This invention relates generally to apparatus and methods for converting solar energy to electrical energy, and more specifically to apparatus and methods for more efficient conversion of solar energy to electrical energy.
The transformation of light energy into electrical energy using photovoltaic (PV) devices has been known for a long time and these photovoltaic devices are increasingly being implemented in residential, commercial, and industrial applications. Although developments and improvements have been made to these photovoltaic devices over the last few years to improve their efficiency, the efficiency of the photovoltaic devices is still a focal point for continuing to improve the economic viability of photovoltaic devices.
Photovoltaic modules are commonly connected with a negative lead of the PV tied to ground so that the module is put into operation at high positive voltages with respect to earth ground. In this type of configuration, however, it has been discovered that “surface polarization” of the module can occur. Surface polarization typically results in an accumulation of static charge on the surface of the solar cells.
In some solar panels, the front surface of the cells are coated with a material that can become charged. This layer performs much like the gate of a field-effect transistor. A negative charge at the surface of the solar cell increases hole-electron recombination When this happens, surface polarization reduces the output current of the cell.
Surface polarization can occur when a module is put into operation at high positive voltages. If the module is operated at a positive voltage with respect to the earth ground, for example, minute leakage current may flow from the cells of the module to ground. As a result, over time, a negative charge is left on the front surface of a cell. And this negative charge attracts positive charge (holes) from a bottom layer of the cell to the front surface where the holes recombine with electrons, and the holes are lost instead of collecting at the positive junction of the module. As a consequence, the current that is produced by the cell is reduced.
Although modules may be operated at negative voltage with respect to ground to prevent surface polarization, this type of architecture prevents bipolar inverters, or inverters with floating arrays, from being utilized because a portion of the photovoltaic array (typically one-half of the array) is operated above ground potential when a bipolar inverter is utilized. And bipolar inverters are typically more efficient than monopolar inverters, in part, because bipolar inverters may be operated at higher voltages, which reduces current losses. As a consequence, it would be beneficial to be able to efficiently utilize bipolar inverters, or inverters with floating arrays, in connection with photovoltaic modules without encountering the deleterious effects of charge accumulation on the photovoltaic modules.
Exemplary embodiments of the present invention that are shown in the drawings are summarized below. These and other embodiments are more fully described in the Detailed Description section. It is to be understood, however, that there is no intention to limit the invention to the forms described in this Summary of the Invention or in the Detailed Description. One skilled in the art can recognize that there are numerous modifications, equivalents and alternative constructions that fall within the spirit and scope of the invention as expressed in the claims.
In one exemplary embodiment, the present invention can include a photovoltaic inverter that includes a first input configured to couple to a first rail of a photovoltaic array and second input configured to couple to a second rail of a photovoltaic array. In this embodiment, an inverter is coupled to the first and second inputs and the inverter is configured to convert DC power from the photovoltaic array to AC power. A power supply is configured to apply a negative potential with respect to a ground potential, and a third input is configured to couple to a portion of the photovoltaic array that is substantially at the positive potential. And a switch configured to couple the negative voltage to the third input so as to enable the portion of the photovoltaic array that is substantially at the positive potential to be placed at the negative potential.
In another embodiment, the invention may be characterized as a method comprising arranging a portion of a photovoltaic array so that the portion of the photovoltaic array operates above a ground potential, and converting solar energy into electrical energy with the photovoltaic array, wherein the portion of the photovoltaic array is predisposed to accumulate a charge on a surface of the portion of the photovoltaic array while the solar energy is converted to electrical energy. And in this embodiment charge accumulation is abated on the surface of the portion of the photovoltaic array that operates above a ground potential.
In yet another embodiment the invention may be characterized as a photovoltaic module comprising an energy conversion portion adapted to convert solar energy to electrical energy; a positive lead coupled to the energy conversion portion; a negative lead coupled to the energy conversion portion; and a conductor arranged in close proximity to the energy conversion portion so as to enable the conductor, when coupled to a positive potential relative to a potential of the negative lead, to repel positive charges away from a surface of the energy conversion portion.
As previously stated, the above-described embodiments and implementations are for illustration purposes only. Numerous other embodiments, implementations, and details of the invention are easily recognized by those of skill in the art from the following descriptions and claims.
Various objects and advantages and a more complete understanding of the present invention are apparent and more readily appreciated by reference to the following Detailed Description and to the appended claims when taken in conjunction with the accompanying Drawings wherein:
Referring now to the drawings, where like or similar elements are designated with identical reference numerals throughout the several views, and referring in particular to
In general, the photovoltaic array 102 converts solar energy to DC electrical power, and applies the DC power to the inverter 108, which converts the DC power to AC power (e.g., three-phase power). The charge abatement portion 104 in this embodiment is configured to mitigate the adverse consequences of a charge (e.g., negative charge) that may accumulate on the surface of one or more modules of the photovoltaic array 102.
In many embodiments, the charge abatement portion 104 reduces an amount of surface charge that the photovoltaic array would ordinarily accumulate if the charge abatement portion 104 were not in place. In some embodiments for example, the charge abatement portion 104 prevents deleterious charges from building up the surface of one or more modules of the photovoltaic array 102 in the first place. And in other embodiments, the charge abatement portion 104 removes or reduces a charge that has accumulated on the surface of one or modules of the array 102.
It should be recognized that the block diagram depicted in
As discussed further herein, in some embodiments the photovoltaic array 102 is a bipolar array, and in many of these embodiments, at least a portion of the array 102 is disposed so as to operate at a positive voltage with respect to ground. But this is certainly not required, and in other embodiments the photovoltaic array 102 is a monopolar array, which in some variations operates at voltages substantially higher than ground.
In addition, one of ordinary skill in the art will appreciate that the photovoltaic array 102 may include a variety of different type photovoltaic cells that are disposed in a variety of different configurations. For example, the photovoltaic cells may be arranged in parallel, in series or a combination thereof. And the inverter may be realized by a variety of inverters. In some embodiments, for example, the inverter is a bipolar inverter (e.g., an inverter sold under the trade name SOLARON by Advanced Energy, Inc. of Fort Collins, Colo.), but this is certainly not required and in other embodiments, the inverter 108 realized by one or more of a variety of monopolar inverters, which are well known to one of ordinary skill.
Referring next to
Although not required, the photovoltaic array 202 in this embodiment is a bipolar array that includes a first portion 214 and a second portion 216 that are coupled at a node 218 that is near, or at, a ground potential. As a consequence, the first portion 214 of the array 202 operates above the ground potential and the second portion 216 of the array 202 operates below the ground potential. In many embodiments, each of the first and second portions 214, 216 of the photovoltaic array 202 includes several photovoltaic modules that may be arranged in series, parallel and/or series-parallel combinations.
In operation, before the photovoltaic array 202 begins applying power to the inverter 208 (e.g., before the sun rises), a negative voltage (e.g., −600 VDC) is applied by the power supply 206, via the switch 212, to a positive lead of the photovoltaic array 202. In this way, any negative charge that has accumulated on surfaces of the modules in the array 102 is swept away so that the array 202 is capable of operating at its nominal efficiency.
As a consequence, when the array 102 begins to convert solar energy to DC electrical energy (e.g., at sunrise), the array provides power more efficiently than it would with a negative charge accumulation. And in some embodiments, the remaining charge at the end of the day is still positive due to an accumulation of a positive charge attracted to a surface of the modules in the array 102 by the applied negative voltage at night.
In many embodiments, once the array 202 is no longer producing power (e.g., when the sun has set), the negative voltage is again applied to the positive lead of the array 202 to sweep the charge from the array 202. In this way, any reduced positive charge that has drained off the surface of one or more of the modules in array 102 is removed or substantially reduced, and the array 102 operates at an improved efficiency.
Referring next to
Referring next to
Referring next to
Referring next to
In this embodiment, while solar energy 612 is imparted to the wafer 606 through a glass layer 614 and the EVA 610, the positive potential of the ring 602 conducts through the EVA 610 or on the inner or outer surface of the glass cover 614 so as to place a positive charge upon the EVA 610, which repels positive charges that would ordinarily be attracted from the bottom layer 620 to the top layer 618 so the positive charges are guided back to the collecting junction in the bottom layer 620 instead of being lost by recombination with negative charges at or near the surface 616 of the top layer 618.
Although not depicted in
Referring next to
Referring to
Referring next to
As depicted in
As discussed with reference to
In other embodiments discussed with reference to
In conclusion, the present invention provides, among other things, a system and method for improving operation of a photovoltaic array. Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims. For example, it is contemplated that yet other embodiments incorporate more than one of the embodiments depicted in
Moreover, one of ordinary skill in the art will appreciate that if the structure of the photovoltaic cell is reversed from the exemplary embodiments discussed in