yet further embodiments, patterned conductive films are provided. One embodiment provides a patterned conductive film comprising a first region and a second region, wherein the heat-activatable photosensitive compound in the first region has photo-degraded, and the heat-activatable photosensitive compound in the second region has thermal-degraded. In a further embodiment, the first region is more conductive than the second region.


The various embodiments described herein are further illustrated by the following non-limiting examples.


EXAMPLES
Example 1
Standard Synthesis of Silver Nanowires

Silver nanowires were synthesized by a reduction of silver nitrate dissolved in ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP). The method was described in, e.g., Y. Sun, B. Gates, B. Mayers, & Y. Xia, “Crystalline silver nanowires by soft solution processing”, Nanolett, 2(2): 165-168, (2002). Uniform silver nanowires can be selectively isolated by centrifugation or other known methods.


Alternatively, substantially uniform silver nanowires can be synthesized directly by the addition of a suitable ionic additive (e.g., tetrabutylammonium chloride) to the above reaction mixture. The silver nanowires thus produced can be used directly without a separate step of size-selection. This synthesis is described in more detail in applicant's co-owned and co-pending U.S. patent application Ser. No. 11/766,552, which application is incorporated herein in its entirety.


The synthesis could be carried out under a nitrogen purging, in ambient light (standard), or in the dark to minimize photo-induced degradation of the resulting silver nanowires.


Example 2
Preparation of Thin Films—PVP

A photosensitive ink composition was prepared by combining, by weight percentage, 0.1% IRGACURE® 754, 1% PVP (MW=1,300,000), 0.5% silver nanowires, 85% PGME and 14% water. The ink composition was spin-coated on a 2×2 inch glass slide. The solvents were allowed to air dry.


Example 3
Preparation of Thin Films—HPMC

A photosensitive ink composition was prepared by combining 12 mg IRGACURE® 754, 5 g of PGME, and 5 g of a formulation that comprises 0.38-0.4% silver nanowires, 0.4% HPMC, 0.0025% TRITON™ X-100, and water.


The ink composition (5 ml) was spin-coated on a 6×6 inch glass slide at 500 rpm for 60 seconds. The solvents were allowed to air dry at 38° C. for 60 seconds.


Example 4
Direct Photo-Patterning—Solvent Development

The thin film of Example 3 was formed on a glass substrate. A mask was placed over the thin film. The mask defined the underlying thin film into a masked region and an unmasked region (which corresponds to the openings of the mask). The thin film was then exposed to a UV light source (Fusion UV Systems) for about 3-5 seconds to allow the crosslinkable polymer in the exposed region of the thin film to crosslink. No crosslinking occurs in the masked region of the thin film. Following exposure, the thin film was developed by washing with water, whereby the masked region of the thin film dissolved and the nanowires were removed. The thin film was then dried in nitrogen atmosphere and baked at 180° C. for 90 seconds.


In the patterned thin film, the nanowires were intact in the unmasked, conductive regions, which registered a sheet resistance of about 150Ω/□ by a 4 point probe. The masked region was non-conductive as substantially all of the nanowires of the masked region of the thin film have been washed away during the film development.


Example 5
Thermal- and Photo-Degradation of Photosensitive Compounds

1. Standard Ink Formulation without Photosensitive Compound


A standard ink formulation of 0.4% HPMC in water containing 0.2% silver nanowires and 100 ppm TRITON™ X-100 was prepared. Transparent conducting thin films of silver nanowires in an HPMC binder were made by spin coating the ink formulation on a 2×2 glass substrate at 3000 rpm/60 sec. The film was then baked at 140° C. for 60 seconds. FIG. 3A shows a TEM image of the interconnecting silver nanowires in a thin film. This un-sensitized thin film was used as a control film (1).


2. Thermal Degradation of Thin Film with Heat-Activatable Photosensitive Compound


A solution was made by dissolving 40 mg of diphenyliodonium nitrate (DPIN) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of the DPIN solution was added to 5 g of the standard ink formulation described above. The resulting ink containing the silver nanowires, HPMC, and DPIN was spun at 3000 rpm for 60 seconds in the dark to form a photosensitive thin film (2). The film was then baked at 140° C. for 90 seconds on a hot plate in the dark.



FIG. 3B (magnification 100×, dark field) shows that the silver nanowires appeared broken at places. It could be speculated that the dark thermal degradation of DPIN is responsible for the structural damage to the silver nanowires, which resulted in a reduction of conductivity and a slight increase in haze (see, e.g., Table 1).


3. Photo-Degradation of Heat-Activatable Photosensitive Compound


A solution was made by dissolving 40 mg of diphenyliodonium nitrate (DPIN) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of the DPIN solution was added to 5 g of the standard ink formulation described above. The resulting ink containing the silver nanowires, HPMC, and DPIN was spun at 3000 rpm for 60 seconds in the dark to form a photosensitive thin film (3). The film was then exposed to UV radiation on a Fusion curing system running at 10 ft/min, followed by baking at 140° C. for 90 seconds on a hot plate. The resulting film showed that that the silver nanowires appeared intact (FIG. 3C). Thus, it could be speculated that the DPIN had been entirely destroyed by UV irradiation without causing any structural damage to the silver nanowires, such that further baking at 140° C. did not produce any thermal-degradation products that could damage the silver nanowires.


Table 1 summarizes the optical and electrical properties of the thin firms (1), (2) and (3), which correspond to FIGS. 3A, 3B and 3C, respectively. As shown, as compared to the control film of FIG. 3A, the photosensitive film that underwent a thermal treatment (FIG. 3B) had a markedly increased resistance as a result of structural damage to the nanowires by one or more thermal degradation products. In contrast, the photosensitive film that underwent photo-irradiation prior to a thermal treatment (FIG. 3C) had a very minor increase in resistance as compared to the control film. The optical and electrical properties of these films are shown to be consistent with their structural characteristics.












TABLE 1






Control Film (1)
Thin Film (2)
Thin Film (3)


















T %
92.5
92.0
92.3


H %
0.62
0.75
0.61


R(Ohm/Sq)
78
>19,999
114









Example 6

A solution was made by dissolving 40 mg of diphenyliodonium nitrate (DPIN) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of the DPIN solution was added to 5 g of the standard ink formulation described in Example 5. The resulting ink containing the silver nanowires, HPMC, and DPIN was spun at 3000 rpm for 60 seconds in the dark to form a photosensitive thin film (4). The thin film was then baked at 100° C. for 90 seconds on a hot plate in the dark.


Table 2 shows the optical and electrical properties of thin film (4) as well as those of the control film (1) and the thin film (2).












TABLE 2







Thin Film (2)
Thin Film (4)



Control Film (1)
140° C./90 sec
100° C./90 sec


















T %
92.5
92.0
91.7


H %
0.62
0.75
0.78


R(Ohm/Sq)
78
>19,999
280









As shown, given the same photosensitive compound and the duration of the thermal treatment, the temperatures of the thermal treatment correlate to the degrees of the structural damage to the silver nanowires. The higher the temperature, the more damage is done to the nanowires. Thus, a certain threshold temperature may be needed for the thermal degradation of DPIN and damage of the silver nanowires to occur to a significant degree.


Example 7

A solution was made by dissolving 40 mg of diphenyliodonium triflate (DPITf) in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of the DPITf solution was added to 5 g of the standard ink formulation described in Example 5. The resulting ink containing the silver nanowires, HPMC, and DPITf was spun at 3000 rpm for 60 seconds in the dark to form a photosensitive thin film (5).


In addition, a photosensitive thin film (6) was also prepared, which was then exposed 3 times to UV radiation on a Fusion curing system running at 10 ft/min, followed by baking at 160° C. for 90 seconds on a hot plate.


Table 3 shows the optical and electrical properties of thin films (5) and (6) as well as those of the control film (1) and thin film (2).













TABLE 3







Thin Film (2)
Thin Film (5)
Thin Film (6)



Control
DPIN
DPITf
DPITf



Film (1)
140° C./90 s
160° C./90 s
Photo/160° C./90 s



















T %
92.5
92.0
91.8
91.8


H %
0.62
0.75
0.80
0.64


R(Ohm/Sq)
78
>19,999
1600
160









Thin films comprising DPITf show thermal- and photo-degradation behaviors similar to those of thin films comprising DPIN, namely, DPITf thermally degraded in the dark and caused damage to the nanowires, as reflected by the increase in resistance in thin film (5). However, it would appear that DPITf is less efficient than DPIN at creating insulating films upon thermal exposure even at a slightly higher temperature.


Further, like DPIN, DPITf underwent photo-degradation and were likely completely destroyed such that a subsequent thermal treatment failed to produce sufficient thermal degradation products to damage the nanowires.


Example 8
Low-Visibility Patterning by Thermal Development

A solution was made by dissolving 40 mg of diphenyliodonium nitrate DPIN in 0.5 g of water and 0.5 g of acetone. Thereafter, 0.5 g of the DPIN solution was added to 5 g of an ink formulation comprising 0.3% silver nanowires, 0.3% HPMC, and 100 ppm of TRITON™ X-100. The resulting mixture was spun at 1000 rpm for 60 seconds in the dark, and briefly dried at 40° C. for 30 seconds in the dark to produce a photosensitive thin film (7). A photomask was applied onto the thin film (7) and the assembly was exposed to UV radiation on a Fusion system at 3 ft/min. The photomask was removed and the film was then baked at 140° C. for 90 seconds on a hot plate in the dark. The resulting film showed a faint haziness difference (e.g., less than 10% difference) between the exposed and unexposed regions. The electrical conductivity of the exposed regions was about 40 Ohm/sq, whereas the unexposed regions were insulating, thus demonstrating a low-visibility pattern can be created using only heat as the development step.


Example 9
Evaluation of Optical and Electrical Properties of Transparent Conductors

The transparent conductive films prepared according to the methods described herein were evaluated to establish their optical and electrical properties.


The light transmission data were obtained according to the methodology in ASTM D1003. Haze was measured using a BYK Gardner Haze-gard Plus. The sheet resistance was measured using a Fluke 175 True RMS Multimeter or contact-less resistance meter, Delcom model 717B conductance monitor. A more typical device is a 4 point probe system for measuring resistance (e.g., by Keithley Instruments).


The haze and transmission of the bare substrate (e.g., 0.04% haze and 93.4% transmission for glass) were typically included in the measurements.


The interconnectivity of the nanowires and an areal coverage of the substrate can also be observed under an optical or scanning electron microscope.


All of the above U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety.


From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

Claims
  • 1. An ink composition comprising: a plurality of conductive nanowires, wherein the conductive nanowires are metal nanowires;a binding material, wherein the binding material is a crosslinkable polymer;a photosensitive compound selected from the group consisting of a mixture of oxy-phenyl-acetic acid 2-[2-oxo-2-phenyl-acetoxy-ethoxy]-ethyl ester and oxy-phenyl-acetic acid 2-[2-hydroxy-ethoxy]-ethyl ester, or an onium salt that is thermally degradable and is capable of causing structural damage to the metal nanowires when heated; anda polar solvent, wherein the metal nanowires are about 0.01-10% by weight of the ink composition, and wherein the ink composition is capable of forming a transparent conductive film comprising the metal nanowires and the photosensitive compound, both of which being dispersed in the binding material, and wherein the polar solvent has a polarity index of at least 4.
  • 2. The ink composition of claim 1 wherein the crosslinkable polymer is selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamides, polyacrylates, polyethylene oxides, polyethylene imine, anionic and cationic polyelectrolytes, poly (2-ethyl-2-oxazoline), hydroxypropylmethyl cellulose, hydroxypropylmethyl cellulose phthalate, hydroxypropyl cellulose, hydroxybutylmethyl cellulose, ethylhydroxyethyl cellulose, sodium carboxymethyl-hydroxyethyl cellulose, and carboxymethylethyl cellulose.
  • 3. The ink composition of claim 1 wherein a ratio of the crosslinkable polymer is to the metal nanowires is about 5 to about 0.000625.
  • 4. The ink composition of claim 3 wherein the ratio is about 1.
  • 5. The ink composition of claim 1 wherein the photosensitive compound is about 0.01% to 0.1% or about 0.1% to 1% by weight of the ink composition.
  • 6. The ink composition of claim 1 wherein the polar solvent is about 94.5% to 99.0% by weight of the ink composition.
  • 7. The ink composition of claim 6 wherein the polar solvent is water, monohydric alcohol or polyhydric alcohol.
  • 8. The ink composition of claim 7 wherein the polyhydric alcohol comprises methanol, ethanol, n-propanol, propane-2-diol and glycerol, ethylene glycol, propylene glycol, propane-1,3-diol, butane-1,4-diol or 2-butene-1,4-diol, or wherein the polyhydric alcohol modified with one or more ether moieties comprises polypropylene glycol monomethyl ether (PGME), ethylene glycol monomethyl ether (EGME) or propane-1,3-diol monomethyl ether.
  • 9. The ink composition of claim 1 wherein the metal nanowires are silver nanowires.
  • 10. The ink composition of claim 9 wherein the silver nanowires are more than 10 μm in length and less than 100 nm in diameter.
  • 11. The ink composition of claim 1, further comprising a surfactant about 0.0025% to 0.1% by weight of the ink composition, and wherein the photosensitive compound is about 0.005 to 0.5% by weight of the ink composition.
  • 12. The ink composition of claim 11, further comprising a co-solvent.
  • 13. The ink composition of claim 12 wherein the co-solvent is a second polar solvent.
  • 14. The ink composition of claim 1 wherein a weight ratio of the binding material to the metal nanowires is about 0.1:1 to about 10:1.
  • 15. The ink composition of claim 1 having a viscosity between about 1 and 1000 cP.
  • 16. An ink composition comprising: a plurality of conductive nanowires, wherein the conductive nanowires are metal nanowires;a binding material;a photo acid generator, wherein the photo acid generator is a diaryl iodonium salt or a triaryl sulfonium salt; anda polar solvent, wherein the polar solvent has a polarity index of at least 4 and wherein the ink composition is capable of forming a transparent conductive film comprising the metal nanowires and the photo acid generator, both of which being dispersed in the binding material.
  • 17. The ink composition of claim 16 wherein the photo acid generator is a diphenyliodonium salt, wherein a counter ion of the diphenyliodonium salt is chloride, nitrate, tetrafluoroborate, hexafluorophosphate, hexafluoroarsenate, or hexafluoroantimonate.
  • 18. The ink composition of claim 16 wherein the binding material is a crosslinkable polymer selected from the group consisting of polyvinylpyrrolidone, polyvinyl alcohol, polyacrylamides, polyacrylates, polyethylene oxides, polyethylene imine, anionic and cationic polyelectrolytes, poly (2-ethyl-2-oxazoline), hydroxypropylmethyl cellulose, hydroxypropylmethyl cellulose phthalate, hydroxypropyl cellulose, hydroxybutylmethyl cellulose, ethylhydroxyethyl cellulose, sodium carboxymethyl-hydroxyethyl cellulose, and carboxymethylethyl cellulose.
  • 19. The ink composition of claim 16, further comprising a surfactant about 0.0025% to 0.1% by weight of the ink composition; wherein the polar solvent is about 94.5% to 99.0% by weight of the ink composition;wherein the binding material is about 0.02% to 4% by weight of the ink composition;wherein the metal nanowires are about 0.01 to 1.5% by weight of the ink composition; andwherein the photo acid generator is about 0.01% to 0.1% or about 0.1% to 1% by weight of the ink composition.
  • 20. The ink composition of claim 19 wherein the polar solvent is water, monohydric alcohol or polyhydric alcohol.
  • 21. The ink composition of claim 20 wherein the polyhydric alcohol comprises methanol, ethanol, n-propanol, propane-2-diol and glycerol, ethylene glycol, propylene glycol, propane-1,3-diol, butane-1,4-diol or 2-butene-1,4-diol, or wherein the polyhydric alcohol modified with one or more ether moieties comprises polypropylene glycol monomethyl ether (PGME), ethylene glycol monomethyl ether (EGME) or propane-1,3-diol monomethyl ether.
  • 22. The ink composition of claim 16, wherein the metal nanowires are about 0.01-10% by weight of the ink composition;wherein a ratio of the binding material to the metal nanowires is about 5 to about 0.000625; andwherein a ratio of the photo acid generator to the binding material is about 0.01 to about 0.1.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/302,013 filed Feb. 5, 2010, which is incorporated herein by reference in its entirety.

US Referenced Citations (120)
Number Name Date Kind
2426318 Menaul Aug 1947 A
4539041 Figlarz et al. Sep 1985 A
5009812 Finter et al. Apr 1991 A
5063125 Yuh et al. Nov 1991 A
5165985 Wiste et al. Nov 1992 A
5225244 Aharoni et al. Jul 1993 A
5258140 Chetcuti Nov 1993 A
5294401 Hagiwara Mar 1994 A
5436353 Chetcuti Jul 1995 A
5518810 Nishihara et al. May 1996 A
5554446 Minder et al. Sep 1996 A
5716663 Capote et al. Feb 1998 A
5719016 Christian et al. Feb 1998 A
5731119 Eichorst et al. Mar 1998 A
5750054 Cinquina et al. May 1998 A
5759230 Chow et al. Jun 1998 A
5788738 Pirzada et al. Aug 1998 A
5851507 Pirzada et al. Dec 1998 A
5867945 Scafidi Feb 1999 A
5874684 Parker et al. Feb 1999 A
5897945 Lieber et al. Apr 1999 A
5905000 Yadav et al. May 1999 A
5952040 Yadav et al. Sep 1999 A
6030553 Huang et al. Feb 2000 A
6045925 Klabunde et al. Apr 2000 A
6241451 Albright et al. Jun 2001 B1
6265466 Glatkowski et al. Jul 2001 B1
6274412 Kydd et al. Aug 2001 B1
6294401 Jacobson et al. Sep 2001 B1
6379745 Kydd et al. Apr 2002 B1
6416818 Aikens et al. Jul 2002 B1
6444495 Leung et al. Sep 2002 B1
6536106 Jackson et al. Mar 2003 B1
6541539 Yang et al. Apr 2003 B1
6632274 Kawamoto et al. Oct 2003 B2
6641775 Vigliotti et al. Nov 2003 B2
6673142 Tofuku et al. Jan 2004 B2
6686249 Yukinobu et al. Feb 2004 B1
6706402 Rueckes et al. Mar 2004 B2
6713176 Yadav et al. Mar 2004 B2
6773823 O'Connor et al. Aug 2004 B2
6781116 Bateman Aug 2004 B2
6781166 Lieber et al. Aug 2004 B2
6783569 Cheon et al. Aug 2004 B2
6813931 Yadav et al. Nov 2004 B2
6835591 Rueckes et al. Dec 2004 B2
6849109 Yadav et al. Feb 2005 B2
6855202 Alivisatos et al. Feb 2005 B2
6872645 Duan et al. Mar 2005 B2
6881604 Lindstrom et al. Apr 2005 B2
6882051 Majumdar et al. Apr 2005 B2
6912092 Ukuda Jun 2005 B2
6916842 Manzer Jul 2005 B2
6916872 Yadav et al. Jul 2005 B2
6933331 Yadav et al. Aug 2005 B2
6936761 Pichler Aug 2005 B2
6942921 Rueckes et al. Sep 2005 B2
6946410 French et al. Sep 2005 B2
6949931 Cole et al. Sep 2005 B2
6982206 Berman et al. Jan 2006 B1
7029514 Yang et al. Apr 2006 B1
7033416 Kurihara et al. Apr 2006 B2
7037448 Nagai et al. May 2006 B2
7060241 Glatkowski Jun 2006 B2
7062848 Pan et al. Jun 2006 B2
7064372 Duan et al. Jun 2006 B2
7067328 Dubrow et al. Jun 2006 B2
7091120 Buretea et al. Aug 2006 B2
7135055 Mirkin et al. Nov 2006 B2
7135394 Houng et al. Nov 2006 B2
7135728 Duan et al. Nov 2006 B2
7136237 Ogawa Nov 2006 B2
7147687 Mirkin et al. Dec 2006 B2
7190049 Tuominen et al. Mar 2007 B2
7270694 Li et al. Sep 2007 B2
7341944 Harutyunyan Mar 2008 B2
7849424 Wolk et al. Dec 2010 B2
7968011 Overbeek et al. Jun 2011 B2
8383013 Lee et al. Feb 2013 B2
20020013160 Harano Jan 2002 A1
20020022801 DeLegge Feb 2002 A1
20020063242 Hayashi et al. May 2002 A1
20030030760 Nishiki Feb 2003 A1
20030072891 Murakami et al. Apr 2003 A1
20030074492 Cochran Apr 2003 A1
20030082412 Fukuda et al. May 2003 A1
20030185990 Bittner et al. Oct 2003 A1
20030211333 Watanabe et al. Nov 2003 A1
20040016914 Matsuda et al. Jan 2004 A1
20040105980 Sudarshan et al. Jun 2004 A1
20040147049 Lee et al. Jul 2004 A1
20050003081 Nakano et al. Jan 2005 A1
20050009714 Chen et al. Jan 2005 A1
20050064185 Buretea et al. Mar 2005 A1
20050074589 Pan et al. Apr 2005 A1
20050165120 Kumar et al. Jul 2005 A1
20060215250 Shibuya et al. Sep 2006 A1
20060257638 Glatkowski et al. Nov 2006 A1
20070065651 Glatkowski et al. Mar 2007 A1
20070074316 Alden et al. Mar 2007 A1
20070275320 Washio et al. Nov 2007 A1
20080143906 Allemand et al. Jun 2008 A1
20080210052 Allemand Sep 2008 A1
20080259262 Jones et al. Oct 2008 A1
20080292979 Ding Nov 2008 A1
20090052029 Dai et al. Feb 2009 A1
20090223703 Winoto Sep 2009 A1
20090283304 Winoto Nov 2009 A1
20090321113 Allemand et al. Dec 2009 A1
20100065788 Momose Mar 2010 A1
20100140564 Overbreek Jun 2010 A1
20100243295 Allemand et al. Sep 2010 A1
20100307792 Allemand et al. Dec 2010 A1
20110024159 Allemand et al. Feb 2011 A1
20110042126 Spaid et al. Feb 2011 A1
20110045272 Allemand Feb 2011 A1
20110048170 Bhatia et al. Mar 2011 A1
20110151195 Mitsukura et al. Jun 2011 A1
20110163403 Bhatia et al. Jul 2011 A1
20130242016 Edwards et al. Sep 2013 A1
Foreign Referenced Citations (85)
Number Date Country
101395233 Mar 2009 CN
102079847 Jun 2011 CN
0 100 670 Feb 1984 EP
0 234 347 Sep 1987 EP
0 534 744 Mar 1993 EP
0 653 763 May 1995 EP
1 046 945 Oct 2000 EP
1 089 113 Apr 2001 EP
1 209 694 May 2002 EP
1 220 234 Jul 2002 EP
1 564 265 Aug 2005 EP
1 619 524 Jan 2006 EP
1 832 632 Sep 2007 EP
05194856 Aug 1993 JP
06005115 Jan 1994 JP
06162818 Jun 1994 JP
06215631 Aug 1994 JP
07094036 Apr 1995 JP
09324324 Dec 1997 JP
10017325 Jan 1998 JP
10046382 Feb 1998 JP
10226007 Aug 1998 JP
2001093414 Apr 2001 JP
2001205600 Jul 2001 JP
2001291431 Oct 2001 JP
2004035962 Feb 2004 JP
2004055486 Feb 2004 JP
2004111106 Apr 2004 JP
2004182546 Jul 2004 JP
2004196923 Jul 2004 JP
2004196981 Jul 2004 JP
2004-238554 Aug 2004 JP
2004230690 Aug 2004 JP
2004253326 Sep 2004 JP
2004253796 Sep 2004 JP
2004256702 Sep 2004 JP
2005103723 Apr 2005 JP
3665969 Jun 2005 JP
2005-229109 Aug 2005 JP
2005239481 Sep 2005 JP
2005277405 Oct 2005 JP
2005281357 Oct 2005 JP
2005-310703 Nov 2005 JP
2005311330 Nov 2005 JP
2005317394 Nov 2005 JP
2005317395 Nov 2005 JP
2005335054 Dec 2005 JP
2006-9085 Jan 2006 JP
2006035771 Feb 2006 JP
2006035773 Feb 2006 JP
2006049843 Feb 2006 JP
2006075961 Mar 2006 JP
2006103982 Apr 2006 JP
2006103983 Apr 2006 JP
2006111675 Apr 2006 JP
2006133528 May 2006 JP
2006171336 Jun 2006 JP
2006517485 Jul 2006 JP
2006233252 Sep 2006 JP
2006239790 Sep 2006 JP
2006272876 Oct 2006 JP
2006310353 Nov 2006 JP
2006-335995 Dec 2006 JP
3903159 Apr 2007 JP
2007091859 Apr 2007 JP
2007098563 Apr 2007 JP
2007105822 Apr 2007 JP
2007112133 May 2007 JP
2008-179810 Aug 2008 JP
2011-515510 May 2011 JP
02072930 Sep 2002 WO
03068674 Aug 2003 WO
03086961 Oct 2003 WO
03106573 Dec 2003 WO
2004005182 Jan 2004 WO
2004034421 Apr 2004 WO
2004069736 Aug 2004 WO
2004097466 Nov 2004 WO
2005023466 Mar 2005 WO
2005040460 May 2005 WO
2006006462 Jan 2006 WO
2006062160 Jun 2006 WO
2007044184 Apr 2007 WO
WO2008147063 Dec 2008 WO
2009108306 Sep 2009 WO
Non-Patent Literature Citations (12)
Entry
Adachi et al., “Formation of a Transparent Conductive Film Using Gold Nanowires,” Preprints for Annual Meeting of the Society of Chemical Engineers 67:660, 2002 (w/English translation).
Adachi et al., “Gold Nanowire Formation of 2-Dimensional Network Structure with Electric Conductivity,” Journal of Chemical Engineering of Japan 37(5):604-608, 2004.
Crivello, “The Discovery and Development of Onium Salt Cationic Photoinitiators,” Journal of Polymer Science: Part A: Polymer Chemistry 37:4241-4254, 1999.
Hirata, “Gold Nanorod and its Properties,” Newer Metal Industry, 2003 (W/English translation).
Jelena Sepa et al., “Low-Haze Transparent Conductors,” U.S. Appl. No. 13/007,305, filed Jan. 14, 2011, 52 pages.
Komatsu, “Morphology of Nanoparticles and Applications Thereof,” Chemical Sensors 19(Suppl. A): 118- 120, 2003 (W/English translation).
Moon et al., “Chemistry of photolithographic imaging materials based on the chemical amplification concept,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews 8:157-173, 2007.
Snyder, “Classification of the Solvent Properties of Common Liquids,” Journal of Chromatographic Science 16:223-234, 1978.
Sun et al., “Crystalline Silver Nanowires by Soft Solution Processing,” Nano Letters 2(2):165-168, 2002.
Walter et al., “Electrodeposition of Portable Metal Nanowire Arrays,” in Proceedings of SPIE, vol. 4807, 2002, pp. 83-92.
Wang et al., “Glucose Reduction Route Synthesis of Uniform Silver Nanowires in Large-scale,” Chemistry Letters 33(9):1160-1161, 2004.
Yan et al., “DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires,” Science 301:1882-1884, 2003.
Related Publications (1)
Number Date Country
20110192633 A1 Aug 2011 US
Provisional Applications (1)
Number Date Country
61302013 Feb 2010 US