The present disclosure relates generally to the field of photovoltaic devices, and more particularly to the structure and methods of producing photovoltaic devices.
During the fabrication of photovoltaic devices, layers of semiconductor material can be applied to a substrate with one layer serving as a window layer and a second layer serving as an absorber layer. In addition to the semiconductor layer (the window and absorber layers), photovoltaic modules, devices, or cells, can include multiple layers (or coatings) created on a substrate (or superstrate). For example, a photovoltaic device can include a barrier layer, a transparent conductive oxide layer, a buffer layer, and a semiconductor layer formed in a stack on a substrate. Each layer may in turn include more than one layer or film. For example, a semiconductor window layer and a semiconductor absorber layer together can be considered a semiconductor layer. Additionally, each layer can cover all or a portion of the device and/or all or a portion of a layer or a substrate underlying the layer. For example, a “layer” can include any amount of any material that contacts all or a portion of a surface. Cadmium telluride has been used for the semiconductor layer because of its optimal band structure and a low cost of manufacturing.
Maximizing the efficiency of photovoltaic devices remains a long-standing goal of photovoltaic device manufacturers and users. It is often desirable to minimize a thickness of the layers of a photovoltaic device. As the thickness of the layers decreases, any defect within one of the layers and at the junction of adjacent layers becomes more pronounced. One such defect may be current-shunting, short circuit defects. These process-related defects are thought to either be present in the morphology of the substrate electrode, or develop during the deposition or subsequent processing of semiconductor absorber layers. Shunt defects may be present in photovoltaic devices when one or more low resistance current paths develop through the semiconductor absorber layer, allowing current to pass unimpeded between electrodes of the photovoltaic device.
An outstanding concern in achieving high-efficiency photovoltaic devices formed from a CdS/CdTe semiconductor absorber layer is the formation of a low-resistance contact to the CdTe layer. According to traditional theory of ohmic contact formation, a metal forming an ohmic contact to the CdTe should have a Fermi level aligned with a top of the valence band of the CdTe. However, due to a high end for a work function of CdTe, most metals are incapable of matching the work function and thus are not as efficient for making ohmic contact to CdTe.
It would be desirable to develop a photovoltaic device having a back contact buffer layer that provides a low-resistance contact between a semiconductor absorber layer and the back contact layer to increase an efficiency of the device.
Concordant and congruous with the instant disclosure, a photovoltaic device having a back contact buffer layer that provides a low-resistance contact between a semiconductor absorber layer and the back contact layer to increase an efficiency of the device has surprisingly been discovered.
In an embodiment of the invention, a photovoltaic device comprises a glass substrate; a semiconductor absorber layer formed over the glass substrate; a metal back contact layer formed over the semiconductor absorber layer; and a p-type back contact buffer layer disposed between the semiconductor absorber layer and the metal back contact layer.
In another embodiment, a method of manufacturing a photovoltaic device comprises the steps of depositing a semiconductor absorber layer adjacent to a substrate; depositing a p-type back contact buffer layer adjacent to the semiconductor absorber layer; and depositing a back contact layer adjacent to the p-type back contact buffer layer.
In another embodiment, a method of manufacturing a photovoltaic device comprises the steps of depositing a CdS window layer adjacent to a substrate; depositing a CdTe semiconductor absorber layer adjacent to the CdS window layer; depositing a p-type back contact buffer layer consisting of either MnTe or SnTe adjacent to the CdTe semiconductor absorber layer; and depositing a back contact layer adjacent to the p-type back contact buffer layer.
The above, as well as other advantages of the present disclosure, will become readily apparent to those skilled in the art from the following detailed description, particularly when considered in the light of the drawings described hereafter.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should also be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features. In respect of the methods disclosed, the order of the steps presented is exemplary in nature, and thus, is not necessary or critical unless recited otherwise.
An exemplary energy band diagram of the photovoltaic device of
Similarly, Cd1-xMnxTe is a suitable back contact buffer layer 48 because the presence of Mn with CdTe increases a room temperature band gap thereof linearly with a Mn faction x at the rate of about 13 mV/% Mn up to x=about 0.5. That is, a maximum band gap increase is obtainable for Cd0.5Mn0.5Te, though x may be between 0 and about 1, as desired. Furthermore, Cd1-xMnxTe has a very small mismatch, about 1%, with CdTe. Therefore, an amount of interface states at a junction between CdTe and Cd1-xMnxTe is minimized, thereby optimizing performance of the photovoltaic device. A Cd1-xMnxTe back contact buffer layer may be prepared using techniques such as metalorganic chemical vapor deposition (MOCVD), sputtering, and molecular beam epitaxy (MBE), for example.
Favorable results have been obtained using the back contact buffer layer 48 formed from MnTe for at least the following reasons: MnTe has low vapor pressure suitable for vapor transport deposition (VTD) processes; about 100% solubility in CdTe; a band gap of about 3.2 eV; and due to Mn vacancies, the MnTe may be doped up to about 1019 cm−3. The MnTe back contact buffer layer 48 may be deposited on the absorber layer 44 using known deposition processes, but positive results have been obtained using a high temperature evaporation process, a sputtering processing
For example, to form the device 34 having the MnTe back contact buffer layer 48 using high temperature evaporation or sputtering processes, the window layer 42 and absorber layer 44 are deposited using VTD processes on a TEC10 glass substrate 36. The window layer 42 and the absorber layer 44 are then treated with CdCl2, as known in the art. The surface of the CdCl2-treated absorber layer 44 is then cleaned with a dilute HCl solution. When using an evaporation process, a MnTe source is then heated to evaporate the MnTe. The evaporated MnTe is then impinged upon the absorber layer 44 to deposit the MnTe back contact buffer layer 48 thereon. Alternatively when using a sputtering process, MnTe may be sputtered onto the absorber layer 44 with a MnTe target with a temperature of the substrate layer 36 from about room temperature to about 300° C. The target thickness of the back contact buffer layer 48 is from about 10 nm to about 500 nm. Once the MnTe back contact buffer layer 48 is deposited, processing of the device 34 continues through to packaging.
Using the back contact buffer layer 48 formed from SnTe may have favorable results for the following reasons: SnTe has a vapor pressure of about 0.03 atm at 1000° C., only slightly higher than that of CdS; a work function of about 5.1 eV; a band gap of from about 0.2 eV to about 0.3 eV; a melting point at about 795° C.; and due to Sn vacancies, the SnTe may be intrinsically doped up to about 1.5×1021 cm−3 at room temperature. The SnTe may be deposited on the absorber layer 44 using known deposition processes, but favorable results may be obtained using a VTD process and a sputtering process.
To form the device 34 having the SnTe back contact buffer layer using the VTD process, the window layer 42 and absorber layer 44 are deposited using VTD processes on the TEC10 glass substrate 36. The SnTe is deposited on the absorber layer 44 using a VTD process with the same or similar conditions as the VTD process to deposit the CdS since SnTe has a similar vapor pressure thereto. The target thickness of the SnTe back contact buffer layer 48 is from about 10 nm to about 500 nm. Prior to deposition of the SnTe back contact buffer layer 48, the window layer 42 and the absorber layer 44 are then treated with CdCl2, and the surface of the CdCl2-treated absorber layer may then be cleaned with a dilute HCl solution.
To form the device 34 having the SnTe back contact buffer layer 48 using the sputtering process, the window layer 42 and absorber layer 44 are deposited using VTD processes on the TEC10 glass substrate 36. The window layer 42 and the absorber layer 44 are then treated with CdCl2. The surface of the CdCl2-treated absorber layer is then cleaned with a dilute HCl solution. SnTe is sputtered onto the absorber layer 44 with a SnTe target at a temperature of from about room temperature to about 300° C. The target thickness of the back contact buffer layer 48 is from about 10 nm to about 500 nm. Once the SnTe back contact buffer layer 48 is deposited, processing of the device 34 continues through to packaging.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes may be made without departing from the scope of the disclosure, which is further described in the following appended claims.
This is a divisional application of U.S. patent application Ser. No. 15/619,674, filed on Jun. 12, 2017; which is a divisional of and claims priority to U.S. patent application Ser. No. 14/317,433, filed on Jun. 27, 2014; which claims priority to U.S. Provisional Patent Application No. 61/839,930, filed on Jun. 27, 2013. The entire disclosures of all the aforementioned applications are hereby incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
61839930 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15619674 | Jun 2017 | US |
Child | 16665516 | US | |
Parent | 14317433 | Jun 2014 | US |
Child | 15619674 | US |