The present invention relates to a photovoltaic module, to a method for producing a photovoltaic module, and to a device for producing a photovoltaic module.
The integration of energy converters is currently a trend in the field of electronic packagings. Solar cells especially are used alongside thermoelectric converters for obtaining electrical energy, e.g. for operating sensor modules.
In recent years the use of thin silicon substrates has furthermore become established in construction and connection technology. Said substrates afford advantages in the thermomechanical behavior, inter alia, and can be provided with through contacts and conductor tracks in a very fine pitch. Furthermore, methods for large-area encapsulation of semiconductor components are available as a result of the improvement in molding technology. In “compression molding”, areas having a diameter of 300 mm can be covered with polymeric encapsulation materials without any problems.
In principle, two ways of making contact with solar cells are possible. With regard to the cells produced the most often at the present time, contact has to be made with them from the front side and the back side, in order to establish an electrical contact (recognizable from the silver conductor structures on the front side). There are also approaches for making contact purely at the back side; these approaches are still used relatively infrequently at present. US 2011/0169554 A1 discloses an integrated solar-operated appliance.
Against this background, the present invention presents a photovoltaic module, furthermore a method for producing a photovoltaic module and a device for producing a photovoltaic module according to the main claims. Advantageous embodiments are evident from the respective dependent claims and the following description.
The approach presented here provides a photovoltaic module comprising the following features:
The approach presented here further provides a method, for producing a photovoltaic module, wherein the photovoltaic module comprises at least one solar cell which has a main irradiation surface (135) for receiving light, intended for providing a voltage, wherein the photovoltaic module comprises a carrier unit which is arranged in a manner laterally offset with respect to the solar cell at least on a first side, wherein a first surface of the carrier unit is aligned flush with the irradiation surface of the solar cell within a predefined tolerance range, and wherein the photovoltaic module comprises at least one electrical conductor which makes electrically conductive contact between a carrier contact connection at a second surface of the carrier unit, said second surface being situated opposite the first surface, and a cell contact connection of an electronic component on the solar cell or the solar cell, wherein the cell contact connection is arranged on a contacting side of the solar cell, said contacting side being situated opposite the irradiation surface wherein the method comprises the following steps:
The approach presented here also provides a device for producing a photovoltaic module, wherein the device comprises units designed to carry out the steps of a method in accordance with a variant presented here. The present invention thus provides a device which is designed to carry out or implement the steps of a variant of a method presented here in corresponding equipment. The problem addressed by the invention can be solved rapidly and efficiently also by means of this embodiment variant of the invention in the form of a device.
In the present case, a device can be understood to be an electrical appliance which processes sensor signals and outputs control and/or data signals in a manner dependent thereon. The device can have an interface that can be embodied in terms of hardware and/or software. In the case of a hardware embodiment, the interfaces can be for example part of a so-called system ASIC that includes a wide variety of functions of the device. However, it is also possible for the interfaces to be dedicated integrated circuits or to consist at least partly of discrete components. In the case of a software embodiment, the interfaces can be software modules that are present for example on a microcontroller alongside other software modules.
In the present case, a solar cell or photovoltaic cell should be understood to be an electronic component which can convert light, in particular sunlight e.g. in the wavelength range of 200 to 1200 nm, into electrical energy. A main irradiation surface (135) should be understood to be a main surface of the solar cell via which the light is incident in the solar cell in order to be converted into electrical energy at a converter layer. A carrier unit should be understood to be, for example, a plate or a rigid element having electrical conductor tracks designed for making electrical contact with structures or electronic components on or at the solar cell. By way of example, the carrier unit can be a printed circuit board designed for accommodating the solar cell. In this case, the carrier unit can be arranged in a manner laterally offset with respect to the solar cell in relation to a direction of light incidence on the main irradiation surface (135), such that a lateral edge of the solar cell is arranged adjacent to or opposite an edge of the carrier unit. The first surface of the carrier unit is aligned flush with the irradiation surface of the solar cell within a predefined tolerance range. Flush alignment of the first surface of the carrier unit within a predefined tolerance range in relation to the irradiation surface can be understood to be alignment which expediently exhibits no step in a transition from the irradiation surface to the first surface but maximally exhibits a step between the first surface of the carrier unit and the irradiation surface, the height of which is not greater than for example 10 percent of the thickness of the carrier unit and/or the thickness of the solar cell. An electrical conductor can be understood to be an electrically conductive connection such as a bonding wire, for example, in order to communicate the electrical energy obtained from the light to the carrier contact connection or a measuring device signal of a physical quantity or a signal derived therefrom to the carrier contact connection.
The approach presented here is based on the insight that a photovoltaic modules can be produced technically very simply and cost-effectively if the solar cell together with the carrier unit are aligned and connected in such a way that the first surface of the carrier unit is aligned flush with the irradiation surfaces of the solar cell within the predefined tolerance range. This affords the possibility of aligning and fixing individual or a plurality of solar cells, produced as a separate electronic component, directly adjacent to a carrier unit. By way of example, the solar cell can be inserted into a cutout or opening of the carrier unit, for example of a printed circuit board, and by means of a simple and cost-effective wiring process. In this way, the photovoltaic module comprising, besides the solar cells as electronic (semiconductor) component, a carrier unit for mounting and for making electrical contact with the solar cell can be produced technically very simply and cost-effectively.
A particularly advantageous embodiment of the present invention is one in which the carrier unit laterally surrounds the solar cell on at least two sides, in particular wherein the carrier unit encloses the solar cell in a ring-shaped fashion. Such an embodiment of the present invention affords the advantage of particularly secure mounting of the solar cell, wherein particularly high protection of the solar cell can simultaneously be realized by virtue of the embedding of the solar cell into the carrier unit.
In accordance with a further embodiment of the present invention, provision can be made of an encapsulation compound which encloses at least the conductor and/or covers or caps the second surface of the carrier unit and/or the contacting side of the solar cell. An encapsulation compound can be understood to be a material which shielded at least part of the conductor, of the second surface of the carrier unit and/or of the contacting side of the solar cell from environmental influences the encapsulation compound can be produced for example in a production step of potting with a potting compound. At the same time, a desired surface shape or structure can be realized by means of the shaping of the encapsulation compound in order at least partly to provide a housing for the photovoltaic module.
A particularly advantageous embodiment of the present invention is one in which the encapsulation compound is arranged in at least one region between the solar cell and the carrier unit and thereby separates the solar cell from the carrier unit, in particular wherein the solar cell is laterally completely surrounded by the encapsulation compound. Such an embodiment of the present invention affords the advantage of particularly secure fixing of the solar cell to the carrier unit.
In order to cause as little damage as possible, if the photovoltaic module is used further for installation, in accordance with one expedient embodiment of the present invention, the encapsulation compound can form an encapsulation compound surface which is aligned flush with the irradiation surface and the first surface. In this way, it is possible to achieve a planar surface on a side of the photovoltaic module which extends from the first surface of the carrier unit via the encapsulation compound surface to the irradiation surface.
In order to safeguard against corrosion or other damage of components of the photovoltaic module, in accordance with one particularly expedient embodiment of the present invention, the encapsulation compound can form a fluid-tight seal of a region between the second surface of the carrier unit, the conductor and the contacting surface.
In accordance with a further embodiment of the present invention, the carrier unit can be formed by a printed circuit board having a plurality of conductor tracks for connecting different electronic components, in particular wherein at least one of the conductor tracks comprises or forms the carrier contact connection. Such an embodiment of the present invention affords the advantage that the carrier unit can be used both for protecting the solar cell and for making electrical contact with the solar cell. A compact and space-saving design of the photovoltaic module can thus be achieved by virtue of this multiple function of the carrier unit.
In order to ensure particularly flexible further contacting of the photovoltaic module, in accordance with a further embodiment of the present invention, the carrier unit can have at least one through contact which makes electrically conductive contact between the carrier contact connection on the second surface of the carrier unit and at least one further contact connection on the first surface. Such an embodiment of the present invention affords the advantage that the photovoltaic module is itself electrically contacted from an arbitrary side, as result of which the possibility for use of the photovoltaic module embodied in this way is significantly increased.
A particularly advantageous embodiment of the present invention is one in which the solar cell furthermore has an electronic component designed to measure a physical quantity and/or to process an electrical signal, in particular wherein the electronic component is arranged at the contacting side of the solar cell. Such an embodiment of the present invention affords the advantage that the photovoltaic module already provides a further functionality such as, for example, the measurement of the physical quantity and the processing of an electrical signal, wherein in particular this further functionality is fed from electrical energy of the solar cells.
What is also advantageous is a computer program product comprising program code which can be stored on a machine-readable carrier such as a semiconductor memory, a hard disk storage medium or an optical storage medium and is used for carrying out the method according to one of the above-described embodiments if the program product is executed on a computer or a device.
The invention is explained in greater detail by way of example below with reference to the accompany drawings, in which:
In the following description of expedient exemplary embodiments of the present invention, identical or similar reference signs are used for the similarly acting elements illustrated in the various figures, a repeated description of these elements being dispensed with.
The carrier unit 155 can be designated as an “interposer” in the present case, wherein in this case carrier unit 155 is taken to mean a region or a component which converts the “fine-pitch” contacts of silicon chips, inter alia, into the “coarser” pitch of the printed circuit board contacts. In the embodiment shown in
To summarize, with regard to the first exemplary embodiment shown in
One important aspect of the present invention can be considered that of providing a construction and contacting concept for a photovoltaic module 100 comprising solar cells 110 in electronic systems and providing a possibility for a method for producing the photovoltaic module 100, wherein this photovoltaic module 100 contains at least one redistribution region 150 (which can also be designated here as interposer or carrier unit) which contains contact areas 175 for electrical and/or mechanical contacting and furthermore at least one solar cell 110 which is connected in particular to at least one electronic component 120 and/or 125. The photovoltaic module 100 expediently comprises an interposer 150 or a carrier unit arranged at least on one side alongside the solar cell 110, wherein for example an underside 140 of the interposer 150 together with the solar-active side (irradiation side 135) of the PV cell 110 form a common lower termination, i.e. form a common housing surface of a housing 155 at expediently one height level.
In particular, the interposer 150 can extend in a ring-shaped fashion around the PV cell 110 and laterally enclose the latter. Moreover, the photovoltaic module 100 or the solar cell 110, the carrier unit 150 and the electrical conductor 190 can be at least partly covered by a molding compound 165. In this case, the molding compound 165 can extend at least over the non-solar-active 135 (irradiation side) of the PV cell 110, the at least one further component 120 and/or 125 and the interposer 150, wherein the molding compound 165 fills the region 160 between interposer 150 and solar cell 110 in such a way that a region that is planar to the greatest possible extent arises at the solar-active side 135 circumferentially around the PV cell 110. Moreover, the electrical contact areas 175 of the interposer 150 can be contacted at the top side 177 by means of standard contacting technologies appertaining to construction and connection technology, which proves to be particularly cost-effective. For this purpose, by way of example, the contact areas 175 can be contacted by means of a wire bonding method to metallization regions (i.e. the cell contact connections 185) on the PV cell back side 183 (contacting side) or of the at least one electronic component 120 and/or 125. Moreover, the interposer 150 can contain electrical through contacts 175 which electrically conductively connect the contact areas 175 at the top side 177 to the contact areas 175 at the underside 140 of the interposer 150.
The approach presented here by way of example makes it possible to realize some advantages. By way of example, it should be mentioned here that the PV cell 110 is introduced by means of standard technologies appertaining to construction and connection technology (i.e. standardized placement), which proves to be particularly cost-effective. Moreover, electrical contacts to the redistribution region 150 can be implemented by means of standard technologies appertaining to construction and connection technology (inter alia by means of wire bonding) and edge protection for the solar cell 110 can be realized technically in a very simple manner by molding compound 165. Moreover, it is possible to form through contacts 170 to the electrical contact areas 175 on the underside 140 of the system 100 by means of standard technologies appertaining to printed circuit board manufacture (plated-through hole production). At the same time a high reliability of the photovoltaic module 100 is ensured by known material interfaces. Moreover, it is possible to achieve a high design freedom owing, for example, to a redistribution wiring in the printed circuit board 150 and by means of known and cost-effective printed circuit board processes. Edge contacts or lands can be realized at the same time. Moreover, a standard process sequence appertaining to construction and connection technology can be carried out (e.g. placement, wire bonding, molding or the like). Furthermore, standard processes allow low costs and it is possible to use standard materials (for example PCB thermosetting plastic, copper, molding compound, silicon or the like). An interaction of the materials by means of temperature and ageing is also known, such that a lifetime of the photovoltaic module can be precisely set or estimated.
After a molding step in which the PV cell back side, the components 120 and/or 125 arranged on the back side, and also the back side 140 of the interposer 177 (second surface) are (at least partly) covered with a potting compound 165, the carrier film 500 is detached or stripped away. The result of this production step or the process of detecting the carrier film 500 is illustrated in
As an alternative to directly contacting components 120 and/or 125 to the interposer ring 150, the PV cell back side 183 can also contain redistribution layers 600 that allow the electronic components 120 and/or 125 to be applied more flexibly in terms of the arrangement and to be contacted to the redistribution wiring or the carrier unit 150. Such an exemplary embodiment of a photovoltaic module of the present invention is represented as a sectional illustration in
The exemplary embodiments described and shown in the figures have been chosen merely by way of example. Different exemplary embodiments can be combined with one another completely or with regard to individual features. Moreover, an exemplary embodiment can be supplemented by features of a further exemplary embodiment.
Furthermore, method steps according to the invention can be carried out repeatedly and in a different order than that described.
If an exemplary embodiment comprises an “and/or” link between a first feature and a second feature, then this should be interpreted such that the exemplary embodiment has both the first feature and the second feature in accordance with one embodiment and has either only the first feature or only the second feature in accordance with a further embodiment.
Number | Date | Country | Kind |
---|---|---|---|
10 2013 204 814.9 | Mar 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/054924 | 3/13/2014 | WO | 00 |