The present invention generally relates to a photovoltaic cell technology and, more particularly, to a photovoltaic cell having nanodots with increased hole transport efficiency and a method for forming the photovoltaic cell.
As the amounts of conventional resources such as electricity, coal and petroleum are limited, the resource problems have become a bottleneck of economic growth. More and more countries have launched researches on solar energy as a potential motive force for economic development. The solar energy, as a renewable energy resource, has attracted tremendous amount of attention. The solar energy is realized using photovoltaic cells with less power consumption and environment friendliness. In recent years, with the increasing demand in the solar energy, the manufacturing technology of photovoltaic cells has advanced significantly. Therefore, the solar energy has been the fastest developing industry.
In order to convert the solar energy into electrical energy, the photovoltaic cells are inevitable. The photovoltaic cell is a diode device with a p-n semiconductor junction, whereat the photovoltaic effect is used to generate electricity. When a photon is absorbed on the surface of a diode to generate excitons, the built-in electric field in the depletion region at the p-n junction unbind the excitons to generate electrons and holes transmitted to respective electrodes to induce a current and thus construct a photovoltaic cell.
Because of the importance of the photovoltaic cell, lots of efforts have been made on the efficiency as well as manufacturing of the photovoltaic cell in a material aspect to achieve efficient and rapid carrier transport. Recently, the studies on the photovoltaic cell are emphasized on organic photovoltaic cells having an organic conductive polymer material mixed with an inorganic nano material to form a thin film as the photo-sensitive and electricity generation material. Compared to the conventional photovoltaic cell using inorganic p-n semiconductor, the organic photovoltaic cell can be made with low cost by ink-injection or dip coating on the substrate. Moreover, with the manufacturing steps mentioned above, the organic photovoltaic cell can be formed on a flexible substrate with lightweight and high flexibility.
In U.S. Pub. No. 2003/0226498, a photovoltaic cell structure formed using a photovoltaic thin film comprising semiconductor nano crystals and an organic material is disclosed. In this prior art, the photovoltaic thin film comprises an organic semiconductor polymer (such as P3HT) material mixed with semiconductor nano crystals (such as CdSe). Moreover, U.S. Pub. No. 2008/0128021 also discloses an organic photovoltaic thin film comprising a nano composite material. In this prior art, the organic material layer is mixed with nano particle materials such as quantum dots, core-shell semiconductor nano particles or microstructures with supports such as bipods, tripods or tetrapods to enhance the photovoltaic effect.
Even though there have been lots of reports on organic photovoltaic materials, the conductive polymer exhibits high hole mobility. Therefore, electrons accumulated in the active layer tend to recombined with the holes to lower the efficiency of the photovoltaic device. Accordingly, there is need in providing a photovoltaic cell and a method for manufacturing the same to overcome the aforesaid problems.
The present invention provides a photovoltaic cell having nanodots and a method for forming the photovoltaic cell, wherein the hole transport material of the photovoltaic cell is mixed with nanodots to form a photovoltaic thin film. The photovoltaic cell using such a photovoltaic thin film exhibits enhanced hole mobility to improve the efficiency of the photovoltaic cell.
In one embodiment, the present invention provides a photovoltaic cell comprising: a photovoltaic conversion layer, being capable of converting incident light into a plurality hole-electron pairs, comprising a hole transport layer including a plurality of nanodots mixed therein for hole transport; and a first electrode and a second electrode, being coupled respectively to two sides of the photovoltaic conversion layer for conducting holes and electrons.
In another embodiment, the present invention further provides a method for forming a photovoltaic cell, comprising steps of: adding nanodots to a hole transport solution; coating a first electrode with the hole transport solution thereon to form a hole transport layer; coating the hole transport layer with a polymer material mixed with an inorganic material thereon to form an active layer; forming a hole blocking layer on the active layer; and forming a second electrode on the hole blocking layer.
The objects and spirits of several embodiments of the present invention will be readily understood by the accompanying drawings and detailed descriptions, wherein:
The present invention can be exemplified but not limited by various embodiments as described hereinafter.
Please refer to
The photovoltaic conversion layer 22 comprises a hole transport layer 220, an active layer 221 and a hole blocking layer 222. The hole transport layer 220 is formed on the first electrode to conducting holes to the first electrode 20. The hole transport layer 220 may comprise a p-type polymer organic material or a p-type semiconductor material. In the present embodiment, the hole transport layer 220 comprise PEDOT:PSS, but is not limited thereto. Moreover, the hole transport layer 220 is mixed with a plurality of nanodots 23 to enhance the hole transport efficiency of the hole transport layer to further the efficiency of the photovoltaic cell. Please refer to
Returning to
In
Please refer to
Please refer to
Then, in step 41, a first electrode is coated with the hole transport solution thereon to form a hole transport layer. The first electrode is transparent and comprises a conductive material such as indium-tin oxide (ITO), aluminum-zinc oxide (AZO) and zinc oxide (ZnO). The hole transport layer is formed on the first electrode by conventional techniques such as spin coating, spray coating and blade coating. In step 42, the hole transport layer is coated with a polymer material mixed with an inorganic material thereon to form an active layer. The active layer is formed by conventional coating techniques or injection. These conventional coating techniques include spin coating, spray coating and blade coating. The injection process is performed by mixing and liquidizing the polymer and inorganic particles at high temperatures and injecting the same using a injecting apparatus to form an active layer on the hole transport layer. Then, step 43 is performed to form a hole blocking layer on the active layer. The hole blocking layer is formed by coating the active layer with a titanium dioxide nano rod solution. Finally, in step 44, a second electrode is formed on the hole blocking layer. The second electrode may also be formed by evaporation or sputtering.
At the first stage, polymeric nanodots are manufactured by synthesis. Firstly, 60 g of sodium metasilicate (Na2SiO3) and 200 mL of 2.5M hydrochloric acid (HCl) are added to 200 mL of de-ionized water and the solution is stirred at 0° C. for 5 minutes. Then, 200 mL of tetrahydrofuran (C4H8O) and 60 g of sodium chloride (NaCl) are added to the solution and the solution is stirred for 10 minutes. Then, the solution is left alone for 10 minutes to separate into layers so that tetrahydrofuran-containing solution is extracted. 30 g of sodium sulfate (Na2SO4) is added to the tetrahydrofuran-containing solution to remove surplus water. Then the solution is left alone for hours to separate into layers. The top layer solution containing polymeric nanodots with hydroxyl groups (OH—) is extracted, as shown in
At the second stage, titanium dioxide nano rods are manufactured. According to T-W Zeng et al. “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices”, Nanotechnology, 17, 5387, 2006, 120 g of oleic acid (OA, 90%, Aldrich) is provided in a three-neck bottle, where argon is input for several minutes to ensure it is an inert environment. The reaction bottle is heated up to 120° C. for one hour and then cooled down to 90° C. 17 mmol of titanium isopropoxide (98%, Aldrich) is added to the reaction bottle at 90° C. After 5 minutes, a solution containing trimethylamine-N-oxide dehydrate (98%, Acros) (34 mmol/H2O 17 ml) is added to cause reaction for about 9 hours and then the reaction bottle is cooled down to the room temperature. Ethanol (99.8%, Aldrich) is used to wash away the reacted solvent and the unreacted material. A centrifugator is used to separate the sediments from the solvent. The sediments are the desired titanium dioxide nano rods.
At the second stage, a photovoltaic cell mixed with nanodots is manufactured. ITO glass is cleaned by ultrasonic cleaning in a solution of methanol and ammonia:hydrogen peroxide:de-ionized water=1:1:5 for 30 minutes and in isopropanol for one hour. The nanodots synthesized at the first stage is diluted by tetrahydrofuran (THF) into solutions with different weight percentages and is then added to the hole transport layer solution comprising PEDOT:PSS (Bayer Batron-P) to be stirred. The mixed solution is formed on the cleaned ITO glass by spin coating and then baked at 120° C. for 20 minutes. 9 mg of conductive polymer comprising poly(3-hexylthiophene) (P3HT) is dissolved in 0.3 mL chlorobezene under stirring at 50° C. until P3HT is completely dissolved in chlorobezene. Meanwhile, the titanium dioxide (TiO2) nano rod solution manufactured at the second stage is added to hexane and centrifugated to extract 15 mg of titanium dioxide nano rods, which are added to 0.2 mL of pyridine, 0.4 mL of dichloromethane and 0.6 mL of chlororform for ultrasonic cleaning. Then, 1.2 mL of the titanium dioxide nano rod solution is added to the P3HT solution and is stirred. The solution comprising organic conductive polymer and inorganic semiconductor is formed by spin coating on the hole transport layer that has been baked. Furthermore, an additional titanium dioxide nano rod solution is formed by spin coating on the active layer to form a hole blocking layer. Finally, an aluminum electrode layer is evaporated onto the surface of the device to form a photovoltaic cell as shown in
Please refer to
Accordingly, the present invention discloses a photovoltaic cell having nanodots with increased hole transport efficiency and a method for forming the photovoltaic cell. Therefore, the present invention is novel, useful, and non-obvious.
Although this invention has been disclosed and illustrated with reference to particular embodiments, the principles involved are susceptible for use in numerous other embodiments that will be apparent to persons skilled in the art. This invention is, therefore, to be limited only as indicated by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
098117392 | May 2009 | TW | national |