1. Technical Field
Aspects of the present disclosure relate to distributed power systems, particularly a circuit for integrating with or attaching to a photovoltaic panel.
2. Description of Related Art
A conventional photovoltaic distributed power harvesting system multiple photovoltaic panels are interconnected and connected to an inverter. Various environmental and operational conditions impact the power output of the photovoltaic panels. For example, the solar energy incident, ambient temperature and other factors impact the power extracted from each photovoltaic panel. Dependent on the number and type of panels used, the extracted power may vary widely in the voltage and current from panel to panel. Changes in temperature, solar irradiance and shading, either from near objects such as trees or far objects such as clouds, can cause power losses. Owners and even professional installers may find it difficult to verify the correct operation of the system. With time, many more factors, such as aging, dust and dirt collection and panel degradation affect the performance of the solar photovoltaic distributed power system.
Data collected at the inverter may not be sufficient to provide proper monitoring of the operation of the system. Moreover, when the system experiences power loss, it is desirable to ascertain whether it is due to environmental conditions or from malfunctions and/or poor maintenance of the components of the solar power distributed power system. Furthermore, it is desirable to easily locate any particular solar panel that may be responsible for power loss. However, information collection from each panel requires a means of communication to a central data gathering system. It is desirable to control data transmission, to avoid transmission collisions, and ascertain each sender of data. Such a requirement can be most easily accomplished using a duplex transmission method. However, a duplex transmission method requires additional transmission lines and complicates the system. On the other hand, one-way transmission may be prone to collisions and makes it difficult to compare data transmitted from the various sources. Due to the wide variability of power output of such systems, and the wide range of environmental conditions that affect the power output, the output parameters from the overall system may not be sufficient to verify whether the solar array is operating at peak power production. Local disturbances, such as faulty installation, improper maintenance, reliability issues and obstructions might cause local power losses which may be difficult to detect from overall monitoring parameters.
Electric arcing can have detrimental effects on electric power distribution systems and electronic equipment. Arcing may occur in switches, circuit breakers, relay contacts, fuses and poor cable terminations. When a circuit is switched off or a bad connection occurs in a connector, an arc discharge may form across the contacts of the connector. An arc discharge is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through a medium such as air which is normally non-conducting. At the beginning of a disconnection, the separation distance between the two contacts is very small. As a result, the voltage across the air gap between the contacts produces a very large electrical field in terms of volts per millimeter. This large electrical field causes the ignition of an electrical arc between the two sides of the disconnection. If a circuit has enough current and voltage to sustain an arc, the arc can cause damage to equipment such as melting of conductors, destruction of insulation, and fire. The zero crossing of alternating current (AC) power systems may cause an arc not to reignite. A direct current system may be more prone to arcing than AC systems because of the absence of zero crossing in DC power systems.
In Photovoltaic Power Systems and The National Electrical Code, Suggested Practices: Article 690-18 requires that a mechanism be provided to disable portions of the PV array or the entire PV array. Ground-fault detection, interruption, and array disablement devices might, depending on the particular design, accomplish the following actions; sense ground-fault currents exceeding a specified value, interrupt or significantly reduce the fault currents, open the circuit between the array and the load, short the array or sub-array
According to the IEE wiring regulations (BS 7671:2008) a residual current device (RCD) class II device on the direct current (DC) photovoltaic side for disconnection because of ground-fault current is referred to in regulation 712.412.
The use of photovoltaic panel based power generation systems are attractive from an environmental point of view. However, the cost of photovoltaic panels and their relative ease of theft, might limit their adoption for use in power generation systems.
Thus there is a need for and it would be advantageous to have circuitry integrable or integrated with a photovoltaic panel which provides features including: monitoring of the photovoltaic panel, ground-fault detection and elimination, arc detection and elimination, theft prevention and a safety mode of operation while maintaining a minimal number of components in the circuit to decrease cost and increase reliability.
Various circuits are disclosed which are integrated or integrable with a photovoltaic panel to provide built-in functionality to the photovoltaic panel including safety features such as arc detection and elimination, ground fault detection and elimination, reverse current protection, monitoring of the performance of the photovoltaic panel, transmission of the monitored parameters and theft prevention of the photovoltaic panel. The circuits may avoid power conversion, for instance DC/DC power conversion, may avoid performing maximum power tracking to include a minimum number of components and thereby increase overall reliability.
According to features of the present invention, there is provided a circuit for a photovoltaic panel. The circuit may include an input terminal attachable to the photovoltaic panel, an output terminal and a controller. A switch may be operatively connected between the input terminal and the output terminal and a control terminal operatively connected to the controller. The switch when closed may provide a low impedance direct current path for direct current producible by the photovoltaic panel to the output terminal. The circuit may include multiple input terminals and multiple output terminals, high voltage input and output terminals and low voltage input and output terminals which may or may not be at ground potential. The circuit may further include an output bypass circuit connectible across the output terminals. The bypass circuit may be operable to bypass current around the switch and around the photovoltaic panel. The circuit may avoid power, voltage and current conversion between the input terminal and the output terminal. The circuit may further include at least one sensor operatively attached to the controller. The sensor may be configured to measure at least one parameter such as current through the input terminal, voltage at the input terminal, current through the output terminal or voltage at the input terminal. A transmitter may be operatively attached to the controller. The transmitter may be operable to transmit the at least one parameter. The circuit may further include a permanent attachment to the photovoltaic panel.
The circuit may include at least two modules or at least three modules operatively connected to or integrated with the controller selected from a theft detection module, an arc elimination module, a ground fault detection module and/or a safety module. The theft detection module may be operable to detect a potential theft of the photovoltaic panel by configuring the controller to activate the switch and to disconnect the photovoltaic panel from the output terminal(s) responsive to the potential theft detection.
The arc elimination module may be operable to detect an arc within or in the vicinity of the photovoltaic panel or the circuit. The controller may be configured to activate the switch and to disconnect the photovoltaic panel from the output terminal responsive to a detection of the arc. The ground fault detection module may be operable to detect a ground fault within the circuit or the photovoltaic panel. The controller may be configured to activate the switch and to disconnect the photovoltaic panel from the output terminal responsive to a detection of the ground fault. For the safety module, the controller may be configured to activate the switch to select either a safe operating mode to produce a safe limited output power on the output terminal or a normal operating mode to produce a substantially maximum output power from the photovoltaic panel.
The circuit may further include a monitoring module operable to monitor the performance of the photovoltaic panel. The monitoring module may be operable to detect at least one condition of over current, over voltage or over temperature. The controller may be configured to activate the switch responsive to the at least one condition.
According to features of the present invention, a circuit for a photovoltaic panel is provided. The circuit includes input terminals attachable to the photovoltaic panel, output terminals and a controller. A switch may be operatively connected between an input terminal and an output terminal. The switch may include a control terminal operatively connected to the controller. The switch may include a single pole switch with a first pole connected to at least one of the input terminals, a second pole connected to at least one of the output terminals and a control terminal operatively connected to the controller. The circuit may further include an input bypass circuit connectible across the input terminals. The bypass circuit is operable to bypass current around the photovoltaic panel. The circuit may further include an output bypass circuit connectible across the output terminals. The bypass circuit may be operable to bypass current around the switch and around the photovoltaic panel. The switch when closed may provide a low impedance path for direct current between the photovoltaic panel to the output terminal.
The circuit may avoid power conversion between the input terminal and the output terminal. The circuit may also include a direct current (DC) to DC power converter to perform power conversion between the input terminal and the output terminal. The power converter may be a buck circuit, a boost circuit, a buck plus boost circuit, Cuk converter, or a buck-boost circuit.
The circuit may include at least two modules or at least three modules may be operatively connected or integrated with the controller including a monitoring module, a theft detection module, an arc elimination module and/or a ground fault detection module. The monitoring module may be operable to monitor the performance of the photovoltaic panel. The monitoring module may be operable to detect at least one condition such as over rated current, under rated current, over rated voltage, under rated voltage over rated temperature or under rated temperature. The controller may be configured to activate the switch responsive to the at least one condition. The monitoring module may be operable to monitor performance of the circuit. The theft detection module may be operable to detect a potential theft of the photovoltaic panel. The controller may be configured to activate the switch and to disconnect the photovoltaic panel from the output terminal responsive to the potential theft detection. The arc elimination module may be operable to detect arcing within or in the vicinity of the photovoltaic panel. The controller is configured to activate the switch and to disconnect the photovoltaic panel from the output terminal responsive to an arc detection. The ground fault detection module may be operable to detect a ground fault within the junction box or in the vicinity of the photovoltaic panel. The controller is configured to activate the switch and to disconnect the photovoltaic panel from the output terminal responsive to a ground fault detection.
The circuit may further include a safety module operatively connected to the controller. The controller may be configured to activate the switch to select either a safe operating mode to produce a safe working output power on the output terminal or a normal operating mode to produce a substantially maximum output power.
According to features of the present invention, there is provided a method performable in a photovoltaic solar power harvesting system. The method performs by a circuit integrated or integrable with a photovoltaic panel to form a photovoltaic module. The circuit has input terminals and output terminals. The circuit may include a controller adapted to monitor in parallel multiple types of malfunctions. The controller is adapted to control at least one switch connected between the input terminals and the output terminals to activate the switch and to disconnect thereby the photovoltaic panel from at least one of the output terminals and to bypass the output terminals upon detecting at least one of multiple malfunctions. The malfunctions monitored by the controller may include: an arc, a potential theft, a ground fault or a monitored parameter fault. The detection of the arc may be in the photovoltaic module or in the vicinity of the photovoltaic module. The disconnection of the photovoltaic panel from the at least one output terminal may be responsive to eliminate the arc. The potential theft of the photovoltaic module and the disconnection of the photovoltaic panel from the at least one output terminal may render the photovoltaic module inoperable outside the photovoltaic solar power harvesting system. The detection of a ground fault and in response the disconnection of the photovoltaic panel from the output terminal may eliminate the ground fault. The monitored parameter fault detected may be voltage, current and/or temperature. One or more of the monitored parameters may be out of a previously specified value range, the photovoltaic panel which not behaving according to specification is disconnected and the output terminals are bypassed.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
Reference will now be made in detail to features of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The features are described below to explain the present invention by referring to the figures.
Before explaining features of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other features or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
It should be noted, that although the discussion herein relates primarily to photovoltaic systems, the present invention may, by non-limiting example, alternatively be configured using other distributed power systems including (but not limited to) wind turbines, hydro turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitors, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines.
By way of introduction aspects of the present invention are directed to circuitry integrated or integrable with a photovoltaic panel to form a photovoltaic module. The circuitry may include multiple features for monitoring the performance of the photovoltaic panel, detection and elimination of arcs, and/or detection and elimination of ground faults in the photovoltaic module in or in the vicinity of the photovoltaic module or elsewhere in the photovoltaic power harvesting system. The circuitry may also include functionality for theft detection and prevention. The circuitry may also include functionality for providing both a safety mode of operation which features a current limited output and a normal mode of operation for production of solar power
According to an exemplary feature of the present invention, the circuit is connected or connectible at the input terminals to a photovoltaic panel. The output terminals may be connected to form a string of photovoltaic modules. Multiple photovoltaic modules may be parallel connected to form the photovoltaic solar power harvesting system
The term “vicinity” as used herein in the context or arc and/or ground fault detection may refer to another like photovoltaic module connected in series to form the serial string, another part of the serial string or another string, e.g. a neighboring photovoltaic string connected in parallel.
The term “current bypass” or “bypass” as used herein refers to a low-resistance direct current connection between the two input terminals and/or between two output terminals of the circuit to form an alternative path for direct current and/or power externally applied to the terminals. The bypass provides a current path for string current in the case the photovoltaic panel is disconnected by activation of the switch.
The term “passive” device as used herein, refers to the “passive” device not requiring external power from a source of power to perform a circuit function.
The term “active” device as used herein, refers to the “active” device which requires power from an external source of power to perform a circuit function.
The term “switch” as used herein refers to an active semiconductor switch, e.g. a field effect transistor (FET) in which a controllable and/or variable voltage or current is applied to a control terminal, e.g. gate, of the switch which determines the amount current flowing between the poles of the switch, e.g. source and drain of the FET.
The term “activate” a switch as used herein may refer to opening, closing and/or toggling i.e. alternatively opening and closing the switch.
Reference is also now made to
A central unit 109 may be operationally connected by control line 114 to and located in the vicinity of load 105. Central unit 109 include a transmitter and/or receiving for transmitting and receiving power line communications (PLC) or wireless communications 117 to and from circuits 103. Current and/or voltage sensors 119a, 119b operatively attached to central unit 109 may sense the input of load 105 so as to measure input voltage (VT) and input current (IL) to load 105. Central unit 109 may also be operatively attached to a network 115, e.g. Internet for the purposes of remote monitoring or control of system 10. Central unit 109 may also serve as to send appropriate control signals to circuits 103 based on previously determined operating criteria of power harvesting system 10. Alternatively or in addition, a master circuit 103a in a string 107 may provide independent control within a string 107 and/or may work in conjunction with central unit 109.
Reference is now made to
During normal operation of solar power harvesting system 10, panels 101 are irradiated by the Sun, panel 101 current (IPV) is substantially equal to the string current (Istring), switch SW1 is closed and current (IB-out) flowing through output bypass circuit 121 is substantially zero. The maximum string current (Istring) is normally limited by the worst performing panel 101 in a photovoltaic string 107 by virtue of Kirchhoff current law.
In a panel 101, if certain photovoltaic cells in sub-string 11 are shaded, the current passing through the shaded cells may be offered an alternative, parallel path through the inactive cells, and the integrity of the shaded cells may be preserved. The purpose of diodes 120a and 120b is to draw the current away from the shaded or damaged cells associated with diodes 120a and 120b in respective sub-strings 11. Bypass diodes 120a and 120b become forward biased when their associated shaded cells in one or more sub-strings 11 become reverse biased. Since the photovoltaic cells in a sub-string 11 and the associated bypass diodes 120a and 120b are in parallel, rather than forcing current through the shaded photovoltaic cells, the bypass diodes 120a and 120b bypass the current away from the shaded cells and maintains the connection to the next sub-string 11.
Controller 122 may be programmed under certain circumstances based on previously determined criteria, for instance based on current and voltage sensed on sensors 124a-124d, to open switch SW1, and thereby disconnect panel 101 from serial photovoltaic string 107. Bypass circuit 121 may be configured to provide a low impedance path such that the output bypass current (IB-out) of bypass circuit 121 is substantially equal to string 107 current (Istring). Bypass circuit 121 allows disconnection of photovoltaic panel 101 from photovoltaic string 107 while maintaining current flow and power production from the remaining photovoltaic panels 101 of photovoltaic string 107.
Reference is now made to
Switch SW1 may alternatively or in addition be connected at the low voltage terminal between node Y and the anode of diode 120a. An alternative arrangement for switch SW1 may have switch SWa connected serially between node X and the cathode of diode 120b and to have another switch SWb connected serially between node Y and the anode of diode 120a. In this alternative, the diode of switch SWb has an anode connected to node Y and a cathode connected to the anode of diode 120a. In this alternative, when both switches SWa and SWb are open circuit, current from panel 101 to node X may flow through the diode of switch SWa and any reverse current from node X may be blocked. Similarly, current from node Y to panel 101 may flow through the diode of switch SWb and any reverse current from node Y may be blocked.
Reference is now made to
During the normal operation of power harvesting system 10 during which panels 101 are irradiated, the output of a circuit 103 need not be bypassed by bypass circuit 121. Bypass circuit 121 does not bypass by virtue of switches SW2 and SW3 both being off (open). Switches SW2 and SW3 both being off means substantially no current between respective drains and sources of switches SW2 and SW3 because the respective gates (G) of switches SW2 and SW3 are not been driven by buffer drivers B1 and B2.
By virtue of the analog inputs of controller 130 to the source (S) and drain (D) of switches SW2 and SW3 respectively and the source (S) of switch SW3, controller 130 is able to sense if an open circuit or a reverse voltage polarity exists across nodes X and Y. The open circuit sensed on nodes X and Y may indicate that switch SW1 is open and/or a sub-string 11 is open circuit. The reverse polarity across nodes X and Y may indicate that a panel 101 is shaded or faulty or that the panel 101 is operating as a sink of current rather than as a source of current.
The open circuit and/or the reverse polarity across nodes X and Y may cause bypass circuit 121 to operate in a bypass mode of operation. The bypass mode of operation of bypass circuit 121 may be when a panel 101 is partially shaded. The bypass mode of operation of circuit 121 may also be just before the normal operation when it still too dark to obtain a significant power output from panels 101, circuit 121 may have no power to work.
Reference is now made to
During the bypass mode, controller 130 is able to sense on nodes X and Y if a panel 101 is functioning again and so controller 130 removes the bypass. The bypass across nodes X and Y is removed by turning switches SW2 and SW3 off.
Reference now made to
160 Monitoring Performance and Control of Photovoltaic Panel 101 and Circuit 103
Monitoring performance of photovoltaic panels has been disclosed by the present inventors in US patent publication 2008/0147335. Monitoring may include monitoring input power at the input terminals (bus bars a,b,c) of circuit 103 and/or output power at output terminals nodes X and Y of circuit 103 by sensing current and voltage using sensors 124a-124d of circuit 103. Temperature sensors (not shown) may also be included in circuit 103 for measuring ambient temperature, temperature on the circuit board of circuit 103 and/or temperature of the photovoltaic panel 101. Monitoring results may be periodically or randomly transmitted to central unit 109 by communications over DC lines to inverter 105 or by wireless communication. Based on the monitoring results, if one or more sensed parameters are found out of rated specification, controller 122 may be programmed to activate, e.g. open switch SW1 and to disconnect photovoltaic panel 101 from photovoltaic string 107. Bypass circuit 121 autonomously bypasses string current around SW1 and photovoltaic panel 101.
DC power cables connecting load 105 to photovoltaic panel 101 and/or circuits 103 may provide a communication channel between central unit 109 and photovoltaic panels 101 As previously disclosed by the present inventors in co-pending patent application GB1100463.7, lengths of cables connecting load 105 to panels 101 or circuits 103 may be long and may contain one or several wire cores. The topography of a distributed power generation system to a large extent dictates the installation and placement of cable runs. Physical proximity of wires not having an electrical association may increase the chances of the wires in the cables being subject to the effects of noise if those wires are to be considered for signaling by DC power line communications. Crosstalk is a type of noise which refers to a phenomenon by which a signal transmitted on a cable, circuit or channel of a transmission system creates an undesired effect in another cable, circuit or channel. Crosstalk may be usually caused by undesired capacitive, inductive, or conductive coupling from one cable, circuit or channel, to another. Crosstalk may also corrupt the data being transmitted. Known methods of preventing the undesirable effects of crosstalk may be to utilize the shielding of cables, junction boxes, panels, inverters, loads or using twisted pair cables. Additionally, filtering techniques such as matched filters, decoupling capacitors or chokes may be used to prevent the undesirable effects of crosstalk. However, these ways of preventing the undesirable effects of crosstalk may be unavailable or impractical in a power generation system and/or may be prohibitively expensive in terms of additional materials and/or components required.
Within photovoltaic installation 10, a wire at positive potential and a wire at negative potential electrically associated therewith may be physically proximate thereto only at a point of connection to a piece of equipment. However, elsewhere in photovoltaic field 10, the wires may be separated and not be within the same cable run. In a photovoltaic power generation system, with power line communication over DC cables, it may be desirable to send a control signal or receive a monitoring signal between central unit 109 and circuit 103. Crosstalk may cause the other circuits 103 in power generation system 10 to inadvertently receive the control signal which is of course undesirable.
A method is disclosed, whereby signaling between a photovoltaic module 101/103 and a load 105 provides an association between the photovoltaic module 101/103 and the load 105. In an initial mode of operation, an initial code may be modulated to produce an initial signal. The initial signal may be transmitted by central unit 109 along DC line from load 105 to circuit 103. The initial signal may be received by circuit 103. The operating mode may be then changed to a normal mode of operation, and during the normal mode of operation a control signal may be transmitted central unit 109 along DC line from load 105 to circuit 103. A control code may be demodulated and received from the control signal. The control code may be compared with the initial code producing a comparison. The control command of the control signal may be validated as a valid control command associated with load 105 with the control command only acted upon when the comparison is a positive comparison.
166 Ground Fault Detection
As previously disclosed by the present inventors in co-pending application GB1020862.7, a device may be adapted for disconnecting at least one string carrying direct current power in multiple interconnected strings. Similarly, circuit 103 may include a differential current sensor adapted to measure a differential current by comparing respective currents in the positive lines (terminating at node X) and negative line (terminating at node Y). The differential current may be indicative of a ground fault in circuit 103 and/or photovoltaic panel 101. If a potential ground fault is detected, then SW1 and/or a similar switch in the negative line may be activated, e.g. opened. Bypass circuit 121 may autonomously bypass string current around SW1 and photovoltaic panel 101.
169 Safety/Normal Mode Operation
During normal mode operation of circuit 103, electrical power produced by photovoltaic panel 101 is provided to string 107. Maximum power point tracking may be provided at the input of load 105 for the interconnected strings so that in absence of shading or component failure most or all of photovoltaic panels contribute to the harvested power at or near the maximum power point. In conventional solar power harvesting systems, potential electric shock hazard may exist on the output terminals of the photovoltaic module 101/103. Consequently, during installation of a conventional system, photovoltaic panels may be covered to avoid light absorption by the photovoltaic panels and to prevent electrocution during installation.
A safety mode of operation may be provided by activating or toggling switch SW1, which may be a portion of a buck and/or boost converter in circuit 103 attached to a photovoltaic panel 101. Toggling switch SW1 at a known duty cycle may be used to force photovoltaic panel 101 far away from its maximum power point and the power output to string 107 may be forced to be very low avoiding other safety means such as covering photovoltaic panels during installation.
During the safety mode of operation, photovoltaic module 101/103 may be connected or disconnected and while being irradiated by the sun. Therefore, during the routine maintenance or installation of the power harvesting system 10, controller 122 of circuit 103 may be configured to open and close switch SW1 to produce a safe working output power on output terminals of the circuit 103. The safe working output power may be according to a predetermined duty cycle of switch SW1 opening and closing.
During the normal operation of the power harvesting system 10 when power harvesting system 10 is irradiated, it may be that photovoltaic module 101/103 is disconnected from a string 107 as a result of a malfunction or theft. In the case of theft it may well be desirable that a safe working output power on output terminals of the circuit 103 is produced so that a thief is not electrocuted for example.
164 Theft Detection
A number methods and/or devices for detection and/or theft prevention of photovoltaic panels are disclosed by the present applicant(s) in United States Patent Application 20100301991.
The use of codes is discussed above as a mechanism to avoid cross talk in monitoring and control signals carried over DC lines to central unit 109. Codes may be additionally used as a mechanism for theft detection and prevention. A first code is written in memory associated with load 105 and a second code is stored in the memory 18 located and operatively attached to circuit 103. The second code may be based on the first code or the second code may be a copy or a hash of the first code. The writing of the first code and/or the storing of the second code may be performed during installation of the power harvesting system. After the first code is read and stored in the first memory, and the second code is read and stored in memory 18, during the electrical power generation, the first code is compared with the second code or its hash. If the comparison is correct, (for instance the codes correspond) then power transfer from circuit 105 to string 107 is allowed, and switch SW1 is closed. Otherwise, if the codes do not match then switch SW1 is opened by controller 122. If circuit 105 is permanently attached or highly integrated with photovoltaic panel 101 then it will be difficult for the thief to benefit from the theft. Other methods for theft detection and/or protection as disclosed in international application PCT/IB2010/052413 may similar be used in conjunction with the present disclosure.
162 Arc Detection
Electric arcing can have detrimental effects on electric power distribution systems and electronic equipment. Arcing may occur in switches, circuit breakers, relay contacts, fuses and poor cable terminations. When a circuit is switched off or a bad connection occurs in a connector, an arc discharge may form across the contacts of the connector. An arc discharge is an electrical breakdown of a gas which produces an ongoing plasma discharge, resulting from a current flowing through a medium such as air which is normally non-conducting. At the beginning of a disconnection, the separation distance between the two contacts is very small. As a result, the voltage across the air gap between the contacts produces a very large electrical field in terms of volts per millimeter. This large electrical field causes the ignition of an electrical arc between the two sides of the disconnection. If a circuit has enough current and voltage to sustain an arc, the arc can cause damage to equipment such as melting of conductors, destruction of insulation, and fire.
In the initial mode, a baseline noise voltage or current may be measured (step 305) for a string 107 or a group of interconnected strings 107 as shown in system 10 and the overall noise voltage or current for system measured at load 105 via sensors 119a and 119b. The initial mode initiated at various times during the day and times of the month may be stored in a look up table in central unit 109 and/or master circuit 103a or in each circuit 103. As a result of the baseline noise voltage or current measured in step 305 a noise voltage or current threshold 309 may be set in step 307. Threshold 309 may be an adaptive or a constant value which may be measured in frequency range between 10 kilo-Hertz (kHz) to 400 kHz. Once the threshold 309 value has been set for system 10, normal operation of system 10 is initiated in step 311. If the threshold value 309 is exceeded for a predefined time, indicating potential arcing, a panel 101 may be disconnected (step 205) from a string 107 using switch SW1 in the circuit 103 associated with the panel 101. Otherwise normal operation of system 10 continues in step 311.
Reference is now made to
Reference is made to
A similar method to that shown in method 201 may also be applied to ground fault detection 166.
The indefinite articles “a”, “an” is used herein, such as “a switch”, “a module” have the meaning of “one or more” that is “one or more switches” or “one or more modules”.
Although selected features of the present invention have been shown and described, it is to be understood the present invention is not limited to the described features. Instead, it is to be appreciated that changes may be made to these features without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
1201506.1 | Jan 2012 | GB | national |
This application is a continuation application of U.S. application Ser. No. 13/753,041, filed on Jan. 29, 2013, entitled “PHOTOVOLTAIC PANEL CIRCUITRY.” This application claims priority to United Kingdom Application GB1201506.1 filed Jan. 30, 2012. Benefit of the filing date of this prior application is hereby claimed. The contents of all of these applications are hereby incorporated by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2367925 | Brown | Jan 1945 | A |
2758219 | Miller | Aug 1956 | A |
2852721 | Harders et al. | Sep 1958 | A |
3369210 | Manickella | Feb 1968 | A |
3392326 | Lamberton | Jul 1968 | A |
3566143 | Paine et al. | Feb 1971 | A |
3596229 | Hohorst | Jul 1971 | A |
3696286 | Ule | Oct 1972 | A |
3740652 | Burgener | Jun 1973 | A |
3958136 | Schroeder | May 1976 | A |
4060757 | McMurray | Nov 1977 | A |
4101816 | Shepter | Jul 1978 | A |
4104687 | Zulaski | Aug 1978 | A |
4129788 | Chavannes | Dec 1978 | A |
4146785 | Neale | Mar 1979 | A |
4161771 | Bates | Jul 1979 | A |
4171861 | Hohorst | Oct 1979 | A |
4183079 | Wachi | Jan 1980 | A |
4257087 | Cuk | Mar 1981 | A |
4296461 | Mallory et al. | Oct 1981 | A |
4321581 | Tappeiner et al. | Mar 1982 | A |
4346341 | Blackburn et al. | Aug 1982 | A |
4367557 | Stern et al. | Jan 1983 | A |
4375662 | Baker | Mar 1983 | A |
4404472 | Steigerwald | Sep 1983 | A |
4412142 | Ragonese et al. | Oct 1983 | A |
4452867 | Conforti | Jun 1984 | A |
4453207 | Paul | Jun 1984 | A |
4460232 | Sotolongo | Jul 1984 | A |
4479175 | Gille et al. | Oct 1984 | A |
4481654 | Daniels et al. | Nov 1984 | A |
4488136 | Hansen et al. | Dec 1984 | A |
4545997 | Wong et al. | Oct 1985 | A |
4549254 | Kissel | Oct 1985 | A |
4554502 | Rohatyn | Nov 1985 | A |
4554515 | Burson et al. | Nov 1985 | A |
4580090 | Bailey et al. | Apr 1986 | A |
4591965 | Dickerson | May 1986 | A |
4598330 | Woodworth | Jul 1986 | A |
4602322 | Merrick | Jul 1986 | A |
4604567 | Chetty | Aug 1986 | A |
4623753 | Feldman et al. | Nov 1986 | A |
4626983 | Harada et al. | Dec 1986 | A |
4631565 | Tihanyi | Dec 1986 | A |
4637677 | Barkus | Jan 1987 | A |
4639844 | Gallios et al. | Jan 1987 | A |
4641042 | Miyazawa | Feb 1987 | A |
4641079 | Kato et al. | Feb 1987 | A |
4644458 | Harafuji et al. | Feb 1987 | A |
4649334 | Nakajima | Mar 1987 | A |
4652770 | Kumano | Mar 1987 | A |
4683529 | Bucher, II | Jul 1987 | A |
4685040 | Steigerwald et al. | Aug 1987 | A |
4686617 | Colton | Aug 1987 | A |
4706181 | Mercer | Nov 1987 | A |
4719553 | Hinckley | Jan 1988 | A |
4720667 | Lee et al. | Jan 1988 | A |
4720668 | Lee et al. | Jan 1988 | A |
4736151 | Dishner | Apr 1988 | A |
4772994 | Harada et al. | Sep 1988 | A |
4783728 | Hoffman | Nov 1988 | A |
4797803 | Carroll | Jan 1989 | A |
4819121 | Saito et al. | Apr 1989 | A |
RE33057 | Clegg et al. | Sep 1989 | E |
4864213 | Kido | Sep 1989 | A |
4868379 | West | Sep 1989 | A |
4873480 | Lafferty | Oct 1989 | A |
4888063 | Powell | Dec 1989 | A |
4888702 | Gerken et al. | Dec 1989 | A |
4899269 | Rouzies | Feb 1990 | A |
4903851 | Slough | Feb 1990 | A |
4906859 | Kobayashi et al. | Mar 1990 | A |
4910518 | Kim et al. | Mar 1990 | A |
4951117 | Kasai | Aug 1990 | A |
4978870 | Chen et al. | Dec 1990 | A |
4987360 | Thompson | Jan 1991 | A |
5001415 | Watkinson | Mar 1991 | A |
5027051 | Lafferty | Jun 1991 | A |
5027059 | de Montgolfier et al. | Jun 1991 | A |
5045988 | Gritter et al. | Sep 1991 | A |
5081558 | Mahler | Jan 1992 | A |
5138422 | Fujii et al. | Aug 1992 | A |
5144222 | Herbert | Sep 1992 | A |
5155670 | Brian | Oct 1992 | A |
5191519 | Kawakami | Mar 1993 | A |
5196781 | Jamieson et al. | Mar 1993 | A |
5237194 | Takahashi | Aug 1993 | A |
5268832 | Kandatsu | Dec 1993 | A |
5280133 | Nath | Jan 1994 | A |
5280232 | Kohl et al. | Jan 1994 | A |
5287261 | Ehsani | Feb 1994 | A |
5289361 | Vinciarelli | Feb 1994 | A |
5289998 | Bingley et al. | Mar 1994 | A |
5327071 | Frederick et al. | Jul 1994 | A |
5329222 | Gyugyi et al. | Jul 1994 | A |
5345375 | Mohan | Sep 1994 | A |
5379209 | Goff | Jan 1995 | A |
5381327 | Yan | Jan 1995 | A |
5391235 | Inoue | Feb 1995 | A |
5402060 | Erisman | Mar 1995 | A |
5404059 | Loffler | Apr 1995 | A |
5412558 | Sakurai et al. | May 1995 | A |
5413313 | Mutterlein et al. | May 1995 | A |
5446645 | Shirahama et al. | Aug 1995 | A |
5460546 | Kunishi et al. | Oct 1995 | A |
5493154 | Smith et al. | Feb 1996 | A |
5497289 | Sugishima et al. | Mar 1996 | A |
5504418 | Ashley | Apr 1996 | A |
5504449 | Prentice | Apr 1996 | A |
5517378 | Asplund et al. | May 1996 | A |
5530335 | Decker et al. | Jun 1996 | A |
5539238 | Malhi | Jul 1996 | A |
5548504 | Takehara | Aug 1996 | A |
5563780 | Goad | Oct 1996 | A |
5565855 | Knibbe | Oct 1996 | A |
5576941 | Nguyen et al. | Nov 1996 | A |
5585749 | Pace et al. | Dec 1996 | A |
5604430 | Decker et al. | Feb 1997 | A |
5616913 | Litterst | Apr 1997 | A |
5636107 | Lu et al. | Jun 1997 | A |
5644219 | Kurokawa | Jul 1997 | A |
5646501 | Fishman et al. | Jul 1997 | A |
5648731 | Decker et al. | Jul 1997 | A |
5659465 | Flack et al. | Aug 1997 | A |
5677833 | Bingley | Oct 1997 | A |
5684385 | Guyonneau et al. | Nov 1997 | A |
5686766 | Tamechika | Nov 1997 | A |
5703390 | Itoh | Dec 1997 | A |
5708576 | Jones et al. | Jan 1998 | A |
5719758 | Nakata et al. | Feb 1998 | A |
5722057 | Wu | Feb 1998 | A |
5726505 | Yamada et al. | Mar 1998 | A |
5726615 | Bloom | Mar 1998 | A |
5731603 | Nakagawa et al. | Mar 1998 | A |
5734565 | Mueller et al. | Mar 1998 | A |
5747967 | Muljadi et al. | May 1998 | A |
5773963 | Blanc et al. | Jun 1998 | A |
5777515 | Kimura | Jul 1998 | A |
5777858 | Rodulfo | Jul 1998 | A |
5780092 | Agbo et al. | Jul 1998 | A |
5793184 | O'Connor | Aug 1998 | A |
5798631 | Spee et al. | Aug 1998 | A |
5801519 | Midya et al. | Sep 1998 | A |
5804894 | Leeson et al. | Sep 1998 | A |
5812045 | Ishikawa et al. | Sep 1998 | A |
5814970 | Schmidt | Sep 1998 | A |
5821734 | Faulk | Oct 1998 | A |
5822186 | Bull et al. | Oct 1998 | A |
5838148 | Kurokami et al. | Nov 1998 | A |
5847549 | Dodson, III | Dec 1998 | A |
5859772 | Hilpert | Jan 1999 | A |
5869956 | Nagao et al. | Feb 1999 | A |
5873738 | Shimada et al. | Feb 1999 | A |
5886882 | Rodulfo | Mar 1999 | A |
5886890 | Ishida et al. | Mar 1999 | A |
5892354 | Nagao et al. | Apr 1999 | A |
5898585 | Sirichote et al. | Apr 1999 | A |
5903138 | Hwang et al. | May 1999 | A |
5905645 | Cross | May 1999 | A |
5917722 | Singh | Jun 1999 | A |
5919314 | Kim | Jul 1999 | A |
5923100 | Lukens et al. | Jul 1999 | A |
5923158 | Kurokami et al. | Jul 1999 | A |
5929614 | Copple | Jul 1999 | A |
5930128 | Dent | Jul 1999 | A |
5930131 | Feng | Jul 1999 | A |
5932994 | Jo et al. | Aug 1999 | A |
5933327 | Leighton et al. | Aug 1999 | A |
5945806 | Faulk | Aug 1999 | A |
5946206 | Shimizu et al. | Aug 1999 | A |
5949668 | Schweighofer | Sep 1999 | A |
5961739 | Osborne | Oct 1999 | A |
5963010 | Hayashi et al. | Oct 1999 | A |
5963078 | Wallace | Oct 1999 | A |
5982253 | Perrin et al. | Nov 1999 | A |
5990659 | Frannhagen | Nov 1999 | A |
6002290 | Avery et al. | Dec 1999 | A |
6021052 | Unger et al. | Feb 2000 | A |
6031736 | Takehara et al. | Feb 2000 | A |
6037720 | Wong et al. | Mar 2000 | A |
6038148 | Farrington et al. | Mar 2000 | A |
6046470 | Williams et al. | Apr 2000 | A |
6046919 | Madenokouji et al. | Apr 2000 | A |
6050779 | Nagao et al. | Apr 2000 | A |
6058035 | Madenokouji et al. | May 2000 | A |
6064086 | Nakagawa et al. | May 2000 | A |
6078511 | Fasullo et al. | Jun 2000 | A |
6081104 | Kern | Jun 2000 | A |
6082122 | Madenokouji et al. | Jul 2000 | A |
6087738 | Hammond | Jul 2000 | A |
6093885 | Takehara et al. | Jul 2000 | A |
6094129 | Baiatu | Jul 2000 | A |
6101073 | Takehara | Aug 2000 | A |
6105317 | Tomiuchi et al. | Aug 2000 | A |
6111188 | Kurokami et al. | Aug 2000 | A |
6111391 | Cullen | Aug 2000 | A |
6111767 | Handleman | Aug 2000 | A |
6130458 | Takagi et al. | Oct 2000 | A |
6150739 | Baumgartl et al. | Nov 2000 | A |
6151234 | Oldenkamp | Nov 2000 | A |
6163086 | Choo | Dec 2000 | A |
6166455 | Li | Dec 2000 | A |
6166527 | Dwelley et al. | Dec 2000 | A |
6169678 | Kondo et al. | Jan 2001 | B1 |
6175219 | Imamura et al. | Jan 2001 | B1 |
6175512 | Hagihara et al. | Jan 2001 | B1 |
6191456 | Stoisiek et al. | Feb 2001 | B1 |
6219623 | Wills | Apr 2001 | B1 |
6225793 | Dickmann | May 2001 | B1 |
6255360 | Domschke et al. | Jul 2001 | B1 |
6255804 | Herniter et al. | Jul 2001 | B1 |
6256234 | Keeth et al. | Jul 2001 | B1 |
6259234 | Perol | Jul 2001 | B1 |
6262558 | Weinberg | Jul 2001 | B1 |
6268559 | Yamawaki | Jul 2001 | B1 |
6274804 | Psyk et al. | Aug 2001 | B1 |
6281485 | Siri | Aug 2001 | B1 |
6285572 | Onizuka et al. | Sep 2001 | B1 |
6292379 | Edevold et al. | Sep 2001 | B1 |
6301128 | Jang et al. | Oct 2001 | B1 |
6304065 | Wittenbreder | Oct 2001 | B1 |
6307749 | Daanen et al. | Oct 2001 | B1 |
6311137 | Kurokami et al. | Oct 2001 | B1 |
6316716 | Hilgrath | Nov 2001 | B1 |
6320769 | Kurokami et al. | Nov 2001 | B2 |
6331670 | Takehara et al. | Dec 2001 | B2 |
6339538 | Handleman | Jan 2002 | B1 |
6344612 | Kuwahara et al. | Feb 2002 | B1 |
6346451 | Simpson et al. | Feb 2002 | B1 |
6350944 | Sherif et al. | Feb 2002 | B1 |
6351130 | Preiser et al. | Feb 2002 | B1 |
6369461 | Jungreis et al. | Apr 2002 | B1 |
6369462 | Siri | Apr 2002 | B1 |
6380719 | Underwood et al. | Apr 2002 | B2 |
6396170 | Laufenberg et al. | May 2002 | B1 |
6396239 | Benn et al. | May 2002 | B1 |
6425248 | Tonomura et al. | Jul 2002 | B1 |
6429546 | Ropp et al. | Aug 2002 | B1 |
6429621 | Arai | Aug 2002 | B1 |
6433522 | Siri | Aug 2002 | B1 |
6433978 | Neiger et al. | Aug 2002 | B1 |
6441597 | Lethellier | Aug 2002 | B1 |
6445599 | Nguyen | Sep 2002 | B1 |
6448489 | Kimura et al. | Sep 2002 | B2 |
6452814 | Wittenbreder | Sep 2002 | B1 |
6469919 | Bennett | Oct 2002 | B1 |
6472254 | Cantarini et al. | Oct 2002 | B2 |
6483203 | McCormack | Nov 2002 | B1 |
6493246 | Suzui et al. | Dec 2002 | B2 |
6501362 | Hoffman et al. | Dec 2002 | B1 |
6507176 | Wittenbreder, Jr. | Jan 2003 | B2 |
6509712 | Landis | Jan 2003 | B1 |
6515215 | Mimura | Feb 2003 | B1 |
6519165 | Koike | Feb 2003 | B2 |
6528977 | Arakawa | Mar 2003 | B2 |
6531848 | Chitsazan et al. | Mar 2003 | B1 |
6545211 | Mimura | Apr 2003 | B1 |
6548205 | Leung et al. | Apr 2003 | B2 |
6560131 | vonBrethorst | May 2003 | B1 |
6587051 | Takehara et al. | Jul 2003 | B2 |
6590793 | Nagao et al. | Jul 2003 | B1 |
6590794 | Carter | Jul 2003 | B1 |
6593520 | Kondo et al. | Jul 2003 | B2 |
6593521 | Kobayashi | Jul 2003 | B2 |
6600100 | Ho et al. | Jul 2003 | B2 |
6603672 | Deng et al. | Aug 2003 | B1 |
6608468 | Nagase | Aug 2003 | B2 |
6611130 | Chang | Aug 2003 | B2 |
6611441 | Kurokami et al. | Aug 2003 | B2 |
6628011 | Droppo et al. | Sep 2003 | B2 |
6633824 | Dollar, II | Oct 2003 | B2 |
6650031 | Goldack | Nov 2003 | B1 |
6650560 | MacDonald et al. | Nov 2003 | B2 |
6653549 | Matsushita et al. | Nov 2003 | B2 |
6655987 | Higashikozono et al. | Dec 2003 | B2 |
6657419 | Renyolds | Dec 2003 | B2 |
6672018 | Shingleton | Jan 2004 | B2 |
6678174 | Suzui et al. | Jan 2004 | B2 |
6690590 | Stamenic et al. | Feb 2004 | B2 |
6693327 | Priefert et al. | Feb 2004 | B2 |
6693781 | Kroker | Feb 2004 | B1 |
6709291 | Wallace et al. | Mar 2004 | B1 |
6731136 | Knee | May 2004 | B2 |
6738692 | Schienbein et al. | May 2004 | B2 |
6744643 | Luo et al. | Jun 2004 | B2 |
6750391 | Bower et al. | Jun 2004 | B2 |
6765315 | Hammerstrom et al. | Jul 2004 | B2 |
6768047 | Chang et al. | Jul 2004 | B2 |
6768180 | Salama et al. | Jul 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6788146 | Forejt et al. | Sep 2004 | B2 |
6795318 | Haas et al. | Sep 2004 | B2 |
6800964 | Beck | Oct 2004 | B2 |
6801442 | Suzui et al. | Oct 2004 | B2 |
6807069 | Nieminen et al. | Oct 2004 | B2 |
6809942 | Madenokouji et al. | Oct 2004 | B2 |
6810339 | Wills | Oct 2004 | B2 |
6812396 | Makita et al. | Nov 2004 | B2 |
6828503 | Yoshikawa et al. | Dec 2004 | B2 |
6837739 | Gorringe et al. | Jan 2005 | B2 |
6838611 | Kondo et al. | Jan 2005 | B2 |
6842354 | Tallam et al. | Jan 2005 | B1 |
6850074 | Adams et al. | Feb 2005 | B2 |
6856102 | Lin et al. | Feb 2005 | B1 |
6882131 | Takada et al. | Apr 2005 | B1 |
6888728 | Takagi et al. | May 2005 | B2 |
6914418 | Sung | Jul 2005 | B2 |
6919714 | Delepaut | Jul 2005 | B2 |
6927955 | Suzui et al. | Aug 2005 | B2 |
6933627 | Wilhelm | Aug 2005 | B2 |
6933714 | Fasshauer et al. | Aug 2005 | B2 |
6936995 | Kapsokavathis et al. | Aug 2005 | B2 |
6940735 | Deng et al. | Sep 2005 | B2 |
6949843 | Dubovsky | Sep 2005 | B2 |
6950323 | Achleitner et al. | Sep 2005 | B2 |
6963147 | Kurokami et al. | Nov 2005 | B2 |
6966184 | Toyomura et al. | Nov 2005 | B2 |
6980783 | Liu et al. | Dec 2005 | B2 |
6984967 | Notman | Jan 2006 | B2 |
6984970 | Capel | Jan 2006 | B2 |
6996741 | Pittelkow et al. | Feb 2006 | B1 |
7030597 | Bruno et al. | Apr 2006 | B2 |
7031176 | Kotsopoulos et al. | Apr 2006 | B2 |
7038430 | Itabashi et al. | May 2006 | B2 |
7042195 | Tsunetsugu et al. | May 2006 | B2 |
7045991 | Nakamura et al. | May 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7053506 | Alonso et al. | May 2006 | B2 |
7061211 | Satoh et al. | Jun 2006 | B2 |
7061214 | Mayega et al. | Jun 2006 | B2 |
7064967 | Ichinose et al. | Jun 2006 | B2 |
7068017 | Willner et al. | Jun 2006 | B2 |
7072194 | Nayar et al. | Jul 2006 | B2 |
7078883 | Chapman et al. | Jul 2006 | B2 |
7079406 | Kurokami et al. | Jul 2006 | B2 |
7087332 | Harris | Aug 2006 | B2 |
7090509 | Gilliland et al. | Aug 2006 | B1 |
7091707 | Cutler | Aug 2006 | B2 |
7097516 | Werner et al. | Aug 2006 | B2 |
7099169 | West et al. | Aug 2006 | B2 |
7126053 | Kurokami et al. | Oct 2006 | B2 |
7126294 | Minami et al. | Oct 2006 | B2 |
7138786 | Ishigaki et al. | Nov 2006 | B2 |
7142997 | Widner | Nov 2006 | B1 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7158359 | Bertele et al. | Jan 2007 | B2 |
7158395 | Deng et al. | Jan 2007 | B2 |
7161082 | Matsushita et al. | Jan 2007 | B2 |
7174973 | Lysaght | Feb 2007 | B1 |
7183667 | Colby et al. | Feb 2007 | B2 |
7193872 | Siri | Mar 2007 | B2 |
7202653 | Pai | Apr 2007 | B2 |
7218541 | Price et al. | May 2007 | B2 |
7248946 | Bashaw et al. | Jul 2007 | B2 |
7256566 | Bhavaraju et al. | Aug 2007 | B2 |
7259474 | Blanc | Aug 2007 | B2 |
7262979 | Wai et al. | Aug 2007 | B2 |
7276886 | Kinder et al. | Oct 2007 | B2 |
7277304 | Stancu et al. | Oct 2007 | B2 |
7281141 | Elkayam et al. | Oct 2007 | B2 |
7282814 | Jacobs | Oct 2007 | B2 |
7291036 | Daily et al. | Nov 2007 | B1 |
RE39976 | Schiff et al. | Jan 2008 | E |
7315052 | Alter | Jan 2008 | B2 |
7319313 | Dickerson et al. | Jan 2008 | B2 |
7324361 | Siri | Jan 2008 | B2 |
7336004 | Lai | Feb 2008 | B2 |
7336056 | Dening | Feb 2008 | B1 |
7339287 | Jepsen et al. | Mar 2008 | B2 |
7348802 | Kasanyal et al. | Mar 2008 | B2 |
7352154 | Cook | Apr 2008 | B2 |
7361952 | Miura et al. | Apr 2008 | B2 |
7371963 | Suenaga et al. | May 2008 | B2 |
7372712 | Stancu et al. | May 2008 | B2 |
7385380 | Ishigaki et al. | Jun 2008 | B2 |
7385833 | Keung | Jun 2008 | B2 |
7388348 | Mattichak | Jun 2008 | B2 |
7394237 | Chou et al. | Jul 2008 | B2 |
7405117 | Zuniga et al. | Jul 2008 | B2 |
7414870 | Rottger et al. | Aug 2008 | B2 |
7420354 | Cutler | Sep 2008 | B2 |
7420815 | Love | Sep 2008 | B2 |
7432691 | Cutler | Oct 2008 | B2 |
7435134 | Lenox | Oct 2008 | B2 |
7435897 | Russell | Oct 2008 | B2 |
7443052 | Wendt et al. | Oct 2008 | B2 |
7443152 | Utsunomiya | Oct 2008 | B2 |
7450401 | Iida | Nov 2008 | B2 |
7456523 | Kobayashi | Nov 2008 | B2 |
7463500 | West | Dec 2008 | B2 |
7466566 | Fukumoto | Dec 2008 | B2 |
7471014 | Lum et al. | Dec 2008 | B2 |
7471524 | Batarseh et al. | Dec 2008 | B1 |
7479774 | Wai et al. | Jan 2009 | B2 |
7482238 | Sung | Jan 2009 | B2 |
7495419 | Ju | Feb 2009 | B1 |
7504811 | Watanabe et al. | Mar 2009 | B2 |
7518346 | Prexl et al. | Apr 2009 | B2 |
7538451 | Nomoto | May 2009 | B2 |
7560915 | Ito et al. | Jul 2009 | B2 |
7589437 | Henne et al. | Sep 2009 | B2 |
7595616 | Prexl et al. | Sep 2009 | B2 |
7596008 | Iwata et al. | Sep 2009 | B2 |
7599200 | Tomonaga | Oct 2009 | B2 |
7600349 | Liebendorfer | Oct 2009 | B2 |
7602080 | Hadar et al. | Oct 2009 | B1 |
7605498 | Ledenev et al. | Oct 2009 | B2 |
7612283 | Toyomura et al. | Nov 2009 | B2 |
7615981 | Wong et al. | Nov 2009 | B2 |
7626834 | Chisenga et al. | Dec 2009 | B2 |
7646116 | Batarseh et al. | Jan 2010 | B2 |
7649434 | Xu et al. | Jan 2010 | B2 |
7701083 | Savage | Apr 2010 | B2 |
7709727 | Roehrig et al. | May 2010 | B2 |
7719140 | Ledenev et al. | May 2010 | B2 |
7723865 | Kitanaka | May 2010 | B2 |
7733069 | Toyomura et al. | Jun 2010 | B2 |
7748175 | Liebendorfer | Jul 2010 | B2 |
7759575 | Jones et al. | Jul 2010 | B2 |
7763807 | Richter | Jul 2010 | B2 |
7772716 | Shaver, II et al. | Aug 2010 | B2 |
7780472 | Lenox | Aug 2010 | B2 |
7782031 | Qiu et al. | Aug 2010 | B2 |
7783389 | Yamada et al. | Aug 2010 | B2 |
7787273 | Lu et al. | Aug 2010 | B2 |
7804282 | Bertele | Sep 2010 | B2 |
7807919 | Powell et al. | Oct 2010 | B2 |
7808125 | Sachdeva et al. | Oct 2010 | B1 |
7812592 | Prior et al. | Oct 2010 | B2 |
7812701 | Lee et al. | Oct 2010 | B2 |
7821225 | Chou et al. | Oct 2010 | B2 |
7824189 | Lauermann et al. | Nov 2010 | B1 |
7839022 | Wolfs | Nov 2010 | B2 |
7843085 | Ledenev et al. | Nov 2010 | B2 |
7864497 | Quardt et al. | Jan 2011 | B2 |
7868599 | Rahman et al. | Jan 2011 | B2 |
7880334 | Evans et al. | Feb 2011 | B2 |
7883808 | Norimatsu et al. | Feb 2011 | B2 |
7884278 | Powell et al. | Feb 2011 | B2 |
7893346 | Nachamkin et al. | Feb 2011 | B2 |
7898112 | Powell et al. | Mar 2011 | B2 |
7900361 | Adest et al. | Mar 2011 | B2 |
7906870 | Ohm | Mar 2011 | B2 |
7919952 | Fahrenbruch | Apr 2011 | B1 |
7919953 | Porter et al. | Apr 2011 | B2 |
7925552 | Tarbell et al. | Apr 2011 | B2 |
7944191 | Xu | May 2011 | B2 |
7945413 | Krein | May 2011 | B2 |
7948221 | Watanabe et al. | May 2011 | B2 |
7952897 | Nocentini et al. | May 2011 | B2 |
7960650 | Richter et al. | Jun 2011 | B2 |
7960950 | Glovinsky | Jun 2011 | B2 |
7969133 | Zhang et al. | Jun 2011 | B2 |
8003885 | Richter et al. | Aug 2011 | B2 |
8004113 | Sander et al. | Aug 2011 | B2 |
8004116 | Ledenev et al. | Aug 2011 | B2 |
8004117 | Adest et al. | Aug 2011 | B2 |
8004866 | Bucella et al. | Aug 2011 | B2 |
8013472 | Adest et al. | Sep 2011 | B2 |
8018748 | Leonard | Sep 2011 | B2 |
8035249 | Shaver, II et al. | Oct 2011 | B2 |
8039730 | Hadar et al. | Oct 2011 | B2 |
8058747 | Avrutsky et al. | Nov 2011 | B2 |
8058752 | Erickson, Jr. et al. | Nov 2011 | B2 |
8067855 | Mumtaz et al. | Nov 2011 | B2 |
8077437 | Mumtaz et al. | Dec 2011 | B2 |
8089780 | Mochikawa et al. | Jan 2012 | B2 |
8089785 | Rodriguez | Jan 2012 | B2 |
8090548 | Abdennadher et al. | Jan 2012 | B2 |
8093756 | Porter et al. | Jan 2012 | B2 |
8093757 | Wolfs | Jan 2012 | B2 |
8097818 | Gerull et al. | Jan 2012 | B2 |
8098055 | Avrutsky et al. | Jan 2012 | B2 |
8102074 | Hadar et al. | Jan 2012 | B2 |
8102144 | Capp et al. | Jan 2012 | B2 |
8111052 | Glovinsky | Feb 2012 | B2 |
8116103 | Zacharias et al. | Feb 2012 | B2 |
8138631 | Allen et al. | Mar 2012 | B2 |
8138914 | Wong et al. | Mar 2012 | B2 |
8139335 | Quardt et al. | Mar 2012 | B2 |
8139382 | Zhang et al. | Mar 2012 | B2 |
8148849 | Zanarini et al. | Apr 2012 | B2 |
8158877 | Klein et al. | Apr 2012 | B2 |
8169252 | Fahrenbruch et al. | May 2012 | B2 |
8179147 | Dargatz et al. | May 2012 | B2 |
8184460 | O'Brien et al. | May 2012 | B2 |
8204709 | Presher, Jr. et al. | Jun 2012 | B2 |
8212408 | Fishman | Jul 2012 | B2 |
8212409 | Bettenwort et al. | Jul 2012 | B2 |
8248804 | Han et al. | Aug 2012 | B2 |
8271599 | Eizips et al. | Sep 2012 | B2 |
8274172 | Hadar et al. | Sep 2012 | B2 |
8279644 | Zhang et al. | Oct 2012 | B2 |
8289183 | Foss | Oct 2012 | B1 |
8289742 | Adest et al. | Oct 2012 | B2 |
8294451 | Hasenfus | Oct 2012 | B2 |
8304932 | Ledenev et al. | Nov 2012 | B2 |
8310101 | Amaratunga et al. | Nov 2012 | B2 |
8314375 | Arditi et al. | Nov 2012 | B2 |
8324921 | Adest et al. | Dec 2012 | B2 |
8325059 | Rozenboim | Dec 2012 | B2 |
8369113 | Rodriguez | Feb 2013 | B2 |
8378656 | de Rooij et al. | Feb 2013 | B2 |
8379418 | Falk | Feb 2013 | B2 |
8405248 | Mumtaz et al. | Mar 2013 | B2 |
8405349 | Kikinis et al. | Mar 2013 | B2 |
8405367 | Chisenga et al. | Mar 2013 | B2 |
8410359 | Richter | Apr 2013 | B2 |
8415552 | Hadar et al. | Apr 2013 | B2 |
8415937 | Hester | Apr 2013 | B2 |
8427009 | Shaver, II et al. | Apr 2013 | B2 |
8436592 | Saitoh | May 2013 | B2 |
8461809 | Rodriguez | Jun 2013 | B2 |
8466789 | Muhlberger et al. | Jun 2013 | B2 |
8473250 | Adest et al. | Jun 2013 | B2 |
8509032 | Rakib | Aug 2013 | B2 |
8531055 | Adest et al. | Sep 2013 | B2 |
8570017 | Perichon et al. | Oct 2013 | B2 |
8581441 | Rotzoll et al. | Nov 2013 | B2 |
8618692 | Adest et al. | Dec 2013 | B2 |
8653689 | Rozenboim | Feb 2014 | B2 |
8669675 | Capp et al. | Mar 2014 | B2 |
8670255 | Gong et al. | Mar 2014 | B2 |
8686333 | Arditi et al. | Apr 2014 | B2 |
8710351 | Robbins | Apr 2014 | B2 |
8751053 | Hadar et al. | Jun 2014 | B2 |
8773236 | Makhota et al. | Jul 2014 | B2 |
8791598 | Jain | Jul 2014 | B2 |
8809699 | Funk | Aug 2014 | B2 |
8811047 | Rodriguez | Aug 2014 | B2 |
8816535 | Adest et al. | Aug 2014 | B2 |
8823218 | Hadar et al. | Sep 2014 | B2 |
8835748 | Frolov et al. | Sep 2014 | B2 |
8841916 | Avrutsky | Sep 2014 | B2 |
8853886 | Avrutsky et al. | Oct 2014 | B2 |
8854193 | Makhota et al. | Oct 2014 | B2 |
8860241 | Hadar et al. | Oct 2014 | B2 |
8860246 | Hadar et al. | Oct 2014 | B2 |
8878563 | Robbins | Nov 2014 | B2 |
8922061 | Arditi | Dec 2014 | B2 |
8933321 | Hadar et al. | Jan 2015 | B2 |
8963375 | DeGraaff | Feb 2015 | B2 |
8963378 | Fornage et al. | Feb 2015 | B1 |
9291696 | Adest et al. | Mar 2016 | B2 |
20010023703 | Kondo et al. | Sep 2001 | A1 |
20010032664 | Takehara et al. | Oct 2001 | A1 |
20010034982 | Nagao et al. | Nov 2001 | A1 |
20010035180 | Kimura et al. | Nov 2001 | A1 |
20010048605 | Kurokami et al. | Dec 2001 | A1 |
20010050102 | Matsumi et al. | Dec 2001 | A1 |
20010054881 | Watanabe | Dec 2001 | A1 |
20020014262 | Matsushita et al. | Feb 2002 | A1 |
20020034083 | Ayyanar et al. | Mar 2002 | A1 |
20020038667 | Kondo et al. | Apr 2002 | A1 |
20020041505 | Suzui et al. | Apr 2002 | A1 |
20020044473 | Toyomura et al. | Apr 2002 | A1 |
20020047309 | Droppo et al. | Apr 2002 | A1 |
20020056089 | Houston | May 2002 | A1 |
20020063552 | Arakawa | May 2002 | A1 |
20020078991 | Nagao et al. | Jun 2002 | A1 |
20020080027 | Conley | Jun 2002 | A1 |
20020118559 | Kurokami et al. | Aug 2002 | A1 |
20020149950 | Takebayashi | Oct 2002 | A1 |
20020165458 | Carter et al. | Nov 2002 | A1 |
20020177401 | Judd et al. | Nov 2002 | A1 |
20020179140 | Toyomura | Dec 2002 | A1 |
20020180408 | McDaniel et al. | Dec 2002 | A1 |
20030038615 | Elbanhawy | Feb 2003 | A1 |
20030058593 | Bertele et al. | Mar 2003 | A1 |
20030058662 | Baudelot et al. | Mar 2003 | A1 |
20030066076 | Minahan | Apr 2003 | A1 |
20030066555 | Hui et al. | Apr 2003 | A1 |
20030075211 | Makita et al. | Apr 2003 | A1 |
20030080741 | LeRow et al. | May 2003 | A1 |
20030085621 | Potega | May 2003 | A1 |
20030090233 | Browe | May 2003 | A1 |
20030094931 | Renyolds | May 2003 | A1 |
20030111103 | Bower et al. | Jun 2003 | A1 |
20030156439 | Ohmichi et al. | Aug 2003 | A1 |
20030164695 | Fasshauer et al. | Sep 2003 | A1 |
20030185026 | Matsuda et al. | Oct 2003 | A1 |
20030193821 | Krieger et al. | Oct 2003 | A1 |
20030201674 | Droppo et al. | Oct 2003 | A1 |
20030214274 | Lethellier | Nov 2003 | A1 |
20030223257 | Onoe | Dec 2003 | A1 |
20040004402 | Kippley | Jan 2004 | A1 |
20040041548 | Perry | Mar 2004 | A1 |
20040056768 | Matsushita et al. | Mar 2004 | A1 |
20040061527 | Knee | Apr 2004 | A1 |
20040076028 | Achleitner et al. | Apr 2004 | A1 |
20040117676 | Kobayashi et al. | Jun 2004 | A1 |
20040118446 | Toyomura | Jun 2004 | A1 |
20040123894 | Erban | Jul 2004 | A1 |
20040124816 | DeLepaut | Jul 2004 | A1 |
20040125618 | De Rooij et al. | Jul 2004 | A1 |
20040140719 | Vulih et al. | Jul 2004 | A1 |
20040141345 | Cheng et al. | Jul 2004 | A1 |
20040164718 | McDaniel et al. | Aug 2004 | A1 |
20040165408 | West et al. | Aug 2004 | A1 |
20040169499 | Huang et al. | Sep 2004 | A1 |
20040170038 | Ichinose et al. | Sep 2004 | A1 |
20040189090 | Yanagida et al. | Sep 2004 | A1 |
20040189432 | Yan et al. | Sep 2004 | A1 |
20040201279 | Templeton | Oct 2004 | A1 |
20040201933 | Blanc | Oct 2004 | A1 |
20040207366 | Sung | Oct 2004 | A1 |
20040211458 | Gui et al. | Oct 2004 | A1 |
20040223351 | Kurokami et al. | Nov 2004 | A1 |
20040233685 | Matsuo et al. | Nov 2004 | A1 |
20040246226 | Moon | Dec 2004 | A1 |
20040258141 | Tustison et al. | Dec 2004 | A1 |
20040264225 | Bhavaraju et al. | Dec 2004 | A1 |
20050002214 | Deng et al. | Jan 2005 | A1 |
20050005785 | Poss et al. | Jan 2005 | A1 |
20050006958 | Dubovsky | Jan 2005 | A1 |
20050017697 | Capel | Jan 2005 | A1 |
20050017701 | Hsu | Jan 2005 | A1 |
20050030772 | Phadke | Feb 2005 | A1 |
20050040800 | Sutardja | Feb 2005 | A1 |
20050057214 | Matan | Mar 2005 | A1 |
20050057215 | Matan | Mar 2005 | A1 |
20050068012 | Cutler | Mar 2005 | A1 |
20050068820 | Radosevich et al. | Mar 2005 | A1 |
20050099138 | Wilhelm | May 2005 | A1 |
20050103376 | Matsushita et al. | May 2005 | A1 |
20050105224 | Nishi | May 2005 | A1 |
20050105306 | Deng et al. | May 2005 | A1 |
20050110454 | Tsai et al. | May 2005 | A1 |
20050121067 | Toyomura et al. | Jun 2005 | A1 |
20050135031 | Colby et al. | Jun 2005 | A1 |
20050139258 | Liu et al. | Jun 2005 | A1 |
20050162018 | Realmuto et al. | Jul 2005 | A1 |
20050172995 | Rohrig et al. | Aug 2005 | A1 |
20050179420 | Satoh et al. | Aug 2005 | A1 |
20050194937 | Jacobs | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050213272 | Kobayashi | Sep 2005 | A1 |
20050225090 | Wobben | Oct 2005 | A1 |
20050226017 | Kotsopoulos et al. | Oct 2005 | A1 |
20050242795 | Al-Kuran et al. | Nov 2005 | A1 |
20050257827 | Gaudiana et al. | Nov 2005 | A1 |
20050269988 | Thrap | Dec 2005 | A1 |
20050275386 | Jepsen et al. | Dec 2005 | A1 |
20050275527 | Kates | Dec 2005 | A1 |
20050281064 | Olsen et al. | Dec 2005 | A1 |
20060001406 | Matan | Jan 2006 | A1 |
20060017327 | Siri et al. | Jan 2006 | A1 |
20060034106 | Johnson | Feb 2006 | A1 |
20060038692 | Schnetker | Feb 2006 | A1 |
20060043792 | Hjort et al. | Mar 2006 | A1 |
20060053447 | Krzyzanowski et al. | Mar 2006 | A1 |
20060066349 | Murakami | Mar 2006 | A1 |
20060068239 | Norimatsu et al. | Mar 2006 | A1 |
20060103360 | Cutler | May 2006 | A9 |
20060108979 | Daniel et al. | May 2006 | A1 |
20060113843 | Beveridge | Jun 2006 | A1 |
20060113979 | Ishigaki et al. | Jun 2006 | A1 |
20060118162 | Saelzer et al. | Jun 2006 | A1 |
20060132102 | Harvey | Jun 2006 | A1 |
20060149396 | Templeton | Jul 2006 | A1 |
20060162772 | Presher et al. | Jul 2006 | A1 |
20060163946 | Henne et al. | Jul 2006 | A1 |
20060164065 | Hoouk et al. | Jul 2006 | A1 |
20060171182 | Siri et al. | Aug 2006 | A1 |
20060174939 | Matan | Aug 2006 | A1 |
20060176029 | McGinty et al. | Aug 2006 | A1 |
20060176031 | Forman et al. | Aug 2006 | A1 |
20060176036 | Flatness et al. | Aug 2006 | A1 |
20060176716 | Balakrishnan et al. | Aug 2006 | A1 |
20060185727 | Matan | Aug 2006 | A1 |
20060192540 | Balakrishnan et al. | Aug 2006 | A1 |
20060208660 | Shinmura et al. | Sep 2006 | A1 |
20060222916 | Norimatsu et al. | Oct 2006 | A1 |
20060227578 | Datta et al. | Oct 2006 | A1 |
20060231132 | Neussner | Oct 2006 | A1 |
20060232220 | Melis | Oct 2006 | A1 |
20060235717 | Sharma et al. | Oct 2006 | A1 |
20060237058 | McClintock et al. | Oct 2006 | A1 |
20060261751 | Okabe et al. | Nov 2006 | A1 |
20060266408 | Home et al. | Nov 2006 | A1 |
20060290317 | McNulty et al. | Dec 2006 | A1 |
20070001653 | Xu | Jan 2007 | A1 |
20070013349 | Bassett | Jan 2007 | A1 |
20070019613 | Frezzolini | Jan 2007 | A1 |
20070024257 | Boldo | Feb 2007 | A1 |
20070027644 | Bettenwort et al. | Feb 2007 | A1 |
20070030068 | Motonobu et al. | Feb 2007 | A1 |
20070035975 | Dickerson et al. | Feb 2007 | A1 |
20070040540 | Cutler | Feb 2007 | A1 |
20070044837 | Simburger et al. | Mar 2007 | A1 |
20070075689 | Kinder et al. | Apr 2007 | A1 |
20070075711 | Blanc et al. | Apr 2007 | A1 |
20070081364 | Andreycak | Apr 2007 | A1 |
20070089778 | Home et al. | Apr 2007 | A1 |
20070103108 | Capp et al. | May 2007 | A1 |
20070107767 | Hayden et al. | May 2007 | A1 |
20070119718 | Gibson et al. | May 2007 | A1 |
20070121648 | Hahn | May 2007 | A1 |
20070133241 | Mumtaz et al. | Jun 2007 | A1 |
20070133421 | Young | Jun 2007 | A1 |
20070147075 | Bang | Jun 2007 | A1 |
20070158185 | Andelman et al. | Jul 2007 | A1 |
20070159866 | Siri | Jul 2007 | A1 |
20070164612 | Wendt et al. | Jul 2007 | A1 |
20070164750 | Chen et al. | Jul 2007 | A1 |
20070165347 | Wendt et al. | Jul 2007 | A1 |
20070205778 | Fabbro et al. | Sep 2007 | A1 |
20070209656 | Lee | Sep 2007 | A1 |
20070211888 | Corcoran et al. | Sep 2007 | A1 |
20070227574 | Cart | Oct 2007 | A1 |
20070235071 | Work et al. | Oct 2007 | A1 |
20070236187 | Wai et al. | Oct 2007 | A1 |
20070247877 | Kwon et al. | Oct 2007 | A1 |
20070271006 | Golden et al. | Nov 2007 | A1 |
20070273342 | Kataoka et al. | Nov 2007 | A1 |
20070273351 | Matan | Nov 2007 | A1 |
20070290636 | Beck et al. | Dec 2007 | A1 |
20070290656 | Lee Tai Keung | Dec 2007 | A1 |
20080021707 | Bou-Ghazale et al. | Jan 2008 | A1 |
20080024098 | Hojo | Jan 2008 | A1 |
20080036440 | Garmer | Feb 2008 | A1 |
20080055941 | Victor et al. | Mar 2008 | A1 |
20080080177 | Chang | Apr 2008 | A1 |
20080088184 | Tung et al. | Apr 2008 | A1 |
20080089277 | Alexander et al. | Apr 2008 | A1 |
20080097655 | Hadar et al. | Apr 2008 | A1 |
20080106250 | Prior et al. | May 2008 | A1 |
20080111529 | Shah et al. | May 2008 | A1 |
20080115823 | Kinsey | May 2008 | A1 |
20080121272 | Besser et al. | May 2008 | A1 |
20080122449 | Besser et al. | May 2008 | A1 |
20080122518 | Besser et al. | May 2008 | A1 |
20080136367 | Adest et al. | Jun 2008 | A1 |
20080142071 | Dorn et al. | Jun 2008 | A1 |
20080143188 | Adest et al. | Jun 2008 | A1 |
20080143462 | Belisle et al. | Jun 2008 | A1 |
20080144294 | Adest et al. | Jun 2008 | A1 |
20080147335 | Adest et al. | Jun 2008 | A1 |
20080149167 | Liu | Jun 2008 | A1 |
20080150366 | Adest et al. | Jun 2008 | A1 |
20080150484 | Kimball et al. | Jun 2008 | A1 |
20080164766 | Adest et al. | Jul 2008 | A1 |
20080179949 | Besser et al. | Jul 2008 | A1 |
20080191560 | Besser et al. | Aug 2008 | A1 |
20080191675 | Besser et al. | Aug 2008 | A1 |
20080192519 | Iwata et al. | Aug 2008 | A1 |
20080198523 | Schmidt et al. | Aug 2008 | A1 |
20080205096 | Lai et al. | Aug 2008 | A1 |
20080218152 | Bo | Sep 2008 | A1 |
20080224652 | Zhu et al. | Sep 2008 | A1 |
20080236647 | Gibson et al. | Oct 2008 | A1 |
20080236648 | Klein et al. | Oct 2008 | A1 |
20080238195 | Shaver et al. | Oct 2008 | A1 |
20080238372 | Cintra et al. | Oct 2008 | A1 |
20080246460 | Smith | Oct 2008 | A1 |
20080246463 | Sinton et al. | Oct 2008 | A1 |
20080252273 | Woo et al. | Oct 2008 | A1 |
20080264470 | Masuda et al. | Oct 2008 | A1 |
20080266919 | Mallwitz | Oct 2008 | A1 |
20080291707 | Fang | Nov 2008 | A1 |
20080294472 | Yamada | Nov 2008 | A1 |
20080303503 | Wolfs | Dec 2008 | A1 |
20080304296 | NadimpalliRaju et al. | Dec 2008 | A1 |
20080304298 | Toba et al. | Dec 2008 | A1 |
20090012917 | Thompson et al. | Jan 2009 | A1 |
20090014050 | Haaf | Jan 2009 | A1 |
20090014058 | Croft et al. | Jan 2009 | A1 |
20090015071 | Iwata et al. | Jan 2009 | A1 |
20090020151 | Fornage | Jan 2009 | A1 |
20090021877 | Fornage et al. | Jan 2009 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090066357 | Fornage | Mar 2009 | A1 |
20090066399 | Chen et al. | Mar 2009 | A1 |
20090069950 | Kurokami et al. | Mar 2009 | A1 |
20090073726 | Babcock | Mar 2009 | A1 |
20090078300 | Ang et al. | Mar 2009 | A1 |
20090080226 | Fornage | Mar 2009 | A1 |
20090084570 | Gherardini et al. | Apr 2009 | A1 |
20090097172 | Bremicker et al. | Apr 2009 | A1 |
20090101191 | Beck et al. | Apr 2009 | A1 |
20090102440 | Coles | Apr 2009 | A1 |
20090114263 | Powell et al. | May 2009 | A1 |
20090120485 | Kikinis | May 2009 | A1 |
20090121549 | Leonard | May 2009 | A1 |
20090133736 | Powell et al. | May 2009 | A1 |
20090140715 | Adest et al. | Jun 2009 | A1 |
20090141522 | Adest et al. | Jun 2009 | A1 |
20090145480 | Adest et al. | Jun 2009 | A1 |
20090146667 | Adest et al. | Jun 2009 | A1 |
20090146671 | Gazit | Jun 2009 | A1 |
20090147554 | Adest et al. | Jun 2009 | A1 |
20090150005 | Hadar et al. | Jun 2009 | A1 |
20090179662 | Moulton et al. | Jul 2009 | A1 |
20090182532 | Stoeber et al. | Jul 2009 | A1 |
20090184746 | Fahrenbruch | Jul 2009 | A1 |
20090189456 | Skutt | Jul 2009 | A1 |
20090190275 | Gilmore et al. | Jul 2009 | A1 |
20090195081 | Quardt | Aug 2009 | A1 |
20090206666 | Sella et al. | Aug 2009 | A1 |
20090207543 | Boniface et al. | Aug 2009 | A1 |
20090217965 | Dougal et al. | Sep 2009 | A1 |
20090224817 | Nakamura et al. | Sep 2009 | A1 |
20090234692 | Powell et al. | Sep 2009 | A1 |
20090237042 | Glovinski | Sep 2009 | A1 |
20090237043 | Glovinsky | Sep 2009 | A1 |
20090242011 | Proisy et al. | Oct 2009 | A1 |
20090273241 | Gazit et al. | Nov 2009 | A1 |
20090278496 | Nakao et al. | Nov 2009 | A1 |
20090282755 | Abbott et al. | Nov 2009 | A1 |
20090283129 | Foss | Nov 2009 | A1 |
20090283130 | Gilmore et al. | Nov 2009 | A1 |
20090284232 | Zhang et al. | Nov 2009 | A1 |
20090284998 | Zhang et al. | Nov 2009 | A1 |
20090295225 | Asplund et al. | Dec 2009 | A1 |
20090322494 | Lee | Dec 2009 | A1 |
20090325003 | Aberle et al. | Dec 2009 | A1 |
20100001587 | Casey et al. | Jan 2010 | A1 |
20100002349 | La Scala | Jan 2010 | A1 |
20100013452 | Tang et al. | Jan 2010 | A1 |
20100026097 | Avrutsky et al. | Feb 2010 | A1 |
20100052735 | Burkland et al. | Mar 2010 | A1 |
20100057267 | Liu et al. | Mar 2010 | A1 |
20100060000 | Scholte-Wassink | Mar 2010 | A1 |
20100085670 | Palaniswami et al. | Apr 2010 | A1 |
20100115093 | Rice | May 2010 | A1 |
20100124027 | Handelsman et al. | May 2010 | A1 |
20100124087 | Falk | May 2010 | A1 |
20100126550 | Foss | May 2010 | A1 |
20100127570 | Hadar et al. | May 2010 | A1 |
20100127571 | Hadar et al. | May 2010 | A1 |
20100132757 | He et al. | Jun 2010 | A1 |
20100132758 | Gilmore | Jun 2010 | A1 |
20100133911 | Williams et al. | Jun 2010 | A1 |
20100139734 | Hadar et al. | Jun 2010 | A1 |
20100139743 | Hadar et al. | Jun 2010 | A1 |
20100147362 | King et al. | Jun 2010 | A1 |
20100154858 | Jain | Jun 2010 | A1 |
20100176773 | Capel | Jul 2010 | A1 |
20100181957 | Goeltner | Jul 2010 | A1 |
20100191383 | Gaul | Jul 2010 | A1 |
20100206378 | Erickson, Jr. et al. | Aug 2010 | A1 |
20100207764 | Muhlberger et al. | Aug 2010 | A1 |
20100207770 | Thiemann | Aug 2010 | A1 |
20100208501 | Matan et al. | Aug 2010 | A1 |
20100214808 | Rodriguez | Aug 2010 | A1 |
20100217551 | Goff et al. | Aug 2010 | A1 |
20100229915 | Ledenev et al. | Sep 2010 | A1 |
20100241375 | Kumar et al. | Sep 2010 | A1 |
20100244575 | Coccia et al. | Sep 2010 | A1 |
20100264736 | Mumtaz et al. | Oct 2010 | A1 |
20100269430 | Haddock | Oct 2010 | A1 |
20100277001 | Wagoner | Nov 2010 | A1 |
20100282290 | Schwarze et al. | Nov 2010 | A1 |
20100286836 | Shaver, II et al. | Nov 2010 | A1 |
20100288327 | Lisi et al. | Nov 2010 | A1 |
20100294528 | Sella et al. | Nov 2010 | A1 |
20100294903 | Shmukler et al. | Nov 2010 | A1 |
20100295680 | Dumps | Nov 2010 | A1 |
20100297860 | Shmukler et al. | Nov 2010 | A1 |
20100301991 | Sella et al. | Dec 2010 | A1 |
20100308662 | Schatz et al. | Dec 2010 | A1 |
20100309692 | Chisenga et al. | Dec 2010 | A1 |
20100321148 | Gevorkian | Dec 2010 | A1 |
20100326809 | Lang et al. | Dec 2010 | A1 |
20100327657 | Kuran | Dec 2010 | A1 |
20100327659 | Lisi et al. | Dec 2010 | A1 |
20100332047 | Arditi et al. | Dec 2010 | A1 |
20110006743 | Fabbro | Jan 2011 | A1 |
20110012430 | Cheng et al. | Jan 2011 | A1 |
20110025130 | Hadar et al. | Feb 2011 | A1 |
20110031816 | Buthker et al. | Feb 2011 | A1 |
20110031946 | Egan et al. | Feb 2011 | A1 |
20110037600 | Takehara et al. | Feb 2011 | A1 |
20110043172 | Dearn | Feb 2011 | A1 |
20110049990 | Amaratunga et al. | Mar 2011 | A1 |
20110050190 | Avrutsky | Mar 2011 | A1 |
20110056533 | Kuan | Mar 2011 | A1 |
20110061705 | Croft et al. | Mar 2011 | A1 |
20110061713 | Powell et al. | Mar 2011 | A1 |
20110062784 | Wolfs | Mar 2011 | A1 |
20110068633 | Quardt et al. | Mar 2011 | A1 |
20110079263 | Avrutsky | Apr 2011 | A1 |
20110083733 | Marroquin et al. | Apr 2011 | A1 |
20110084553 | Adest et al. | Apr 2011 | A1 |
20110114154 | Lichy et al. | May 2011 | A1 |
20110115295 | Moon et al. | May 2011 | A1 |
20110121652 | Sella et al. | May 2011 | A1 |
20110125431 | Adest et al. | May 2011 | A1 |
20110132424 | Rakib | Jun 2011 | A1 |
20110133552 | Binder et al. | Jun 2011 | A1 |
20110139213 | Lee | Jun 2011 | A1 |
20110140536 | Adest et al. | Jun 2011 | A1 |
20110161722 | Makhota et al. | Jun 2011 | A1 |
20110172842 | Makhota et al. | Jul 2011 | A1 |
20110173276 | Eizips et al. | Jul 2011 | A1 |
20110181251 | Porter et al. | Jul 2011 | A1 |
20110181340 | Gazit | Jul 2011 | A1 |
20110198935 | Hinman et al. | Aug 2011 | A1 |
20110210610 | Mitsuoka et al. | Sep 2011 | A1 |
20110210611 | Ledenev et al. | Sep 2011 | A1 |
20110210612 | Leutwein | Sep 2011 | A1 |
20110218687 | Hadar et al. | Sep 2011 | A1 |
20110227411 | Arditi | Sep 2011 | A1 |
20110232714 | Bhavaraju et al. | Sep 2011 | A1 |
20110240100 | Lu et al. | Oct 2011 | A1 |
20110245989 | Makhota et al. | Oct 2011 | A1 |
20110246338 | Eich | Oct 2011 | A1 |
20110254372 | Haines et al. | Oct 2011 | A1 |
20110260866 | Avrutsky et al. | Oct 2011 | A1 |
20110267859 | Chapman | Nov 2011 | A1 |
20110271611 | Maracci et al. | Nov 2011 | A1 |
20110273015 | Adest et al. | Nov 2011 | A1 |
20110273016 | Adest et al. | Nov 2011 | A1 |
20110273302 | Fornage et al. | Nov 2011 | A1 |
20110285205 | Ledenev et al. | Nov 2011 | A1 |
20110290317 | Naumovitz et al. | Dec 2011 | A1 |
20110291486 | Adest et al. | Dec 2011 | A1 |
20110298288 | Cho et al. | Dec 2011 | A1 |
20110301772 | Zuercher et al. | Dec 2011 | A1 |
20110304204 | Avrutsky et al. | Dec 2011 | A1 |
20110304213 | Avrutsky et al. | Dec 2011 | A1 |
20110304215 | Avrutsky et al. | Dec 2011 | A1 |
20110316346 | Porter et al. | Dec 2011 | A1 |
20120007613 | Gazit | Jan 2012 | A1 |
20120019966 | DeBoer | Jan 2012 | A1 |
20120032515 | Ledenev et al. | Feb 2012 | A1 |
20120033392 | Golubovic et al. | Feb 2012 | A1 |
20120033463 | Rodriguez | Feb 2012 | A1 |
20120039099 | Rodriguez | Feb 2012 | A1 |
20120043818 | Stratakos et al. | Feb 2012 | A1 |
20120044014 | Stratakos et al. | Feb 2012 | A1 |
20120048325 | Matsuo et al. | Mar 2012 | A1 |
20120056483 | Capp et al. | Mar 2012 | A1 |
20120080943 | Phadke | Apr 2012 | A1 |
20120081009 | Shteynberg et al. | Apr 2012 | A1 |
20120081933 | Garrity | Apr 2012 | A1 |
20120081934 | Garrity et al. | Apr 2012 | A1 |
20120081937 | Phadke | Apr 2012 | A1 |
20120087159 | Chapman et al. | Apr 2012 | A1 |
20120091810 | Aiello et al. | Apr 2012 | A1 |
20120091817 | Seymour et al. | Apr 2012 | A1 |
20120098344 | Bergveld et al. | Apr 2012 | A1 |
20120113554 | Paoletti et al. | May 2012 | A1 |
20120119584 | Hadar et al. | May 2012 | A1 |
20120138123 | Newdoll et al. | Jun 2012 | A1 |
20120139343 | Adest et al. | Jun 2012 | A1 |
20120146420 | Wolfs | Jun 2012 | A1 |
20120161526 | Huang et al. | Jun 2012 | A1 |
20120161528 | Mumtaz et al. | Jun 2012 | A1 |
20120174961 | Larson et al. | Jul 2012 | A1 |
20120194003 | Schmidt et al. | Aug 2012 | A1 |
20120199172 | Avrutsky | Aug 2012 | A1 |
20120215367 | Eizips et al. | Aug 2012 | A1 |
20120217973 | Avrutsky | Aug 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120253533 | Eizips et al. | Oct 2012 | A1 |
20120253541 | Arditi et al. | Oct 2012 | A1 |
20120255591 | Arditi et al. | Oct 2012 | A1 |
20120274264 | Mun et al. | Nov 2012 | A1 |
20130026839 | Grana | Jan 2013 | A1 |
20130026840 | Arditi et al. | Jan 2013 | A1 |
20130026842 | Arditi et al. | Jan 2013 | A1 |
20130026843 | Arditi et al. | Jan 2013 | A1 |
20130038124 | Newdoll et al. | Feb 2013 | A1 |
20130049710 | Kraft et al. | Feb 2013 | A1 |
20130094262 | Avrutsky | Apr 2013 | A1 |
20130134790 | Amaratunga et al. | May 2013 | A1 |
20130181533 | Capp et al. | Jul 2013 | A1 |
20130192657 | Hadar et al. | Aug 2013 | A1 |
20130193765 | Yoscovich | Aug 2013 | A1 |
20130222144 | Hadar et al. | Aug 2013 | A1 |
20130229834 | Garrity et al. | Sep 2013 | A1 |
20130229842 | Garrity | Sep 2013 | A1 |
20130234518 | Mumtaz et al. | Sep 2013 | A1 |
20130235637 | Rodriguez | Sep 2013 | A1 |
20130279210 | Chisenga et al. | Oct 2013 | A1 |
20130294126 | Garrity et al. | Nov 2013 | A1 |
20130307556 | Ledenev et al. | Nov 2013 | A1 |
20130321013 | Pisklak et al. | Dec 2013 | A1 |
20130332093 | Adest et al. | Dec 2013 | A1 |
20140097808 | Clark et al. | Apr 2014 | A1 |
20140167715 | Wu et al. | Jun 2014 | A1 |
20140191583 | Chisenga et al. | Jul 2014 | A1 |
20140246915 | Mumtaz | Sep 2014 | A1 |
20140246927 | Mumtaz | Sep 2014 | A1 |
20140252859 | Chisenga et al. | Sep 2014 | A1 |
20140265579 | Mumtaz | Sep 2014 | A1 |
20140265629 | Gazit et al. | Sep 2014 | A1 |
20140265638 | Orr et al. | Sep 2014 | A1 |
20140306543 | Garrity et al. | Oct 2014 | A1 |
20140327313 | Arditi et al. | Nov 2014 | A1 |
20150022006 | Garrity et al. | Jan 2015 | A1 |
20150028683 | Hadar et al. | Jan 2015 | A1 |
20150028692 | Makhota et al. | Jan 2015 | A1 |
20150188415 | Abido et al. | Jul 2015 | A1 |
20150364918 | Singh et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
2073800 | Sep 2000 | AU |
2005262278 | Jan 2006 | AU |
1183574 | Mar 1985 | CA |
2063243 | Dec 1991 | CA |
2301657 | Mar 1999 | CA |
2394761 | Jun 2001 | CA |
2658087 | Jun 2001 | CA |
2443450 | Mar 2005 | CA |
2572452 | Jan 2006 | CA |
2613038 | Jan 2007 | CA |
2704605 | May 2009 | CA |
2305016 | Jan 1999 | CN |
1244745 | Feb 2000 | CN |
1262552 | Aug 2000 | CN |
1064487 | Apr 2001 | CN |
1309451 | Aug 2001 | CN |
1362655 | Aug 2002 | CN |
2514538 | Oct 2002 | CN |
1122905 | Oct 2003 | CN |
1474492 | Feb 2004 | CN |
1523726 | Aug 2004 | CN |
1185782 | Jan 2005 | CN |
2672938 | Jan 2005 | CN |
1245795 | Mar 2006 | CN |
1787717 | Jun 2006 | CN |
1841254 | Oct 2006 | CN |
1841823 | Oct 2006 | CN |
1892239 | Jan 2007 | CN |
1902809 | Jan 2007 | CN |
1929276 | Mar 2007 | CN |
1930925 | Mar 2007 | CN |
101030752 | Sep 2007 | CN |
101050770 | Oct 2007 | CN |
101107712 | Jan 2008 | CN |
100371843 | Feb 2008 | CN |
101136129 | Mar 2008 | CN |
101180781 | May 2008 | CN |
100426175 | Oct 2008 | CN |
201203438 | Mar 2009 | CN |
101488271 | Jul 2009 | CN |
101523230 | Sep 2009 | CN |
101953060 | Jan 2011 | CN |
102089883 | Jun 2011 | CN |
202103601 | Jan 2012 | CN |
202178274 | Mar 2012 | CN |
202871823 | Apr 2013 | CN |
203367304 | Dec 2013 | CN |
3236071 | Jan 1984 | DE |
3525630 | Jan 1987 | DE |
3729000 | Mar 1989 | DE |
4019710 | Jan 1992 | DE |
4032569 | Apr 1992 | DE |
4232356 | Mar 1994 | DE |
4325436 | Feb 1995 | DE |
4328511 | Mar 1995 | DE |
19515786 | Nov 1995 | DE |
19502762 | Aug 1996 | DE |
19538946 | Apr 1997 | DE |
19609189 | Sep 1997 | DE |
19618882 | Nov 1997 | DE |
19701897 | Jul 1998 | DE |
19718046 | Nov 1998 | DE |
19732218 | Mar 1999 | DE |
19737286 | Mar 1999 | DE |
19838230 | Feb 2000 | DE |
19846818 | Apr 2000 | DE |
19904561 | Aug 2000 | DE |
19928809 | Jan 2001 | DE |
019937410 | Feb 2001 | DE |
19961705 | Jul 2001 | DE |
10064039 | Dec 2001 | DE |
10060108 | Jun 2002 | DE |
10103431 | Aug 2002 | DE |
10136147 | Feb 2003 | DE |
10222621 | Nov 2003 | DE |
202004001246 | Apr 2004 | DE |
10345302 | Apr 2005 | DE |
102004043478 | Apr 2005 | DE |
102004037446 | Jun 2006 | DE |
69734495 | Jul 2006 | DE |
69735169 | Aug 2006 | DE |
102005012213 | Aug 2006 | DE |
102005018173 | Oct 2006 | DE |
102005020937 | Nov 2006 | DE |
102005036153 | Dec 2006 | DE |
102005030907 | Jan 2007 | DE |
102005032864 | Jan 2007 | DE |
102006023563 | Nov 2007 | DE |
102006026073 | Dec 2007 | DE |
102007051134 | Mar 2009 | DE |
102007050031 | Apr 2009 | DE |
102008057874 | May 2010 | DE |
102009051186 | May 2010 | DE |
102010023549 | Dec 2011 | DE |
102013106255 | Dec 2014 | DE |
0027405 | Apr 1981 | EP |
169673 | Jan 1986 | EP |
0178757 | Apr 1986 | EP |
0206253 | Dec 1986 | EP |
0231211 | Aug 1987 | EP |
0293219 | Nov 1988 | EP |
0340006 | Nov 1989 | EP |
419093 | Mar 1991 | EP |
420295 | Apr 1991 | EP |
0521467 | Jan 1993 | EP |
0576271 | Dec 1993 | EP |
0577334 | Jan 1994 | EP |
604777 | Jul 1994 | EP |
0628901 | Dec 1994 | EP |
0642199 | Mar 1995 | EP |
0670915 | Sep 1995 | EP |
756178 | Jan 1997 | EP |
0756372 | Jan 1997 | EP |
0780750 | Jun 1997 | EP |
0809293 | Nov 1997 | EP |
827254 | Mar 1998 | EP |
0895146 | Feb 1999 | EP |
0906660 | Apr 1999 | EP |
0947905 | Oct 1999 | EP |
1012886 | Jun 2000 | EP |
1024575 | Aug 2000 | EP |
1034465 | Sep 2000 | EP |
1035640 | Sep 2000 | EP |
1039361 | Sep 2000 | EP |
1039620 | Sep 2000 | EP |
1039621 | Sep 2000 | EP |
1047179 | Oct 2000 | EP |
1130770 | Sep 2001 | EP |
1143594 | Oct 2001 | EP |
1187291 | Mar 2002 | EP |
1235339 | Aug 2002 | EP |
1239573 | Sep 2002 | EP |
1239576 | Sep 2002 | EP |
1254505 | Nov 2002 | EP |
1271742 | Jan 2003 | EP |
1330009 | Jul 2003 | EP |
1339153 | Aug 2003 | EP |
1369983 | Dec 2003 | EP |
1376706 | Jan 2004 | EP |
1388774 | Feb 2004 | EP |
1400988 | Mar 2004 | EP |
1407534 | Apr 2004 | EP |
1418482 | May 2004 | EP |
1429393 | Jun 2004 | EP |
1442473 | Aug 2004 | EP |
1447561 | Aug 2004 | EP |
1457857 | Sep 2004 | EP |
1463188 | Sep 2004 | EP |
1475882 | Nov 2004 | EP |
1503490 | Feb 2005 | EP |
1521345 | Apr 2005 | EP |
1526633 | Apr 2005 | EP |
1531542 | May 2005 | EP |
1531545 | May 2005 | EP |
1532727 | May 2005 | EP |
1552563 | Jul 2005 | EP |
1562281 | Aug 2005 | EP |
1580862 | Sep 2005 | EP |
1603212 | Dec 2005 | EP |
1610571 | Dec 2005 | EP |
1623495 | Feb 2006 | EP |
1657557 | May 2006 | EP |
1657797 | May 2006 | EP |
1691246 | Aug 2006 | EP |
1706937 | Oct 2006 | EP |
1708070 | Oct 2006 | EP |
1716272 | Nov 2006 | EP |
1728413 | Dec 2006 | EP |
1750193 | Feb 2007 | EP |
1766490 | Mar 2007 | EP |
1782146 | May 2007 | EP |
1785800 | May 2007 | EP |
1842121 | Oct 2007 | EP |
1859362 | Nov 2007 | EP |
1887675 | Feb 2008 | EP |
1901419 | Mar 2008 | EP |
1902349 | Mar 2008 | EP |
1911101 | Apr 2008 | EP |
2048679 | Apr 2009 | EP |
2061088 | May 2009 | EP |
2092625 | Aug 2009 | EP |
2092631 | Aug 2009 | EP |
2135348 | Dec 2009 | EP |
2144133 | Jan 2010 | EP |
2206159 | Jul 2010 | EP |
2232690 | Sep 2010 | EP |
2256819 | Dec 2010 | EP |
2315328 | Apr 2011 | EP |
2355268 | Aug 2011 | EP |
2374190 | Oct 2011 | EP |
2393178 | Dec 2011 | EP |
2495766 | Sep 2012 | EP |
2533299 | Dec 2012 | EP |
2549635 | Jan 2013 | EP |
2561596 | Feb 2013 | EP |
2615644 | Jul 2013 | EP |
2621045 | Jul 2013 | EP |
2666222 | Nov 2013 | EP |
2722979 | Apr 2014 | EP |
2779251 | Sep 2014 | EP |
2249147 | Mar 2006 | ES |
2249149 | Mar 2006 | ES |
2796216 | Jan 2001 | FR |
2819653 | Jul 2002 | FR |
1211885 | Nov 1970 | GB |
1261838 | Jan 1972 | GB |
1571681 | Jul 1980 | GB |
1597508 | Sep 1981 | GB |
2327208 | Jan 1999 | GB |
2339465 | Jan 2000 | GB |
2376801 | Dec 2002 | GB |
2399463 | Sep 2004 | GB |
2399465 | Sep 2004 | GB |
2415841 | Jan 2006 | GB |
2419968 | May 2006 | GB |
2421847 | Jul 2006 | GB |
2476508 | Jun 2011 | GB |
2480015 | Nov 2011 | GB |
2480015 | Nov 2011 | GB |
2482653 | Feb 2012 | GB |
2483317 | Mar 2012 | GB |
2485527 | May 2012 | GB |
2486408 | Jun 2012 | GB |
2487368 | Jul 2012 | GB |
2497275 | Jun 2013 | GB |
2498365 | Jul 2013 | GB |
2498790 | Jul 2013 | GB |
2498791 | Jul 2013 | GB |
2499991 | Sep 2013 | GB |
61065320 | Apr 1986 | JP |
H01311874 | Dec 1989 | JP |
H04219982 | Aug 1992 | JP |
H04364378 | Dec 1992 | JP |
8009557 | Jan 1996 | JP |
H0897460 | Apr 1996 | JP |
H08116628 | May 1996 | JP |
H08185235 | Jul 1996 | JP |
H08227324 | Sep 1996 | JP |
H08316517 | Nov 1996 | JP |
H08317664 | Nov 1996 | JP |
H094692 | Jan 1997 | JP |
H09148611 | Jun 1997 | JP |
H09275644 | Oct 1997 | JP |
2676789 | Nov 1997 | JP |
H1017445 | Jan 1998 | JP |
H1075580 | Mar 1998 | JP |
H10201086 | Jul 1998 | JP |
H10285966 | Oct 1998 | JP |
H10308523 | Nov 1998 | JP |
H1110353 | Jan 1999 | JP |
11041832 | Feb 1999 | JP |
H1146457 | Feb 1999 | JP |
11103538 | Apr 1999 | JP |
2892183 | May 1999 | JP |
11206038 | Jul 1999 | JP |
H11266545 | Sep 1999 | JP |
11289891 | Oct 1999 | JP |
11318042 | Nov 1999 | JP |
2000020150 | Jan 2000 | JP |
3015512 | Mar 2000 | JP |
2000160789 | Jun 2000 | JP |
2000166097 | Jun 2000 | JP |
2000174307 | Jun 2000 | JP |
2000232791 | Aug 2000 | JP |
2000232793 | Aug 2000 | JP |
2000316282 | Nov 2000 | JP |
2000324852 | Nov 2000 | JP |
2000339044 | Dec 2000 | JP |
2000341974 | Dec 2000 | JP |
2000347753 | Dec 2000 | JP |
2000358330 | Dec 2000 | JP |
2001060120 | Mar 2001 | JP |
2001075662 | Mar 2001 | JP |
2001178145 | Jun 2001 | JP |
2001189476 | Jul 2001 | JP |
2001224142 | Aug 2001 | JP |
2001250964 | Sep 2001 | JP |
2002073184 | Mar 2002 | JP |
2002238246 | Aug 2002 | JP |
2002270876 | Sep 2002 | JP |
2002300735 | Oct 2002 | JP |
2002339591 | Nov 2002 | JP |
2002354677 | Dec 2002 | JP |
2003102134 | Apr 2003 | JP |
2003124492 | Apr 2003 | JP |
2003134661 | May 2003 | JP |
2003134667 | May 2003 | JP |
2003282916 | Oct 2003 | JP |
2003289674 | Oct 2003 | JP |
2004055603 | Feb 2004 | JP |
2004111754 | Apr 2004 | JP |
2004194500 | Jul 2004 | JP |
2004260944 | Sep 2004 | JP |
2004312994 | Nov 2004 | JP |
2004334704 | Nov 2004 | JP |
3656531 | Jun 2005 | JP |
2005192314 | Jul 2005 | JP |
2005251039 | Sep 2005 | JP |
2006041440 | Feb 2006 | JP |
2006262619 | Sep 2006 | JP |
2007058845 | Mar 2007 | JP |
2010-146047 | Jul 2010 | JP |
2010245532 | Oct 2010 | JP |
2012511299 | May 2012 | JP |
2012178535 | Sep 2012 | JP |
20010044490 | Jun 2001 | KR |
20040086088 | Oct 2004 | KR |
100468127 | Jan 2005 | KR |
200402282 | Nov 2005 | KR |
100725755 | May 2007 | KR |
100912892 | Aug 2009 | KR |
1011483 | Sep 2000 | NL |
8202134 | Jun 1982 | WO |
8403402 | Aug 1984 | WO |
8804801 | Jun 1988 | WO |
9207418 | Apr 1992 | WO |
9313587 | Jul 1993 | WO |
9607130 | Mar 1996 | WO |
9613093 | May 1996 | WO |
9823021 | May 1998 | WO |
9928801 | Jun 1999 | WO |
0000839 | Jan 2000 | WO |
0021178 | Apr 2000 | WO |
0075947 | Dec 2000 | WO |
0077522 | Dec 2000 | WO |
0147095 | Jun 2001 | WO |
0231517 | Apr 2002 | WO |
02056126 | Jul 2002 | WO |
0278164 | Oct 2002 | WO |
02078164 | Oct 2002 | WO |
02093655 | Nov 2002 | WO |
03012569 | Feb 2003 | WO |
2003012569 | Feb 2003 | WO |
03026114 | Mar 2003 | WO |
03050938 | Jun 2003 | WO |
03071655 | Aug 2003 | WO |
03084041 | Oct 2003 | WO |
2003098703 | Nov 2003 | WO |
2004001942 | Dec 2003 | WO |
2004006342 | Jan 2004 | WO |
2004008619 | Jan 2004 | WO |
2004023278 | Mar 2004 | WO |
2004053993 | Jun 2004 | WO |
2004090993 | Oct 2004 | WO |
2004098261 | Nov 2004 | WO |
2004100344 | Nov 2004 | WO |
2004100348 | Nov 2004 | WO |
2004107543 | Dec 2004 | WO |
2005015584 | Feb 2005 | WO |
2005027300 | Mar 2005 | WO |
2005053189 | Jun 2005 | WO |
2005069096 | Jul 2005 | WO |
2005076444 | Aug 2005 | WO |
2005076445 | Aug 2005 | WO |
2005089030 | Sep 2005 | WO |
2005112551 | Dec 2005 | WO |
2005119609 | Dec 2005 | WO |
2005124498 | Dec 2005 | WO |
2006002380 | Jan 2006 | WO |
2006005125 | Jan 2006 | WO |
2006007198 | Jan 2006 | WO |
2006011071 | Feb 2006 | WO |
2006011359 | Feb 2006 | WO |
2006013600 | Feb 2006 | WO |
2006048688 | May 2006 | WO |
2006048689 | May 2006 | WO |
2006071436 | Jul 2006 | WO |
2006078685 | Jul 2006 | WO |
2006079503 | Aug 2006 | WO |
2006089778 | Aug 2006 | WO |
2006110613 | Oct 2006 | WO |
2006125664 | Nov 2006 | WO |
2006130520 | Dec 2006 | WO |
2007006564 | Jan 2007 | WO |
2007007360 | Jan 2007 | WO |
2007010326 | Jan 2007 | WO |
2007048421 | May 2007 | WO |
2007072517 | Jun 2007 | WO |
2007073951 | Jul 2007 | WO |
2007080429 | Jul 2007 | WO |
2007084196 | Jul 2007 | WO |
2007090476 | Aug 2007 | WO |
2007113358 | Oct 2007 | WO |
2007124518 | Nov 2007 | WO |
2008008528 | Jan 2008 | WO |
2008026207 | Mar 2008 | WO |
2008046370 | Apr 2008 | WO |
2008041983 | Apr 2008 | WO |
2008077473 | Jul 2008 | WO |
2008097591 | Aug 2008 | WO |
2008119034 | Oct 2008 | WO |
2008125915 | Oct 2008 | WO |
2008132551 | Nov 2008 | WO |
2008132553 | Nov 2008 | WO |
2008142480 | Nov 2008 | WO |
2009006879 | Jan 2009 | WO |
2009007782 | Jan 2009 | WO |
2009020917 | Feb 2009 | WO |
2009046533 | Apr 2009 | WO |
2009051221 | Apr 2009 | WO |
2009051222 | Apr 2009 | WO |
2009051853 | Apr 2009 | WO |
2009056957 | May 2009 | WO |
2009059028 | May 2009 | WO |
2009064683 | May 2009 | WO |
2009072075 | Jun 2009 | WO |
2009073867 | Jun 2009 | WO |
2009072077 | Jun 2009 | WO |
2009073995 | Jun 2009 | WO |
2009114341 | Sep 2009 | WO |
2009118682 | Oct 2009 | WO |
2009118683 | Oct 2009 | WO |
2009073868 | Nov 2009 | WO |
2009136358 | Nov 2009 | WO |
2009155392 | Dec 2009 | WO |
2010002960 | Jan 2010 | WO |
2010014116 | Feb 2010 | WO |
2010037393 | Apr 2010 | WO |
2010062662 | Jun 2010 | WO |
2010065043 | Jun 2010 | WO |
2010065388 | Jun 2010 | WO |
2010072717 | Jul 2010 | WO |
2010078303 | Jul 2010 | WO |
2010080672 | Jul 2010 | WO |
2010091025 | Aug 2010 | WO |
2010094012 | Aug 2010 | WO |
2010132369 | Nov 2010 | WO |
2010134057 | Nov 2010 | WO |
2011005339 | Jan 2011 | WO |
2011011711 | Jan 2011 | WO |
2011014275 | Feb 2011 | WO |
2011017721 | Feb 2011 | WO |
2011023732 | Mar 2011 | WO |
2011028456 | Mar 2011 | WO |
2011028457 | Mar 2011 | WO |
2011059067 | May 2011 | WO |
2011074025 | Jun 2011 | WO |
2011085259 | Jul 2011 | WO |
2011119587 | Sep 2011 | WO |
2011133843 | Oct 2011 | WO |
2011133928 | Oct 2011 | WO |
2011151672 | Dec 2011 | WO |
2013015921 | Jan 2013 | WO |
9823021 | Jul 2013 | WO |
2013130563 | Sep 2013 | WO |
Entry |
---|
International Application No. PCT/US13/27965, International Preliminary Examination Report, Sep. 2, 2014. |
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, Jun. 2, 2013. |
International Application No. PCT/US12/44045, International Preliminary Examination Report, Jan. 28, 2014. |
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, Jan. 2, 2013. |
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, May 4, 2010. |
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009. |
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, Oct. 27, 2010. |
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, Aug. 8, 2011. |
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, Nov. 24, 2011. |
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48. |
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, Jun. 24, 2009. |
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, Apr. 22, 2011. |
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, Jan. 13, 2012. |
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, Oct. 24, 2011 |
European Patent Application No. 09829487.9, Extended Search Report, Apr. 21, 2011. |
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, Jun. 17, 2010. |
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, Aug. 23, 2010. |
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, Mar. 31, 2011. |
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, Nov. 12, 2010. |
International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, Apr. 28, 2009. |
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, Oct. 1, 2009. |
European Patent Appilcation No. 08845104.2, Extended Search Report, Jul. 31, 2014. |
European Patent Appilcation No. 11772811.3, Extended Search Report, Dec. 15, 2014. |
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, Jun. 25, 2009. |
Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200. |
Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999. |
Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE. |
Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems-an overview.” Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual. vol. 4. IEEE, 2002. |
Marra, Enes Goncalves, and José Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883. |
Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference-Osaka 2002 (Cat. No. 02TH8579) IEEE-Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document. |
International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO. |
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA. |
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65. |
Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797. |
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd. |
Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477. |
Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3. |
International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO. |
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE. |
Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference, Month Unknown, 2002, pp. 1483-1488, vol. 3, IEEE. |
Written Opinion of PCT/GB2005/050197, Feb. 14, 2006 (mailing date), Enecsys Limited. |
Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE. |
International Search Report for corresponding PCT/GB2004/001965, completed Aug. 16, 2004 by A. Roider. |
Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998. |
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60. |
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy. |
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE. |
GB Combined Search and Examination Report—GB1203763.6—Mailing date: Jun. 25, 2012. |
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011. |
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007. |
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, 1998, PESC 98. |
Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4. |
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010. |
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007. |
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9th, 2006 Hawaii. |
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000. |
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001. |
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004. |
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System”, IEEE 1998. |
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002. |
Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE 2000. |
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Gridinteractive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353. |
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003. |
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2. |
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137. |
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática / 12 a Sep. 16, 2010, Bonito-MS. |
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008. |
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005. |
Office Action—JP 2011-539491—Mailing date: Mar. 26, 2013. |
Supplementary European Search Report—EP08857456—Mailing Date Dec. 6, 2013. |
Extended European Search Report—EP14151651.8—Mailing date: Feb. 25, 2014. |
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6. |
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:jjscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS.PDF, [retrieved on Mar. 5, 2013]. |
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6. |
Third party observation—EP07874025.5—Mailing date: Aug. 6, 2011. |
Extended European Search Report—EP 13152967.9—Mailing date: Aug. 28, 2014. |
Extended European Search Report—EP 14159696—Mailing Date: Jun. 20, 2014. |
Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller Formedium to Large Scale Photovoltaic Generating Plant”8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026. |
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666. |
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Miltiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384. |
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239. |
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking” IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209. |
I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK. |
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004. |
Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html, 2003. |
Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002. |
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004. |
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001. |
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003. |
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar4power.com/solar-power-basics.html, Mar. 31, 2001. |
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, Aug. 18, 2005. |
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005. |
Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004. |
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997. |
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005. |
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003. |
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16868, filed May 27, 2004. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011. |
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007. |
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, Achim, Woyte, et al., pp. 1-4. |
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002. |
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. OH Feb. 1, 2001. |
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201, Nov. 2009. |
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999. |
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages. |
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009. |
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009. |
Communication in EP07874025.5 dated Aug. 17, 2011. |
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion. |
ISR for PCT/IB2008/055095 dated Apr. 30, 2009. |
ISR for PCT/IL07/01064 dated Mar. 25, 2008. |
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion. |
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion. |
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion. |
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010. |
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009. |
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009. |
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion. |
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion. |
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion. |
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion. |
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion. |
ISR for PCT/IB2010/052413 dated Sep. 7, 2010. |
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011. |
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011. |
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003. |
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. Cairns, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1. |
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US. |
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922. |
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236. |
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35. |
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0/7803-2750-4 p. 503-504. |
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008. |
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion. |
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556. |
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009. |
Extended European Search Report—EP12176089.6—Mailing date: Nov. 8, 2012. |
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13,1996; May 13, 1999-May 17, 1996, May 13, 1996 (May 13, 1996), pp. 1429-1432, XP010208423. |
Extended European Search Report—EP12177067.1—Mailing Date: Dec. 7, 2012. |
GB Combined Search and Examination Report—GB1200423.0—Mailing date: Apr. 30, 2012. |
GB Combined Search and Examination Report—GB1201499.9—Mailing date: May 28, 2012. |
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009. |
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodríguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002. |
Extended European Search Report—EP 08878650A—Mailing date: Mar. 28, 2013. |
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010. |
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002. |
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009. |
GB Combined Search and Examination Report—GB1201506.1—Mailing date: May 22, 2012. |
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006. |
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010. |
European Communication for EP07873361.5 dated Jul. 12, 2010. |
European Communication for EP07874022.2 dated Oct. 18, 2010. |
European Communication for EP07875148.4 dated Oct. 18, 2010. |
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications. |
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications. |
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449. |
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea. |
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010. |
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010. |
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009. |
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009. |
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009. |
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009. |
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009. |
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009. |
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009. |
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870. |
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC. |
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2. |
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2. |
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003. |
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138. |
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291. |
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300. |
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773. |
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne. |
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271. |
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy. |
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638. |
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824. |
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073. |
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252. |
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295. |
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139. |
Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809. |
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004. |
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000. |
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010. |
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009. |
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009. |
Informal Comments to the International Search Report dated Dec. 3, 2009. |
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010. |
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011. |
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940. |
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006. |
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008. |
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM. |
Chinese Office Action—CN 201510423458.2—mailed Jan. 3, 2017 (english translation provided). |
Chinese Office Action—CN 201410098154.9—mailed Mar. 3, 2017 (enligsh translation provided). |
European Search Report—EP Appl. 13150911.9—Apr. 7, 2017. |
Chinese Office Action and Search Report—CN 201510578586.4—dated Apr. 19, 2017. |
Jul. 13, 2017—Chinese Office Action—CN201210007491.3. |
Jul. 31, 2014—Huimin Zhou et al.—“PV Balancers: Concept, Architectures, and Realization”—IEEE Transactions on Power Electronics, vol. 30, No. 7, pp. 3479-3487. |
Sep. 15, 2012—Huimin Zhou et. al—“PV balancers: Concept, architectures, and realization”—Energy Conversion congress and Exposition (ECCE), 2012 IEEE, IEEE pp. 3749-3755. |
Jul. 17, 2017—International Search Report—PCT/US2017/031571. |
Aug. 4, 2017—European Search Report—EP 17165027. |
Chinese Office Action—CN Appl. 201280006369.2—dated Aug. 4, 2015. |
Chinese Office Action—CN Appl. 201210007491.3—dated Nov. 23, 2015. |
Chinese Office Action—CN App. 201310035221.8—dated Mar. 1, 2016. |
Philippe Welter, et al. “Electricity at 32 kHz,” Photon International, The Photovoltaic Magazine, Http://www.photon-magazine.com/archiv/articles.aspx?criteria=4&HeftNr=0807&Title=Elec . . . printed May 27, 2011). |
Chinese Office Action—CN Appl. 201210007491.3—dated Apr. 25, 2016. |
CN Office Action—CN Appl. 201310004123.8—dated May 5, 2016. |
Chinese Office Action—CN Appl. 201310035221.8—dated Aug. 11, 2016. |
Zhang, Pei et al.—“Hardware Design Experiences in ZebraNet”—Department of Electrical Engineering, Princeton University—SenSys '04, Nov. 3-5, 2004. |
Chinese Office Action—CN Appl. 201510111948.9—dated Sep. 14, 2016. |
Sep. 28, 2017—European Office Action—EP 08857835.6. |
Nov. 2, 2017—EP Search Report App No. 13157876.7. |
Nov. 7, 2012—EP Search Report—App No. 17171489.2. |
Dec. 14, 2017—EP Search Report App No. 17188362.2 |
Dec. 15, 2017—EP Search Report App No. 17188365.5 |
Number | Date | Country | |
---|---|---|---|
20150171789 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13753041 | Jan 2013 | US |
Child | 14631227 | US |