1. Field of the Invention
The present invention relates generally to photovoltaic module assemblies.
2. Description of the Background Art
Photovoltaic (PV) cells, also referred to as “solar cells,” are well known devices for converting solar radiation to electrical energy. Photovoltaic cells may be packaged together in a photovoltaic module. The PV module may include a plurality of interconnected photovoltaic cells in a laminate, and an external junction box attached to the laminate, including leads and connectors which allow modules to be interconnected electrically.
PV modules are typically installed on a support structure at the installation site. The PV modules are typically then electrically interconnected with the leads from one module to the next in series, or to a common bus in parallel, or a combination of series and parallel connections.
One embodiment of the invention relates to a photovoltaic (PV) module assembly with integrated junctions. The assembly includes a plurality of PV laminates and a frame surrounding and supporting each of the PV laminates in the module. A plurality of environmentally-protected electrical junctions interconnect the photovoltaic laminates. The electrical interconnections are designed to be made in the factory, not the field, and may be permanent in that they are not designed to be disconnected.
Another embodiment relates to a method of manufacturing a PV module assembly in which pin terminals of PV laminates are inserted into corresponding sockets of junction boxes that are integrated into a frame of the assembly.
Another embodiment relates to a method of manufacturing a PV module assembly in which non-insulated conductors are extended from PV laminates, electrical junctions are formed between the conductors, and material is applied to encapsulate the junctions.
These and other embodiments and features of the present invention will be readily apparent to persons of ordinary skill in the art upon reading the entirety of this disclosure, which includes the accompanying drawings and claims.
The use of the same reference label in different drawings indicates the same or like components.
In the present disclosure, numerous specific details are provided, such as examples of apparatus, components, and methods, to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.
As further shown, each PV laminate 102 includes at least one pin terminal 106. In one embodiment, each PV laminate 102 includes two pin terminals 106. Each pin terminal 106 is electrically connected within the PV laminate 102 to at least one of the solar cells 104. For example, a pin terminal 106 may be electrically connected to a solar cell 104 in a corner position within the PV laminate 102.
An inner frame member 108 of a frame for the PV module assembly is also shown in
A first pin terminal on the first laminate is inserted 408 into the first socket of the integrated junction box. This is done while installing the first laminate into its space into the frame. In addition, a second pin terminal on the second laminate is inserted 410 into the second socket of the integrated junction box. This is done while installing the second laminate into its space in the frame.
In accordance with one embodiment, the junction box is provided with an electrical connection between the first and second sockets. In this case, an electrical connection is formed 412 between the first and second pin terminals once they are inserted into the first and second sockets.
In accordance with one embodiment, the manufacturing of the PV module assembly may include the formation of a plurality of such electrical connections. After completion of the manufacturing of the PV module assembly in the factory, the completed PV module assembly may be transported to the installation site. Alternatively, the PV laminates may be inserted into the frame at the installation site.
As further shown, each PV laminate 502 includes at least one module tab 508. The module tab 508 comprises a non-insulated conductive portion which extends out of the PV laminate. In one embodiment, each PV laminate 502 includes two module tabs 508. Each module tab 508 is electrically connected within the PV laminate 502 to at least one of the solar cells. For example, the module tab 508 may be electrically connected to a solar cell in a corner position within the PV laminate 502.
An optional electrical junction box or other stiffening structure (stiffener) 512 is also shown in
In accordance with an embodiment of the invention, a solder connection or solder joint 510 may be formed during the manufacturing process in a factory to electrically connect in a permanent manner the module tabbing 508 from the two PV laminates 502. After forming the solder connection 510, an encapsulant (potting) material 506 may be introduced to electrically-insulate and environmentally-protect the module tabbing 508 and solder connection 510. The encapsulant material 506 is preferably elastomeric so as to be resistant to cracking.
As further shown in
After the electrical junction is formed, the encapsulant material may be applied to enclose 612 the electrical junction. As mentioned above, the encapsulant material is electrically insulating and preferably an elastomeric material.
The manufacturing of the PV module assembly may include the formation of a plurality of such electrical junctions and the encapsulation of those junctions. After completion 614 of the manufacturing of the PV module assembly in the factory, the completed PV module assembly may be transported 616 to the installation site.
The apparatus and methods disclosed herein provide numerous advantages. The integrated junctions allow for the creation of a complete PV module assembly by mechanically and electrically integrating the PV laminates with the frame of the support structure (whether the structure is for a tracker system, a fixed tilt system, a roof system, or other system). This advantageously allows for the elimination of various jumper cables and also provides a more compact overall profile. This also allows for the optimization of the various components as part of the whole assembly, rather than requiring those components to be discrete components.
In addition, the integrated junctions advantageously provide the necessary functionality of a traditional external junction box, while eliminating the need for many external cables. This provides for a reduction of the cost. Furthermore, being able to complete manufacture of the PV module assembly in a factory setting, prior to transportation to an installation site, provides for reduced time and cost of installation. A traditional installation would require the installer to connect various jumper cables to junction boxes in a proper arrangement, while the apparatus and methods disclosed herein provide for the electrical connections between PV laminates to be formed in a factory setting (prior to transportation to the installation site).
While specific embodiments of the present invention have been provided, it is to be understood that these embodiments are for illustration purposes and not limiting. Many additional embodiments will be apparent to persons of ordinary skill in the art reading this disclosure.