The invention relates to a photovoltaic module comprising an assembly of photovoltaic cells arranged side by side between front and rear plates, and a seal arranged between the plates and delineating a tight internal volume, kept at a pressure lower than atmospheric pressure, wherein the photovoltaic cells are arranged.
Conventionally, to fabricate a photovoltaic module, photovoltaic cells are covered with a network of electrodes and are connected to one another by soldering of metal strips. The assembly thus formed is then placed between two sheets of polymer themselves held between two glass substrates. This assembly is then heated to about 120° C. to soften the polymer greatly, to make it airtight and transparent and to ensure the mechanical consistency of the module. However tightness, especially against penetration by humidity, is often not achieved in the long term.
This type of production method consumes a large amount of tin-, lead- and zinc-based soldering paste, which is very expensive. The soldering itself is an expensive, mechanically complicated operation, requiring the cell to be turned and involving non-negligible risks of breaking the cell.
To achieve tightness of the module, a non-mineral seal can be deposited at the periphery of all of the cells or the space remaining between the glass substrates is filled with an organic resin.
The document WO03/038,911 describes a method for production of a photovoltaic module comprising assembly of photovoltaic cells arranged side by side between front and rear plates. A mineral seal, arranged between the plates, delineates a tight internal volume wherein all the cells are arranged. The sealing operation takes place at a temperature comprised between 380° C. and 480° C. for a time of less than 30 minutes. During sealing, the seal material softens greatly and makes the internal volume of the seal tight with respect to the outside, which prevents any water from entering the module throughout the lifetime of the module. The pressure of the internal volume is about one atmosphere at sealing temperature. The final pressure, after cooling to ambient temperature, is lower, in the region of 400 millibars. A negative pressure with respect to the outside therefore automatically forms inside the assembly and results in a force being applied by the front and rear plates on the cells. This force ensures a contact between the cells and connecting conductors deposited on the front and rear plates without soldering having to be performed between the cells and the connecting conductors. However, applying a temperature of about 400° C. is liable to impair the quality of the photovoltaic cells currently available on the market.
A photovoltaic cell can be formed on a bulk silicon substrate cut into wafers with a thickness of a few hundred microns. The substrate can be formed by monocrystalline silicon, polycrystalline silicon or semiconducting layers deposited on a glass or ceramic substrate. It has at its surface a network of narrow electrodes, generally made of silver or aluminium, designed to drain the current to one or more main electrodes having a width of 1 to a few millimeters, also made of silver or aluminium.
In a known photovoltaic module, rear connecting conductors associated to a first cell are connected to the front connecting conductors associated to a second, adjacent cell. If the module comprises more than two cells, the rear connecting conductors of the second cell are then connected to the front connecting conductors of the next cell, all the cells thus being electrically connected in series. In practice, a rear connecting conductor of a cell and the front connecting conductor associated to the adjacent cell can be formed by one and the same interconnecting conductor. The connecting conductors of the end cells act as external connectors.
An assembly of photovoltaic cells in matrix form can comprise transverse connecting conductors connecting the cells electrically in parallel. Typically the transverse connecting conductors, formed by a copper core and a superficial deposit of a tin-lead alloy, are soldered with a tin-lead alloy onto connecting zones of the cell. The connecting conductors can also be achieved by depositing a silver paste on a support plate of the module according to the required pattern, followed by annealing at high temperature.
In the document DE-A-4,128,766, the front and rear connecting conductors are formed on the internal face of the front and rear glass substrates facing the location of each of the cells. The connecting conductors are then soldered onto the cells and onto the interconnecting elements designed to connect the cells in series. The space remaining between the glass substrates is then filled with an organic resin.
Moreover, in certain known cells (U.S. Pat. No. 6,384,317), the positive and negative poles of the cell are disposed on one of the faces of the latter, in particular on the rear face thereof.
Soldering the connecting conductors and assembling the cells constitutes a handicap as they are long and expensive operations that are able to break the cells and result in a high production cost.
The object of the invention is to remedy these shortcomings and, in particular, to achieve a module presenting a good long term tightness, and to simplify the production method of a photovoltaic module so that production thereof can preferably be performed at ambient temperature, while at the same time reducing the production costs.
According to the invention, this object is achieved by the appended claims and, in particular, by the fact that the seal is a flexible organic seal.
Other advantages and features will become more clearly apparent from the following description of particular embodiments of the invention given as non-restrictive examples only and represented in the accompanying drawings, in which:
In the course of assembly, as represented in
According to the invention, the negative pressure is formed by suction in order to ensure a sufficient contact pressure to achieve the electrical conduction necessary for satisfactory operation of the module without soldering of the interconnection contacts between cells. In a first particular embodiment of the production method, represented in
After the organic seal 4 has been implemented, the tight internal volume 5 is kept at a pressure substantially lower than atmospheric pressure, which results in a force being applied by the front plate 2 and rear plate 3 on the photovoltaic cells 1. This force ensures a contact between the cells and connecting conductors performing the electrical connections between the cells, without it being necessary to deposit any solder between the cells and the connecting conductors. The material forming the connecting conductors can be copper-based, a copper alloy or any other high-conductivity metallic material ensuring a good contact with the photovoltaic cells 1 under the action of the negative pressure force.
The tightness of the organic seal 4 is obtained after compression of the front and rear plates, with the organic seal present at the periphery of the whole of the module. The thickness of the seal, determined by the quantity of organic material deposited and by the compression force when sealing is performed, then remains constant. As the method is performed at ambient temperature, it is compatible with all photovoltaic cells.
The organic seal 4, in particular when it is made of polybutylene, keeps a certain elasticity after implementation. As represented in
The front 2 and rear 3 plate can both be glass plates, for example made of soda-lime glass with a thickness of 1.6 to 6 mm, a typical value being from 3 to 4 mm for the front plate 2 and from 2 to 4 mm for the rear plate 3. The glass is advantageously a clear or flint glass, i.e. containing little iron, as the optical transmission of such a glass is very good. The glass can also have undergone thermal hardening to increase its mechanical strength. However, the front plate 2 of the photovoltaic module is preferably made of glass, whereas the rear plate 3 is formed by a rigid sheet, insulating at least at the surface, made of plastic or metal, for example aluminium or surface-treated stainless steel so as not to be conducting at the surface. Such a sheet enables the photovoltaic cells to be protected while considerably reducing the weight (up to 2 times).
The method can, in addition, comprise a chemical etching step of the glass front plate, for example alkaline etching, performed before the module is assembled, so as to roughen the internal face 9 of the front glass plate, i.e. the face facing the photovoltaic cells 1, as represented in
The photovoltaic module represented in
In a second particular embodiment of the production method, represented in
In a third particular embodiment of the production method, represented in
The module according to the invention can be of large dimensions, the glass having a corresponding thickness, without a frame having to be added thereto.
The invention applies to any type of photovoltaic modules, including modules comprising photovoltaic cells 1 each having positive and negative poles arranged on one and the same side of the cell, as described above.
The photovoltaic module represented in
Connection of a positive pole of a cell and a negative pole of the adjacent cell is achieved very simply by means of at least one interconnecting conductor formed by a metal strip, for example by a strip of silver paste, deposited, for example by screening, on the internal face of the rear plate 3 before the cells are fitted in place. It is also possible to perform electrical interconnection of cells by means of metal conductors pre-fixed by a glue onto the rear plate of the module.
In
When the positive and negative poles of the cells are arranged respectively on the front face and on the rear face, the interconnections can also be prepared by screening.
The seal 4 is deposited on one of the plates or on both of the plates 2 and 3, according to a path described below, i.e. along the four sides.
In a particular embodiment of
The seal 4 can then be arranged, as described above, between the front plate 2 and rear plate 3, at the periphery of the module, so as to delineate a tight internal volume inside which all the cells 1 are arranged.
The seal 4 has a thickness of several hundred microns, which depends especially on the thickness of the cells 1, to which the thickness of the metal strips 11 forming interconnecting conductors, formed on the front face of the rear plate 3, connecting the cells 1 in series by connecting a positive pole of a cell 1a to a negative pole of the adjacent cell 1b, has to be added.
In
In like manner, an undulating interconnecting conductor 15 can be used to connect the positive and negative poles of two adjacent single-face cells, i.e. each having positive and negative poles arranged on the same side of the cell. This undulation enables the contact between the cell 1 and interconnecting conductor 15 to be improved by means of a spring effect.
Interconnecting conductors 15, formed by a rigid material, connecting the photovoltaic cells 1 to one another can have any profiled shape, for example a U-shaped, W-shaped or V-shaped cross-section, as represented in
The method according to the invention can be applied to production of photovoltaic modules, and then of solar generators, from square, rectangular or round photovoltaic cells the characteristic dimensions whereof can range from a few centimeters to several tens of centimeters. The cells are preferably square cells with sides having a dimension comprised between 8 cm and 30 cm.
The invention is not limited to the particular embodiments described and represented above. In particular, the strips of silver paste can be deposited on the internal face of the front plate. The invention applies to all types of photovoltaic cells, not only to silicon, monocrystalline or polycrystalline photovoltaic cells, but also to gallium arsenide cells, to cells formed by silicon strips, to silicon bead cells formed by a network of silicon beads inserted in conducting sheets, or to photovoltaic cells formed by deposition and etching of a thin film of silicon, of copper/indium/selenium or cadmium/tellurium on a glass or ceramic plate.
Number | Date | Country | Kind |
---|---|---|---|
03/04729 | Apr 2003 | FR | national |
03/13489 | Nov 2003 | FR | national |
This is a Division of application Ser. No. 10/551,554 filed Oct. 3, 2005, which is a National Stage of PCT Application No. PCT/FR04/000925 filed Apr. 14, 2004. The disclosure of the prior applications is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10551554 | Oct 2005 | US |
Child | 12010719 | US |