1. Field
The present invention relates to a photovoltaic module.
2. Description of Related Art
Photovoltaic cells, also known as solar cells, are devices that convert light into electricity. Solar cells provide a number of advantages when compared to conventional energy sources. For example, solar cells produce electricity without pollution and do not require fossil fuel.
In general, solar modules are disposed outdoors for receiving sunlight. The solar module mechanically supports the solar cells, and protects the solar cells against environmental degradation. The solar module generally comprises a rigid and transparent protective front panel such as glass; and a rear panel or sheet, which is typically called a backsheet. The front panel and backsheet encapsulate the solar cell(s) and provide protection from environmental damage. A goal of the solar industry is to have solar modules with an effective lifetime of decades, e.g. 20 years. Thus, the encapsulation the solar cell(s) is concerned for providing adequate resistance to damage from moisture, temperature, and ultraviolet radiation. Fluorinated material such as TEFLON™ and TEFZEL™ are developed for these purposes, and both fluorinated materials are generally expensive.
However, in certain application, the solar modules do not work in harsh environment. For example, the solar modules that are employed in consumer electronic devices are usually operated indoors, and do not require a long effective lifetime as 20 years. In these applications; the encapsulation of solar cell(s) is required to have a light weight, small size, and commercially acceptable cost. Therefore, there exists in this art a need of an improved solar module, which could satisfy the above-mentioned requirement.
A photovoltaic module is provided. The photovoltaic module comprises a solar cell, a polypropylene layer and a backsheet. The solar cell is capable of converting light into electricity, and comprises a light-receiving surface and a back surface. The polypropylene layer is disposed above the light-receiving surface of the solar cell. The polypropylene layer is transparent and has a transparency of greater than 50% in a wavelength range between about 380 nm and about 780 nm. The backsheet is disposed below the back surface of the solar cell. In one embodiment, the polypropylene layer comprises a bi-axial oriented polypropylene or cast polypropylene.
It is to be understood that both the foregoing general description and the following detailed description are by examples, and are intended to provide further explanation of the invention as claimed.
The present disclosure can be more fully understood by reading the following detailed description of the embodiments, with reference made to the accompanying drawings as follows:
Reference will now be made in detail to the present embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosed embodiments. It will be apparent, however, that one or more embodiments may be practiced without these specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawings.
The solar cell 110 is capable of converting light into electricity, and having a light-receiving surface 111 and a back surface 112. Light may be transmitted to and absorbed by the solar cell 110 through the light-receiving surface 111. When the solar cell 110 absorbs light, electron-hole pairs are generated therein, and then the electron-hole pairs are separated by the electric field established in the solar cell 110, and thus forming the electric current.
There is no specific limitation on the solar cell 110 so long as it may convert light into electricity. The solar cell 110 may be a flexible solar cell formed on a flexible substrate such as polyimide or stainless steel, or a rigid solar cell formed on a rigid substrate such as glass. In one example, the solar cell 110 is a thin film solar cell. In other examples, the solar cell 110 may be a single crystal solar cell or a polycrystalline solar cell, which is formed on a silicon substrate. For increasing the photoelectric conversion efficiency of the solar cell 110, pyramid-like structures or textured structures (not shown) may be formed on the light-receiving surface 111 of the solar cell 110, which is known in the art. In some examples, solar cell 110 includes amorphous silicon and has a p-i-n structure composed of a p-type semiconductor, an intrinsic semiconductor and an n-type semiconductor (not shown). In other examples, the solar cell 110 may include GaAs, CIGS (copper indium gallium (di)selenide), or CdTe.
The polypropylene layer 120 is disposed above the light-receiving surface 111 of the solar cell 110. The polypropylene layer 120 may protect the solar cell 110 from damage, and further prevent mist and moisture from leaking into the solar cell 110. For the propose of the photovoltaic module 100 to absorb light, the polypropylene layer 120 is transparent and has a transparency of greater than 50% in a wavelength range between about 380 nm and about 780 nm. In one example, the polypropylene layer 120 is a layer of bi-axial oriented polypropylene (BOPP). The bi-axial oriented polypropylene has a low permeability of oxygen and moisture, and thus may decrease the amount of oxygen and moisture penetrating into the solar cell 110. Moreover, the BOPP exhibits a high tensile strength, and thereby may provide enough mechanical strength to protect the solar cell 110. In another example, the polypropylene layer 120 is a layer of cast polypropylene (CPP), which has higher tear strength than BOPP, and is suitable for certain application. In some examples, the polypropylene layer 120 may have a multi-layered structure, and may include a layer of BOPP and a layer of CPP. It is to be noted that the polypropylene layer 120 disclosed herein may be applied in both types of flexible and rigid solar cells.
In one example, the polypropylene layer 120 is in contact with the light-receiving surface 111. The polypropylene layer 120 may be laminated onto the solar cell 110 by exerting heat to the polypropylene layer 120 since the polypropylene layer is a thermoplastic material and usually has a melting point of about 190° C. In one example, the thickness of the polypropylene layer 120 is about 1 μm to about 200 μm, more specifically about 50 μm to about 100 μm. In some examples, the polypropylene layer 120 has a textured structure (not shown) formed on the interface between the polypropylene layer 120 and the solar cell 110 or on the outmost surface of the polypropylene layer 120.
In other examples, as depicted in
The backsheet 130 is disposed below the back surface 112 of the solar cell 110. The backsheet 130 may be made from ceramic, glass, polymer or metal such as aluminum and stainless steel.
In one embodiment, the backsheet 130 may be made of a thermoplastic polymer and directly adhered onto the back surface 112 of the solar cell 110. In this embodiment, the entire photovoltaic module 100 may further be adhered onto an external article (not shown) by the polymeric backsheet 130. The thickness of the backsheet 130 is about 1 μm to about 200 μm, more specifically about 100 μm to about 200 μm. The material of the backsheet 130 may be the same as or different from the polypropylene layer 120.
In another embodiment, the backsheet 130 may be made of ceramic, glass, aluminum or stainless steel. In these embodiments, the photovoltaic module may further include a sealing layer 150 disposed between the solar cell 110 and the backsheet 130 as depicted in
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/330,895, filed May 4, 2010, which is herein incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61330985 | May 2010 | US |