1. Technical Field
The present invention relates to a photovoltaic device.
2. Description of the Background Art
JP 2011-155229 A discloses a backside-electrode-based solar cell including an n-type single-crystal silicon substrate having a backside on which a plurality of n-type semiconductor strips and a plurality of p-type semiconductor strips provided in an alternate manner and electrodes are provided on top of them. The backside-electrode-based solar cell of JP 2011-155229 A has a hetero-junction construction in which an amorphous silicon layer is stacked upon the n-type single-crystal silicon substrate.
Since an amorphous silicon layer has a low conductivity, when a horizontal gap is present between the amorphous silicon layer and the electrodes provided on top of it, carriers cannot move in the amorphous silicon layer such that the carrier cannot be collected efficiently. Further, providing an amorphous silicon layer on a single-crystal silicon substrate results in higher contact resistance between the single-crystal silicon substrate and amorphous silicon layer. To solve these problems, the distance between the electrodes may be reduced to reduce the horizontal gap area and increase the area where the amorphous silicon layer and electrodes are joined.
However, when electrodes are formed using a shadow mask, the smaller the distance between the electrodes, the smaller the distance between the openings in the shadow mask such that the shadow mask can easily bend. As such, part of an electrode on a p-type semiconductor strip may be on an n-type semiconductor region or part of an electrode on an n-type semiconductor strip may be on a p-type semiconductor region, causing a short circuit in the p-n junction.
An object of the present invention is to provide a photovoltaic device that prevents a short circuit in an p-n junction even if the distance between the electrodes on the n-type semiconductor strips and the electrodes on the p-type semiconductor strips is reduced.
A photovoltaic device according to the present invention includes: a semiconductor substrate; a first amorphous semiconductor strip of a first conductivity type provided on one face of the semiconductor substrate; a second amorphous semiconductor strip of a second conductivity type, the second conductivity type being opposite to the first conductivity type, the second amorphous semiconductor strip being provided on the one face of the semiconductor substrate and located adjacent to the first amorphous semiconductor strip in an in-plane direction of the semiconductor substrate; a plurality of electrodes spaced apart from each other and provided on at least one of the first and second amorphous semiconductor strips; and a conductive part provided on the plurality of electrodes for electrically connecting the plurality of electrodes.
The present invention prevents a short circuit in a p-n junction even if the distance between the electrodes on the n-type semiconductor strips and the electrodes on the p-type semiconductor strips is reduced.
A photovoltaic device in an embodiment of the present invention includes: a semiconductor substrate; a first amorphous semiconductor strip of a first conductivity type provided on one face of the semiconductor substrate; a second amorphous semiconductor strip of a second conductivity type, the second conductivity type being opposite to the first conductivity type, the second amorphous semiconductor strip being provided on the one face of the semiconductor substrate and located adjacent to the first amorphous semiconductor strip in an in-plane direction of the semiconductor substrate; a plurality of electrodes spaced apart from each other and provided on at least one of the first and second amorphous semiconductor strips; and a conductive part provided on the plurality of electrodes for electrically connecting the plurality of electrodes (first arrangement).
In the first arrangement, the photovoltaic device includes a plurality of electrodes provided on at least one of a first amorphous semiconductor strip of a first conductivity type and a second amorphous semiconductor strip of a second conductivity type provided on a semiconductor substrate, the plurality of electrodes being spaced apart from each other. The electrodes are electrically connected via a conductive part provided on the electrodes. If the electrodes are formed using a shadow mask, the area between the openings in the shadow mask is larger if a plurality of electrodes spaced apart from each other are provided than if one continuous electrode is provided on each of the semiconductor strips, and thus the shadow mask is less likely to bend. Thus, even if the gap between the electrodes on the first and second amorphous semiconductor strips is reduced, desired electrodes are formed on the first and second amorphous semiconductor strips such that a short circuit in a p-n junction is less likely to occur. Further, the electrodes spaced apart from each other are electrically connected via the conductive part, allowing a current produced by the photovoltaic device to be taken out via the conductive part.
A photovoltaic device in an embodiment of the present invention includes: a semiconductor substrate; a first amorphous semiconductor strip of a first conductivity type provided on one face of the semiconductor substrate, the first amorphous semiconductor strip being comb-shaped; a second amorphous semiconductor strip of a second conductivity type, the second amorphous semiconductor strip being provided on the one face of the semiconductor substrate and comb-shaped and located adjacent to the first amorphous semiconductor strip in an in-plane direction of the semiconductor substrate, the second conductivity type being opposite to the first conductivity type; a plurality of comb-shaped electrodes provided on at least one of the first and second amorphous semiconductor strips; and a conductive part provided on the plurality of electrodes for electrically connecting the plurality of electrodes, wherein each of the electrodes includes a first electrode portion extending generally in a first direction on the semiconductor substrate and a plurality of second electrode portions extending generally in a second direction and being in contact with one side of the first electrode portion, the second direction being perpendicular to the first direction, and the plurality of electrodes are disposed such that the first electrode portions are spaced apart from each other in the first direction (second arrangement).
In the second arrangement, the photovoltaic device includes a first amorphous semiconductor strip of a first conductivity type and a second amorphous semiconductor strip of a second conductivity type, the strips being provided on a semiconductor substrate and being comb-shaped. The photovoltaic device further includes a plurality of comb-shaped electrodes provided on at least one of the first and second amorphous semiconductor strips. Each electrode includes a first electrode portion and a plurality of second electrode portions extending generally perpendicular to the first electrode portion, and the second electrode portions are in contact with one side of the first electrode portion. The electrodes are disposed such that the first electrode portions are spaced apart from each other, and are electrically connected via a conductive part located on the electrodes. If the electrodes are formed using a shadow mask, the area between the openings in the shadow mask is larger if a plurality of electrodes spaced apart from each other are provided than if one continuous electrode is provided on each of the semiconductor strips, and thus the shadow mask is less likely to bend. Thus, even if the gap between the electrodes on the first and second amorphous semiconductor strips is reduced, desired electrodes are formed on the first and second amorphous semiconductor strips such that a short circuit in a p-n junction is less likely to occur. Further, the electrodes spaced apart from each other are electrically connected via the conductive part, allowing a current produced by the photovoltaic device to be taken out via the conductive part.
In a photovoltaic device with a third arrangement, starting from the first arrangement, some of the plurality of electrodes provided on the first and second amorphous semiconductor strips may be located at positions that correspond to positions between the electrodes on the adjacent semiconductor strips.
If electrodes are formed using a shadow mask such that the positions of the electrodes on adjacent semiconductor strips are aligned, the positions of the openings in the shadow mask for forming the electrodes on the adjacent semiconductor strips are aligned, and thus the smaller the distance between the openings, the more likely the shadow mask is to bend. In the third arrangement, the positions of the electrodes on adjacent semiconductor strips are not aligned, and thus the shadow mask is less likely to bend while the electrodes are being formed using the shadow mask, enabling fabricating desired electrodes on the semiconductor strips and preventing a short circuit in a p-n junction.
In a photovoltaic device with a fourth arrangement, starting from one of the first to third arrangements, the conductive part may include a conductive layer made of a metal paste.
In the fourth arrangement, a current produced by the photovoltaic device can be taken out via the conductive layer.
In a photovoltaic device with a fifth arrangement, starting from the fourth arrangement, the conductive layer may be located on the plurality of electrodes and between adjacent ones of the electrodes.
In the fifth arrangement, a current produced by the photovoltaic device can be taken out not only via the electrodes spaced apart from each other but also via the conductive layer provided between the electrodes, thereby improving the fill factor of the photovoltaic device.
In a photovoltaic device with a sixth arrangement, starting from the fourth arrangement, the conductive layer may be provided on the plurality of electrodes and provided so as to bridge adjacent ones of the electrodes.
In the sixth arrangement, a current produced by the photovoltaic device can be taken out not only via the electrodes spaced apart from each other but also via the conductive layer straddling the spaces between the electrodes. Further, the area where the conductive layer is present is larger than in the fifth arrangement, which increases the area where it contacts the wiring connected with the photovoltaic device, thereby providing wiring connection with a lower resistance than in the fifth arrangement.
In a photovoltaic device with a seventh arrangement, starting from one of the first to sixth arrangements, at least one face of the semiconductor substrate may have a texture.
The seventh arrangement reduces the reflectance of at least one face of the semiconductor substrate, thereby increasing short-circuit currents.
In a photovoltaic device with an eighth arrangement, starting from one of the first to seventh arrangements, an insulating layer may be provided in a region that is other than a region in which the conductive part is in contact with the plurality of electrodes.
The eighth arrangement electrically connects the electrodes in the photovoltaic device in a more stable manner.
Embodiments of the photovoltaic device of the present invention will be described in more detail with reference to the drawings. As used herein, photovoltaic device means a photovoltaic element, a photovoltaic module using photovoltaic elements, and a solar cell power generation system including photovoltaic modules. The same or corresponding components in the drawings are labeled with the same characters and their description will not be repeated. For ease of explanation, the drawings to which reference will be made hereinafter show the configurations in a simplified or schematic manner, or do not show some components. The size ratios of the components shown in the drawings do not necessarily indicate the actual size ratios.
The silicon substrate 101 may be, for example, an n-type single-crystal silicon substrate. The silicon substrate 101 may have a thickness of 100 to 150 μm, for example.
The p-type amorphous semiconductor strips 102p and n-type amorphous semiconductor strips 102n are generally rectangular in shape. The p-type amorphous semiconductor strips 102p and n-type amorphous semiconductor strips 102n are provided on the silicon substrate 101 and located adjacent to each other to cover substantially the entire surface of the silicon substrate 101.
A plurality of generally rectangular electrodes 103 are provided on each of the p-type and n-type amorphous semiconductor strips 102p and 102n and extend in the longitudinal direction of the p-type and n-type amorphous semiconductor strips 102p and 102n. The electrodes 103 on the p-type and n-type amorphous semiconductor strips 102p and 102n are disposed such that separate electrodes are provided on each of the semiconductor strips.
As shown in
An antireflective film 104 is provided to cover the surface of the silicon substrate 101. The antireflective film 104 may include, for example, a silicon oxide film with a thickness of about 20 nm and a silicon nitride film with a thickness of about 60 nm, deposited in this order. The antireflective film 104 reduces the surface reflectance of the silicon substrate 101 and increases short-circuit currents.
An i-type amorphous semiconductor layer 102i is provided on the back face of the silicon substrate 101. The i-type amorphous semiconductor layer 102i is a film of a substantially intrinsic amorphous semiconductor containing hydrogen. The i-type amorphous semiconductor film 102i may be made of, for example, i-type amorphous silicon, i-type amorphous silicon-germanium, i-type amorphous germanium, i-type amorphous silicon carbide, i-type amorphous silicon nitride, i-type amorphous silicon oxide, i-type amorphous silicon-carbon oxide. The i-type amorphous semiconductor layer 102i may have a thickness of several Å to 25 nm, for example.
The p-type amorphous semiconductor strips 102p and n-type amorphous semiconductor strips 102n are provided on the i-type amorphous semiconductor layer 102i.
The n-type amorphous semiconductor strips 102n are constituted by an n-type amorphous semiconductor layer containing hydrogen. The n-type amorphous semiconductor strips 102n may be made of, for example, n-type amorphous silicon, n-type amorphous silicon-germanium, n-type amorphous germanium, n-type amorphous silicon carbide, n-type amorphous silicon nitride, n-type amorphous silicon oxide, n-type amorphous silicon oxynitride, n-type amorphous silicon-carbon oxide containing phosphorous (P) as an impurity, for example. The n-type amorphous semiconductor strips 102n may have a thickness of 3 to 50 nm, for example.
The p-type amorphous semiconductor strips 102p are constituted by a p-type amorphous semiconductor layer containing hydrogen. The p-type amorphous semiconductor strips 102p may be made of, for example, p-type amorphous silicon, p-type amorphous silicon-germanium, p-type amorphous germanium, p-type amorphous silicon carbide, p-type amorphous silicon nitride, p-type amorphous silicon oxide, p-type amorphous silicon oxynitride, p-type amorphous silicon-carbon oxide containing boron (B) as an impurity, for example. The p-type amorphous semiconductor strips 102p may have a thickness of 5 to 50 nm, for example.
As used herein, amorphous semiconductor also means one containing a microcrystalline phase. The microcrystalline phase contains crystals with a mean particle size of 1 to 50 nm.
On each of the p-type and n-type amorphous semiconductor strips 102p and 102n are provided a plurality of electrodes 103 that are in contact with the associated p-type or n-type semiconductor strip 102p or 102n. An electrode 103 in contact with a p-type amorphous semiconductor strip 102p will be hereinafter referred to as p-type electrode 103p, and an electrode 103 in contact with an n-type amorphous semiconductor strip 102n will be referred to as n-type electrode 103n.
As shown in
When photovoltaic devices 1 are combined into a module, each photovoltaic device 1 is electrically connected with an external wiring circuit (hereinafter referred to as wiring sheet).
The wiring sheet 300 includes an insulating substrate 301, on which an n-type wiring member 302n and a p-type wiring member 302p are provided.
The insulating substrate 301 may be made of any insulating material, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyphenyline sulfide (PPS), polyvinyl fluoride (PVF), or polyimide. The thickness of the insulating substrate 301 is not limited to any particular value, and is preferably not smaller than about 25 μm and smaller than about 150 μm. The insulating substrate 301 may have a single-layer structure or a multi-layer structure with two or more layers.
The n-type wiring member 302n and p-type wiring member 302p are comb-shaped and have teeth disposed alternately and spaced apart by a predetermined distance. The n-type and p-type electrodes 103n and 103p provided on the back face of the photovoltaic device 1 are joined to the n-type and p-type wiring members 302n and 302p, respectively. Connection wiring (not shown) is provided on the surface of the insulating substrate 301, where the n-type and p-type wiring members 302n and 302p are electrically connected via the connection wiring and adjacent photovoltaic devices 1 on the wiring sheet 300 are also electrically connected via the connection wiring.
The n-type and p-type wiring members 302n and 302p are made of any conductive material, and may be made of one of Cu, Al, Ag and other metals or an alloy mainly composed of one of these metals. The thickness of the n-type and p-type wiring members 302n and 302p is not limited to any particular value and is preferably not smaller than 10 μm and not larger than 100 μm, for example. If the thickness of the n-type and p-type wiring member 302n and 302p is not larger than 10 μm, the wiring resistance may be too high. If the thickness is not smaller than 100 μm, heat must be applied when the n-type and p-type wiring members 302n and 302p are to be attached to the photovoltaic device 1. As such, for a thickness of 100 μm or larger, differences between the thermal expansion coefficients of the n-type and p-type wiring members 302n and 302p and that of the silicon substrate 101 of the photovoltaic device 1 cause the wiring sheet 300 to warp significantly. In view of this, the thickness of the n-type and p-type wiring members 302n and 302p is more preferably not larger than 100 μm. Further, a conductive material such as nickel, gold, platinum, palladium, silver, tin, indium or ITO may be provided on portions of the surfaces of the n-type and p-type wiring members 302n and 302p. This construction provides good electrical connection between the n-type and p-type wiring members 302n and 302p and the n-type and p-type electrodes 103n and 103p of the photovoltaic device 1, thereby improving the weather resistance of the n-type and p-type wiring members 302n and 302p. The n-type and p-type wiring members 302n and 302p may have a single-layer structure or a multi-layer structure with two or more layers.
As shown in
An example method of manufacturing the photovoltaic device 1A will now be described with reference to
First, a bulk of silicon is provided and a wafer with a thickness of 100 to 300 μm is cut out therefrom, and the wafer is etched to remove the damaged layer on the surface of the wafer and is etched to adjust its thickness. A protective film is formed on one side of the etched wafer. The protective film may be, for example, silicon oxide or silicon nitride. The wafer with the protective film is wet-etched using an alkaline solution such as NaOH or KOH (for example, an aqueous solution having KOH in 1 to 5 wt % and isopropyl alcohol in 1 to 10 wt %). At this time, a texture is formed due to anisotropic etching on the surface 101a that has no protective film. Removing the protective film after the etching leaves the silicon substrate 101 shown in
Next, as shown in
In this implementation, first, the surface of the silicon substrate 101 is subjected to thermal oxidation to form an oxide film on the light-receiving face 101a. Thereafter, a silicon nitride film is formed on the oxide film of the light-receiving face 101a to form an antireflective film 104. The silicon substrate 101 may be oxidized by either wet treatment or thermal oxidation. If wet treatment is used, for example, the silicon substrate 101 is immersed in hydrogen peroxide, nitric acid or ozonated water, and then is heated in a dry atmosphere to a temperature ranging from 800 to 1000° C. If thermal oxidation is used, for example, the silicon substrate 101 is heated in an oxygen or water vapor atmosphere to a temperature ranging from 900 to 1000° C. The silicon nitride film may be formed by sputtering, electron beam (EB) evaporation, or tetraethoxysilane (TEOS) method.
An i-type amorphous semiconductor layer and n-type amorphous semiconductor strips may be successively formed between the silicon substrate 101 and the silicon nitride film.
The i-type amorphous semiconductor layer, n-type amorphous semiconductor strips and silicon nitride film may be formed by, for example, plasma chemical vapor deposition (CVD). For the i-type amorphous semiconductor layer, the reactant gas to be introduced into the reaction chamber of the plasma CVD equipment includes silane gas and hydrogen gas. In this case, for example, the temperature of the silicon substrate 101 may be in the range of 130 to 210° C., the hydrogen gas flow rate may be in the range of 0 to 100 sccm, the silane gas (SiH4) flow rate may be about 40 sccm, the pressure in the reaction chamber may be in the range of 40 to 120 Pa, and the high frequency (13.56 MHz) power density may be in the range of 5 to 15 mW/cm2.
For the n-type amorphous semiconductor strips, the reactant gas to be introduced into the reaction chamber of the plasma CVD equipment includes silane gas, hydrogen gas, and phophine gas (PH3) diluted with hydrogen (with a phosphine concentration of 1%, for example). In this case, the hydrogen gas flow rate may be in the range of 0 to 100 sccm, the silane gas flow rate may be 40 sccm, the phosphine gas flow rate may be 40 sccm, the temperature of the silicon substrate 101 may be in the range of 130 to 180° C., for example, the pressure in the reaction chamber may be about 40 Pa, and the high frequency power density may be 8.33 mW/cm2. Thus, n-type amorphous semiconductor strips 102n doped with phosphorus are formed.
Next, on the back face of the silicon substrate 101, i.e. the face opposite the light-receiving face 101a are successively formed an i-type amorphous semiconductor layer 102i and p-type amorphous semiconductor strips 102p.
More specifically, first, on the back face of the silicon substrate 101 is formed an i-type amorphous semiconductor layer 102i by plasma CVD. At this time, the i-type amorphous semiconductor layer 102i is formed over the entire back face of the silicon substrate 101. When the i-type amorphous semiconductor layer 102i is to be formed, the reactant gas to be introduced into the reaction chamber of the plasma CVD equipment includes silane gas and hydrogen gas. In this case, for example, the temperature of the silicon substrate 101 may be in the range of 130 to 210° C., the hydrogen gas flow rate may be in the range of 0 to 100 sccm, the silane gas (SiH4) flow rate may be about 40 sccm, the pressure in the reaction chamber may be in the range of 40 to 120 Pa, and the high frequency (13.56 MHz) power density may be in the range of 5 to 15 mW/cm2.
Subsequently, a shadow mask is placed on the i-type amorphous semiconductor layer 102i, and p-type amorphous semiconductor strips 102p are formed. P-type amorphous semiconductor strips formed using a shadow mask will be described below.
The shadow mask used may be a metal mask made of a metal such as stainless steel, copper, nickel, an alloy containing nickel (for example, SUS 430, 42 alloy, or invar), or molybdenum. Instead of such a metal mask, a mask made of glass, ceramics (for example, alumina, zirconia), or an organic film may be used. Alternatively, a mask made by etching a silicon substrate may be used. The thickness of the shadow mask is preferably about 50 to 300 μm, for example. In this case, the shadow mask is unlikely to be bent or caused to float by magnetic forces.
When the thermal expansion coefficient of the silicon substrate 101 and material costs are taken into consideration, the shadow mask is more preferably a 42 alloy. Regarding the thickness of the shadow mask, when manufacturing costs are taken into consideration, using a shadow mask only once and discarding it would be problematic. Since using a shadow mask multiple times reduces running costs of production, it is preferable to recycle a shadow mask and use it multiple times. In this case, films formed on the shadow mask should be removed using hydrofluoric acid or NaOH.
The p-type amorphous semiconductor strips 102p are formed by plasma CVD, for example. The reactant gas to be introduced into the reaction chamber of the plasma CVD equipment includes silane gas, hydrogen gas and diborane gas diluted with hydrogen (with a diborane concentration of about 2%, for example). In this case, the hydrogen gas flow rate may be in the range of 0 to 100 sccm, the silane gas flow rate may be 40 sccm, the diborane gas flow rate may be 40 sccm, the temperature of the silicon substrate 101 may be in the range of 150 to 210° C., the pressure in the reaction chamber may be in the range of 40 to 120 Pa, and the high frequency power density may be in the range of 5 to 15 mW/cm2. Thus, p-type amorphous semiconductor strips 102p doped with boron (B) are formed.
After the p-type amorphous semiconductor strips 102p are formed, n-type amorphous semiconductor strips 102n are formed as shown in
The n-type amorphous semiconductor strips 102n are formed by placing a shadow mask and using plasma CVD, for example.
As shown in
The n-type amorphous semiconductor strips 102n may be formed by plasma CVD, for example. The reactant gas to be introduced into the reaction chamber of the plasma CVD equipment includes silane gas, hydrogen gas, and phosphine gas diluted with hydrogen (with a phosphine concentration of 1%, for example). In this case, the temperature of the silicon substrate 101 may be about 170° C., for example, the hydrogen gas flow rate may be in the range of 0 to 100 sccm, the silane gas flow rate may be about 40 sccm, the phosphine gas flow rate may be about 40 sccm, the pressure in the reaction chamber may be about 40 Pa, the high frequency power density may be about 8.33 mW/cm2. Thus, n-type amorphous semiconductor strips 102n doped with phosphorus are formed.
The n-type amorphous semiconductor strips 102n and the p-type amorphous semiconductor strips 102p shown in
Next, after the n-type amorphous semiconductor strips 102n are formed, n-type electrodes 103n and p-type electrodes 103p are formed on the p-type amorphous semiconductor strips 102p and n-type amorphous semiconductor strips 102n, respectively, as shown in
The n-type and p-type electrodes 103n and 103p are formed by placing a shadow mask on the silicon substrate 101 and using deposition or sputtering, for example. The thickness of the n-type and p-type electrodes 103n and 103p is preferably in the range of 50 nm to 1 μm, and more preferably in the range of 50 nm to 500 nm. Increased thickness of the electrodes 103 causes larger stress on the silicon substrate 101, which may cause the silicon substrate 101 to warp.
Each of the n-type and p-type electrodes 103n and 103p formed on the n-type and p-type amorphous semiconductor strips 102n and 102p using shadow masks is spaced apart from, and thus not electrically connected with, an electrode of the same conductivity type located adjacent in the direction of a long side, by the gap distance GC2.
Photovoltaic devices with p-type and n-type electrodes 103p and 103n each provided for one of the p-type and n-type amorphous semiconductor strips 102p and 102n without being divided (comparative examples), and photovoltaic devices 1 with separate electrodes for each of the p-type and n-type amorphous semiconductor strips 102p and 102n (present embodiment) were fabricated; the yields of these devices are shown in
In the context of the photovoltaic devices of the comparative examples, the p-type and n-type electrodes 103p and 103n were formed using the shadow mask shown in
On the other hand, in the photovoltaic device 1 in the present embodiment, the yield hardly decreases even when the gap dimension L is not larger than 400 μm, unlike in the comparative examples. In the present embodiment, the electrodes 103 formed using a shadow mask are divided into sub-electrodes arranged in the direction of a long side such that the regions between the electrodes 103 located adjacent in the direction of a long side prevent the shadow mask to bend. As a result, the p-type and n-type electrodes 103p and 103n are located on the p-type and n-type amorphous semiconductor strips 102p and 102n, respectively, and are not located on amorphous semiconductor strips of the wrong conductivities.
Thus, in the photovoltaic device 1 in the present embodiment, the p-type and n-type electrodes 103p and 103n are formed using a shadow mask, thereby improving positional accuracy for the p-type and n-type electrodes 103p and 103n over the comparative examples, reducing the decrease in yield. Particularly, if a yield of 90% is desired, the gap dimension L for the p-type and n-type electrodes 103p and 103n is preferably not more than 400 μm.
The above method allows the p-type and n-type electrodes 103p and 103n to be formed all at the same time, which enables fabricating the photovoltaic device 1 at low costs. Further, the p-type and n-type electrodes 103p and 103n are divided into sub-electrodes arranged in the longitudinal direction, thereby improving yield.
The electrodes 103 are not limited to the pattern shown in
The electrodes 103 may have different dimensions as measured in the longitudinal direction. The electrodes 103 have stresses; if the length of the electrodes 103 near the edges of the silicon substrate 101 is larger than that of the electrodes 103 near the center of the silicon substrate 101, the stress on the electrodes 103 near the center can be mitigated, thereby preventing the silicon substrate 101 from warping. Further, if the length of the electrodes 103 near the center of the silicon substrate 101 is larger than that of the electrodes 103 near the edges of the silicon substrate 101, light confinement efficiency is higher, thereby improving the performance of the photovoltaic device 1.
In the present embodiment, for example, a p-type amorphous semiconductor strip 102p may have the cross-section shown in
The reduced-thickness regions TD are defined by the points A and points B as measured along an in-plane direction of the p-type amorphous semiconductor strip 102p, where the points A are the ends of the flat region FT and the points B are the points at which the decreasing rate of the film thickness changes from a first decreasing rate to a second decreasing rate that is larger than the first decreasing rate.
The reduced-thickness regions TD are located on both sides of the flat region FT as traced along an in-plane direction of the p-type amorphous semiconductor strip 102p.
The p-type amorphous semiconductor strip 102p has reduced-thickness regions TD because the p-type amorphous semiconductor strip 102p is formed by plasma CVD using a shadow mask. The reduced-thickness regions TD have smaller thicknesses than the flat region FT, and thus the dopant concentration in the reduced-thickness regions TD is higher than that for the flat region FT.
Then, an electrode 103p is positioned to contact the entire flat region FT and portions of the reduced-thickness regions TD of the p-type amorphous semiconductor strip 102p.
The n-type amorphous semiconductor strips 102n may have the same structure as the p-type amorphous semiconductor strips 102p. In such cases, an n-type electrode 103n is positioned to contact the entire flat region FT and portions of the reduced-thickness regions TD of an n-type amorphous semiconductor strip 102n.
As a result, the resistance encountered by carriers (i.e. electrons) as they move through a p-type amorphous semiconductor strip 102p to a p-type electrode 103p is smaller than in implementations where a p-type amorphous semiconductor strip 102p has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. Further, the resistance encountered by carriers (i.e. positive holes) as they move through an n-type amorphous semiconductor strip 102n to an n-type electrode 103n is smaller than in implementations where an n-type amorphous semiconductor strip 102n has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. This improves the conversion efficiency of the photovoltaic device 1.
Alternatively, a p-type electrode 103p may contact the entire reduced-thickness regions TD of a p-type amorphous semiconductor strip 102p, and an n-type electrode 103n may contact the entire reduced-thickness regions TD of an n-type amorphous semiconductor strip 102n.
Instead of the cross-section shown in
It is assumed that, for a given p-type amorphous semiconductor strip 1021p, the point C is the point with the maximum film thickness and the points D are the points at which the decreasing rate of the film thickness changes from a first decreasing rate to a second decreasing rate that is larger than the first decreasing rate. Then, the reduced-thickness regions TD are the regions beginning at the point C and ending at the points D as traced along an in-plane direction of the p-type amorphous semiconductor strip 1021p.
The p-type amorphous semiconductor strip 1021p has two reduced-thickness regions TD as traced along an in-plane direction of the p-type amorphous semiconductor strip 1021p. The two reduced-thickness regions TD are arranged in an in-plane direction of the p-type amorphous semiconductor strip 1021p to be in contact with each other.
A p-type electrode 1031p is positioned to contact a portion of one reduced-thickness region TD and a portion of the other reduced-thickness region TD.
The photovoltaic device 1 may include, instead of the n-type amorphous semiconductor strips 102n, n-type amorphous semiconductor strips having the same structure as the p-type amorphous semiconductor strip 1021p shown in
By providing this construction, the resistance encountered by carriers (i.e. electrons) as they move through a p-type amorphous semiconductor strip 1021p to a p-type electrode 1031p is smaller than in implementations where a p-type amorphous semiconductor strip has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. Further, the resistance encountered by carriers (i.e. positive holes) as they move through an n-type amorphous semiconductor strip having the same structure as the p-type amorphous semiconductor strip 1021p to an n-type electrode is smaller than in implementations where an n-type amorphous semiconductor strip has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. This improves the conversion efficiency of the photovoltaic device 1.
Alternatively, the p-type electrode 1031p may be positioned to contact the two entire reduced-thickness regions TD of the p-type amorphous semiconductor strip 1021p, and such a construction also applies to the n-type amorphous semiconductor strips having the same structure as the p-type amorphous semiconductor strip 1021p.
Alternatively, the p-type amorphous semiconductor strip 102p may have, for example, the cross-section shown in
It is assumed that, for a given p-type amorphous semiconductor strip 1022p, the points E are the points with the maximum film thickness, the points F are the points at which the decreasing rate of the film thickness changes from a first decreasing rate to a second decreasing rate that is larger than the first decreasing rate, and the point G is the point at which the value of the decreasing rate of the film thickness changes from negative to positive. Then, the reduced-thickness regions TD1 are defined by the points E and F as measured along an in-plane direction of the p-type amorphous semiconductor strip 1022p, and the reduced-thickness regions TD2 are defined by the points E and G as measured along an in-plane direction of the p-type amorphous semiconductor strip 1022p.
Thus, the p-type amorphous semiconductor strip 1022p has two reduced-thickness regions TD1 and two reduced-thickness regions TD2 as traced along an in-plane direction of the p-type amorphous semiconductor strip 1022p.
The two reduced-thickness regions TD2 are disposed such that the thickness distribution is symmetrical, as measured in an in-plane direction of the p-type amorphous semiconductor strip 1022p, with respect to the line running through the point G. The two reduced-thickness regions TD1 are located on the both sides of the combination of two reduced-thickness regions TD2 as traced along an in-plane direction of the p-type amorphous semiconductor strip 1022p.
A p-type electrode 1032p is positioned to contact the two entire reduced-thickness regions TD2 and a portion of one reduced-thickness region TD1 and a portion of the other reduced-thickness region TD1.
The photovoltaic device 1 may include, instead of the n-type amorphous semiconductor strips 102n, n-type amorphous semiconductor strips having the same structure as the p-type amorphous semiconductor strip 1022p shown in
By providing this construction, the resistance encountered by carriers (i.e. electrons) as they move through an n-type amorphous semiconductor strip to an n-type electrode is smaller than in implementations where an n-type amorphous semiconductor strip has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. Further, the resistance encountered by carriers (i.e. positive holes) as they move through a p-type amorphous semiconductor strip 1022p to a p-type electrode 1032p is smaller than in implementations where an n-type amorphous semiconductor strip has a constant thickness as traced along an in-plane direction of the i-type amorphous semiconductor layer 102i. This improves the conversion efficiency of the photovoltaic device 1.
Alternatively, the p-type electrode 1032p may be positioned to contact the two entire reduced-thickness regions TD1 and two entire reduced-thickness regions TD2 of the p-type amorphous semiconductor strip 1022p, and such a construction also applies to the n-type amorphous semiconductor strips having the same structure as the p-type amorphous semiconductor strip 1022p.
Thus, the photovoltaic device 1 includes p-type amorphous semiconductor strips and n-type amorphous semiconductor strips each having reduced-thickness regions TD (or TD1 and TD2). In embodiments of the present invention, each reduced-thickness region is constituted by one of the reduced-thickness regions TD, TD1 and TD2.
Thus, a reduced-thickness region is defined by a first point and a second point as measured along an in-plane direction of a p-type amorphous semiconductor strip or n-type amorphous semiconductor strip, where the first point is the point on the p-type or n-type amorphous semiconductor strip with the maximum film thickness, and the second point is the point on the p-type or n-type amorphous semiconductor strip as measured along an in-plane direction at which the decreasing rate of the film thickness changes from a first decreasing rate to a second decreasing rate that is larger than the first decreasing rate or the value of the decreasing rate of the film thickness changes from negative to positive.
The above examples describe implementations where the surface of the silicon substrate 101 is flat; however, in reality, the face of the silicon substrate 101 that has no texture may also have irregularities with a size of about 1 μm produced by the etching for removing the damaged layer, for example. A method of measuring the thickness of an amorphous semiconductor layer on a silicon substrate 101 with irregularities on its surface will be described below.
On a silicon substrate 101 with irregularities on its surface is formed an i-type amorphous semiconductor layer 102i, after which n-type amorphous semiconductor strips 102n and p-type amorphous semiconductor strips 102p having reduced-thickness regions are formed on the i-type amorphous semiconductor layer 102i. Then, scanning electron microscopy (SEM) or transmission electron microscopy (TEM) is used to take a picture of a cross-section of the silicon substrate 101. An interface between the i-type amorphous semiconductor layer 102i and silicon substrate 101 can be easily observed in this picture.
In implementations where both faces of a silicon substrate 101 have a texture, the film thickness above the texture may be measured and its values may be plotted in a manner similar to that described above to enable determining a reduced-thickness region.
The face of a silicon wafer that has no texture has a difference in height of about 2 μm at most; still, it has very small differences in height compared with the face with a texture (having a difference in height of several tens of μm at the largest), and is substantially flat.
Thus, when the easiness with which contact can be made to external wiring such as a wiring sheet 300 and the difficulty with which a short circuit can occur between electrodes 103 are considered, normally, the i-type amorphous semiconductor layer 102i and n-type and p-type amorphous semiconductor strips 102n and 102p, for example, would preferably be formed on a back face (i.e. face without a texture) which is relatively flat. However, to trap incident light efficiently in the silicon substrate 101, the back face of the silicon substrate 101 preferably has a texture, and, if the back face of the silicon substrate 101 has a texture, the surface area of the silicon substrate 101 increases (by about 1.7 times), thereby reducing contact resistance. Further, if only one face of the silicon substrate 101 is to have a texture, the anisotropic etching needs to include a step for protecting the face that is not to have a texture. On the other hand, if both faces of the silicon substrate 101 are to have a texture, none of the faces of the silicon substrate 101 needs to be protected, thereby reducing the number of steps for the process.
Now, an example method of manufacturing the wiring sheet 300 will be described with reference to
Subsequently, as shown in
Next, as shown in
The n-type electrodes 103n and p-type electrodes 103p of the photovoltaic device 1 shown in
More specifically, as shown in
The insulating adhesive 803 may be, for example, an epoxy resin, acrylic resin or urethane resin, or may be a thermosetting and/or photocurable insulating resin containing one of them as its resin component.
The conductive adhesive 804 may be made of solder particles containing at least one of tin and bismuth, for example. More preferably, it may be an alloy of tin and bismuth, indium, silver or the like. This composition reduces the melting point of the solder, which means that the heating temperature during the step of curing after the melting of the conductive adhesive 804, discussed below, can be reduced, thereby preventing the photovoltaic device 1 from warping.
Solder resin 801 pieces are positioned on the surfaces of the n-type and p-type electrodes 103n and 103p using, for example, screen printing, dispenser coating or ink jet printing. Particularly, screen printing is preferable since it allows solder resin 801 pieces to be disposed in a simple manner at low costs and requires a short period of time. The present embodiment describes an implementation where solder resin 801 pieces are provided on the n-type and p-type electrodes 103n and 103p of the photovoltaic device 1. Alternatively, for example, solder resin 801 pieces may be provided on connection wiring (not shown) for connecting the n-type and p-type wiring members 302n and 302p of the wiring sheet 300, or solder resin 801 pieces may be provided on all of the n-type and p-type electrodes 103n and 103p and connection wiring. Further, while the present embodiment describes an implementation using the solder resin 801, the solder resin 801 may be replaced by a solder paste (i.e. flux with solder particles dispersed therein). In such cases, too, it is preferable to use a solder with a low melting point.
If the photovoltaic device 1 includes alignment marks, it is preferable that the conductive adhesive 804 is not located on the alignment marks. This prevents the conductive adhesive 804 flowing out of the alignment marks from decreasing the recognition accuracy of the alignment marks. Further, during the step of placing the photovoltaic device 1 and wiring sheet 300 on each other, it is possible to align the photovoltaic device 1 with the wiring sheet 300 more accurately.
Next, as shown in
If the photovoltaic device 1 includes alignment marks, it is preferable to place the photovoltaic device 1 and wiring sheet 300 on each other such that the alignment marks face predetermined regions in the wiring sheet 300. At this stage, the insulating resin has not been cured, which makes it easy to position the photovoltaic device 1 and wiring sheet 300 relative to each other. This improves the reliability of the electrical and mechanical connection between the n-type and p-type electrodes 103n and 103p and the n-type and p-type wiring members 302n and 302p of the wiring sheet 300.
As shown in
Subsequently, the conductive adhesive 804 is melt and then the conductive adhesive 804 is cured. The melt conductive adhesive 804 may be cured by, for example, pressurizing the photovoltaic device 1 and wiring sheet 300 and heating the solder resin 801 to melt the conductive adhesive 804 in the solder resin 801 and then cooling the conductive adhesive 804.
The melt conductive adhesive 804 condenses between at least some portions of the surfaces of the n-type electrodes 102n and at least some portions of the surfaces of the n-type wiring member 302n of the wiring sheet 300 and condenses between at least some portions of the surfaces of the p-type electrodes 103p and at least some portions of the surfaces of the p-type wiring member 302p of the wiring sheet 300. Thereafter, as the melt conductive adhesive 804 is cooled, it solidifies in the state in which it has condensed. Further, as the solder resin 801 is heated, the viscosity of the insulating adhesive 803 decreases and the adhesive moves to the spaces between the electrodes 103 and between the n-type and p-type wiring members 302n and 302p of the wiring sheet 300. Thereafter, the insulating adhesive 803 is further heated so as to be cured in the positions to which it has moved. As the solder resin 801 is heated, the insulating resin is also heated and is completely cured. This produces a photovoltaic device 1A with the photovoltaic device 1 joined to the wiring sheet 300, as shown in
In the photovoltaic device 1 in the first embodiment described above, a plurality of separate electrodes 103 (i.e. n-type electrodes 103n and p-type electrodes 103p) are located on each of the n-type amorphous semiconductor strips 102n and p-type amorphous semiconductor strips 102p and spaced apart from each other. The electrodes 103 are formed using a shadow mask. Since this shadow mask is configured to form separate electrodes 103 (103n and 103p) spaced apart from each other, the shadow mask is less likely to bend than in implementations where a shadow mask for forming electrodes 103 that are not separated in this manner is used. Thus, even if the gap dimension between n-type and p-type electrodes 103n and 103p is reduced, the n-type and p-type electrodes 103n and 103p are not likely to be partially located on semiconductor strips of the wrong conductivities. As such, n-type and p-type electrodes 103n and 103p having a desired geometry are positioned on the n-type and p-type amorphous semiconductor strips 102n and 102p, thereby preventing an electrical short circuit in a p-n junction, reducing the decrease in yield.
Further, in the first embodiment described above, the n-type electrodes 103n spaced apart from each other are connected via the n-type wiring member 302n of the wiring sheet 300, and the p-type electrodes 103p spaced apart from each other are connected via the p-type wiring member 302p of the wiring sheet 300. Thus, a current produced as light enters the light-receiving face of the photovoltaic device 1 can be taken out toward the outside via the wiring sheet 300.
In the photovoltaic device 1 described above, the light-receiving face and back face of the silicon substrate 101 are not mirror images of each other, and thus a large stress is applied to the silicon substrate 101 at the stage where the p-type and n-type amorphous semiconductor strips 102p and 102n have been formed. Further, as electrodes 103 are formed on the p-type and n-type amorphous semiconductor strips 102p and 102n, the stress on the silicon substrate 101 further increases. The larger the thickness of the electrodes 103, the larger the stress; since the wiring sheet 300 is joined to the photovoltaic device 1, the thickness of the electrodes 103 on the p-type and n-type amorphous semiconductor strips 102p and 102n can be reduced to some degree; in the present embodiment, further, a shadow mask is used to form separate electrodes 103 spaced apart from each other. Thus, the shadow mask is less likely to bend than in implementations with rectangular electrodes 103 with a large aspect ratio, reducing the stress on the silicon substrate 101.
The first embodiment described above describes an implementation where an i-type amorphous semiconductor layer 102i is formed on the entire back face of the silicon substrate 101 and then p-type amorphous semiconductor strips 102p are formed on the i-type amorphous semiconductor layer 102i and then n-type amorphous semiconductor strips 102n are formed; however, the formation of the p-type and n-type amorphous semiconductor strips 102p and 102n is not limited to this order.
For example, referring to
As shown in
Each of the electrodes 113 includes a generally rectangular electrode grid 113a and electrode fingers 113b. The electrode grid 113a extends generally in the Y-direction of the silicon substrate 101, and the electrode fingers 113b extend generally in the X-direction of the silicon substrate 101. Each electrode grid 113a is located on the n-type or p-type amorphous semiconductor strip 1002n or 1002p and is spaced apart from the other electrode grids 113a. The electrode fingers 113b for each electrode grid 113a are in contact with one side of this grid. The electrode fingers 113b on the n-type amorphous semiconductor strip 1002n and the electrode fingers 113b on the p-type amorphous semiconductor strip 1002p are located adjacent to each other in an in-plane direction of the silicon substrate 101 in an alternate manner.
To make the photovoltaic device 1B in the present embodiment, for example, during the step shown in
Then, after the p-type and n-type amorphous semiconductor strips 1002p and 1002n are formed, for example, the shadow mask 430A shown in
In this implementation, a wiring sheet having a geometry analogous to that of the electrodes 113 is used and is joined to the photovoltaic device 1B. Thus, the electrode grids 113a on the n-type amorphous semiconductor strip 1002n are electrically connected via the wiring sheet and the electrode grids 113a on the p-type amorphous semiconductor strip 1002p are electrically connected via the wiring sheet such that a current produced by the photovoltaic device 1B can be taken out toward the outside via the wiring sheet.
In this implementation, the amorphous semiconductor strips (1002n and 1002p) under the electrode grids 113a may be separate ones spaced apart in a manner similar to that for the electrode grids 113a. This construction makes the shadow mask less likely to bend than in implementations where the shadow mask has openings for continuous amorphous semiconductor strips (1002n and 1002p) overlying the electrode grids 113a as shown in
As shown in
In
In this implementation, for example, the electrodes 103n and 103p are formed using the shadow mask 430B shown in
Further, as shown in
As shown in
As shown in
As the photovoltaic device 1D is joined to the wiring sheet 300, a current produced by the photovoltaic device 1D can be taken out via the metal paste 105 pieces on the n-type and p-type electrodes 103n and 103p and can be taken out via the metal paste 105 pieces provided between the n-type electrodes 103n and between the p-type electrodes 103p. This improves the fill factor (FF) of the photovoltaic device 1D.
As shown in
In the photovoltaic device 1E, the area on which the metal paste 105 is present is larger than that in the photovoltaic device 1D in the fourth embodiment, which means a larger area where it is in contact with the wiring sheet 300 when joined to the wiring sheet 300. This provides wiring connection with a lower resistance than in the fourth embodiment when the wiring sheet 300 is joined to the photovoltaic device 1E. Further, since the area where the photovoltaic device 1E is in contact with the wiring sheet 300 is larger, the adhesion between the wiring sheet 300 and photovoltaic device 1E is larger than that for the fourth embodiment.
In the first embodiment described above, the light-receiving face of the silicon substrate 101 has a texture; in addition, the back face of the silicon substrate 101 may have a texture.
In implementations where the back face of the silicon substrate 101 has a texture, when n-type and p-type amorphous semiconductor strips 102n and 102p and electrodes 103 (103n and 103p) are formed using a photomask, the thickness of and the light exposure for the resist is not uniform, making it difficult to provide a desired geometry. In the present embodiment, a texture is formed on the back face of the silicon substrate 101 and, for example, a shadow mask as in the first embodiment is used to form n-type and p-type amorphous semiconductor strips 102n and 102p and electrodes 103 (103n and 103p) with a desired geometry.
It should be noted that, in the present embodiment, any of the electrode patterns in the second and third embodiments described above may be used. Further, similar to the fourth and fifth embodiments described above, pieces of a metal paste 105 may be provided on electrodes and metal paste 105 pieces may be provided between electrodes, and metal paste 105 pieces bridging and connecting electrodes may be provided.
If the back face of the silicon substrate 101 has a texture, the area where the n-type and p-type amorphous semiconductor strips 102n and 102p are in contact with the electrodes 103 (103n and 103p) is larger, reducing the contact resistance between the amorphous semiconductor strips 102n and 102p and the electrodes 103. Further, if metal paste 105 pieces are provided on the electrodes 103, the contact area is larger, increasing the adhesive strength between the electrodes 103 and the metal paste 105 pieces. As the adhesive strength increases, the reliability of the photovoltaic device 1 produced increases. Further, if the light-receiving face and back face of the silicon substrate 101 have a texture, the front face and back face of the silicon substrate 101 are mirror images of each other, which means a smaller stress on the silicon substrate 101. Electrodes 103 spaced apart from each other are provided on the silicon substrate 101 with this property, further preventing the silicon substrate 101 from warping.
The present embodiment describes a photovoltaic module including the photovoltaic device in at least one of the first to seventh embodiments described above.
Each of the photovoltaic devices 1001 may be one of the photovoltaic devices 1 and 1B to 1F in the first to seventh embodiments, for example, joined to a wiring sheet. Alternatively, an array of such photovoltaic devices connected in series may be provided on a wiring sheet, or, instead of being connected in series, such devices may be connected in parallel, or such devices may be connected in series and in parallel.
The cover 1002 is a weather resistant cover that covers a plurality of photovoltaic devices 1001. The cover 1002 includes, for example, a transparent base (for example, glass) located adjacent to the light-receiving faces of the photovoltaic devices 1001, a back base (for example, glass, resin sheet, etc.) provided on the back faces of the photovoltaic devices 1001, and a seal material (for example, EVA) for sealing the gap between the transparent base and resin base.
The output terminal 1003 is connected to the one of the photovoltaic devices 1001 connected in series that is located at one end of the series.
The output terminal 1004 is connected to the one of the photovoltaic devices 1001 connected in series that is located at the other end of the series.
The photovoltaic module 1000 is not limited to the above configuration and may have any configuration as long as at least one of the photovoltaic devices 1001 is constituted by one of the photovoltaic devices in the first to seventh embodiments.
The junction box 1102 is connected with the photovoltaic module array 1101. The power conditioner 1103 is connected with the junction box 1102. The distribution board 1104 is connected with the power conditioner 1103 and electric device 1110. The power meter 1105 is connected with the distribution board 1104 and a commercial power network.
The photovoltaic module array 1101 converts sunlight to electricity to generate DC power, and supplies the generated DC power to the junction box 1102.
The junction box 1102 receives the DC power generated by the photovoltaic module array 1101 and supplies the received DC power to the power conditioner 1103.
The power conditioner 1103 converts the DC power received from the junction box 1102 to AC power and supplies the resulting AC power to the distribution board 1104.
The distribution board 1104 supplies the AC power received from the power conditioner 1103 and/or commercial power received via the power meter 1105 to the electric device 1110. If the AC power received from the power conditioner 1103 is larger than the power consumption of the electric device 1110, the distribution board 1104 supplies the residual AC power to the commercial power network via the power meter 1105.
The power meter 1105 measures the amount of power that is directed from the commercial power system to the distribution board 1104 and measures the amount of power that is directed from the distribution board 1104 to the commercial power system.
The photovoltaic modules 1120 form an array and are connected in series. Each of the photovoltaic modules 1120 is constituted by the photovoltaic module 1000 of
The output terminal 1121 is connected to the one of the photovoltaic modules 1120 connected in series that is located at one end of the series.
The output terminal 1122 is connected to the one of the photovoltaic modules 1120 connected in series that is located at the other end of the series.
The operation of the solar power generation system 1100 will be described. The photovoltaic module array 1101 converts sunlight to electricity to generate DC power, and supplies the generated DC power to the power conditioner 1103 via the junction box 1102.
The power conditioner 1103 converts the DC power received from the photovoltaic module array 1101 to AC power and supplies the resulting AC power to the distribution board 1104.
If the AC power received from the power conditioner 1103 is equal to or larger than the power consumption of the electric device 1110, the distribution board 1104 supplies the AC power received from the power conditioner 1103 to the electric device 1110. Then, the distribution board 1104 supplies the residual AC power to the commercial power network via the power meter 1105.
If the AC power received from the power conditioner 1103 is smaller than the power consumption of the electric device 1110, the distribution board 1104 supplies AC power received from the commercial power system and the AC power received from the power conditioner 1103 to the electric device 1110.
The solar power generation system in the present embodiment is not limited to the configuration shown in
The power conditioners 1211 to 121n are connected with the respective sub-systems 1201 to 120n.
The transformer 1221 is connected with the power conditioners 1211 to 121n and a commercial power system.
Each of the sub-systems 1201 to 120n is composed of module systems 1231 and 123j (j is an integer larger than 1).
Each of the module systems 1231 to 123j includes photovoltaic module arrays 1301 to 130i (i is an integer larger than 1), junction boxes 1311 to 131i and a power collection box 1321.
Each of the photovoltaic module arrays 1301 to 130i has the same configuration as the photovoltaic module array 1101 of
The junction boxes 1311 to 131i are connected with the respective photovoltaic module arrays 1301 to 130i.
The power collection box 1321 is connected with the junction boxes 1311 to 131i. The j power collection boxes 1321 of the sub-system 1201 are connected with the power conditioner 1211. The j power collection boxes 1321 of the sub-system 1202 are connected with the power conditioner 1212. Other power collection boxes are connected with other power conditioners in a similar manner, and the j power collection boxes 1321 of the sub-system 120n are connected with the power conditioner 121n.
The i photovoltaic module arrays 1301 to 130i of the module system 1231 convert sunlight to electricity to generate DC power, and supply the generated DC power to the power collection box 1321 via the respective junction boxes 1311 to 131i. The i photovoltaic module arrays 1301 to 130i of the module system 1232 convert sunlight to electricity to generate DC power, and supply the generated DC power to the power collection box 1321 via the respective junction boxes 1311 to 131i. Other arrays operate in a similar manner, and the i photovoltaic module arrays 1301 to 130i of the module system 123j convert sunlight to electricity to generate DC power, and supply the generated DC power to the power collection box 1321 via the respective junction boxes 1311 to 131i.
Then, the j power collection boxes 1321 of the sub-system 1201 supply their DC power to the power conditioner 1211.
In a similar manner, the j power collection boxes 1321 of the sub-system 1202 supply their DC power to the power conditioner 1212.
Other power collection boxes operate in a similar manner, and the j power collection boxes 1321 of the sub-system 120n supply their DC power to the power conditioner 121n.
The power conditioners 1211 to 121n change the DC power received from the respective sub-systems 1201 to 120n to AC power and supply the resulting AC power to the transformer 1221.
The transformer 1221 receives the AC power from the power conditioners 1211 to 121n, converts the voltage level of the received AC power and supplies the resulting power to the commercial power system.
The solar power generation system in the present embodiment is not limited to the configuration shown in
Further, as shown in
The photovoltaic devices in the first to tenth embodiments of the present invention have been described. The photovoltaic devices of the present invention are not limited to the above embodiments, and various modifications are possible within the scope of the invention. Further, some or all of the embodiments may be combined as necessary.
(1) The first embodiment described above describes an n-type silicon substrate 101; alternatively, a p-type silicon substrate 101 may be used.
(2) The first embodiment described above describes that an antireflective film 104 is provided on the light-receiving face of the silicon substrate 101; alternatively, no antireflective film 104 may be provided. Alternatively, instead of an antireflective film 104, an n+ layer with a high concentration of an n-type dopant diffused therein may be provided. Alternatively, an n+ layer with a high concentration of an n-type dopant diffused therein may be provided between the light-receiving face of the silicon substrate 101 and an antireflective film 104.
(3) The first and second embodiments described above describe implementations where a plurality of electrodes 103 (103n and 103p) and 113 (113n and 113p) are provided on n-type amorphous semiconductor strips 102n and 1002n and p-type amorphous semiconductor strips 102p and 1002p, and a plurality of electrodes 103 and 113 on the n-type amorphous semiconductor strips 102n and 1002n and p-type amorphous semiconductor strips 102p and 1002p are connected via wiring sheets. Alternatively, for example, a plurality of separate electrodes spaced apart from each other may be provided on each semiconductor strip of one of the group of n-type amorphous semiconductor strips and the group of p-type amorphous semiconductor strips, and one continuous electrode may be provided on each semiconductor strip of the other group of semiconductor strips.
(4) In the photovoltaic devices in the second and third embodiments described above, pieces of a metal paste 105 may be provided similar to those in the fourth and fifth embodiments. That is, starting from the second embodiment, for example, pieces of a metal paste 105 may be provided on the electrodes 113 and metal paste 105 pieces may be provided between the electrode grids 113a of the electrodes 113, or metal paste 105 pieces may be provided to bridge the electrode grids 113a of the electrodes 113. Alternatively, starting from the third embodiment, pieces of a metal paste 105 may be provided on n-type and p-type electrodes 103n and 103p and metal paste 105 pieces may be provided between the n-type electrodes 103n and p-type electrodes 103p, or metal paste 105 pieces may be provided on the n-type and p-type electrodes 103n and 103p and metal paste 105 pieces may be provided to bridge the n-type electrodes 103n and metal paste 105 pieces may be provided to bridge the p-type electrodes 103p.
Number | Date | Country | Kind |
---|---|---|---|
2014-245262 | Dec 2014 | JP | national |