Photovoltaic power device and wiring

Information

  • Patent Grant
  • 11201476
  • Patent Number
    11,201,476
  • Date Filed
    Friday, May 12, 2017
    7 years ago
  • Date Issued
    Tuesday, December 14, 2021
    3 years ago
Abstract
Various implementations described herein are directed to employing photovoltaic strings including a photovoltaic power device with a specialized wiring configuration, which enables high string efficiency without incurring excessive wiring costs. Implementations may include a cable built into photovoltaic generators that carry one portion of the current, and other portions of the current may be carried by direct-current (DC) or alternating-current (AC) cables bypassing the photovoltaic generators.
Description
BACKGROUND

A photovoltaic string may integrate photovoltaic power devices to allow operation at high efficiency. These power devices may be variously configured, and they may be integrated into the photovoltaic string in various ways. Photovoltaic power device may include optimization functionality, configured to maximize the power output by a photovoltaic generator it is coupled to. Typically, a photovoltaic power device may be coupled to one or more photovoltaic generators, and it may measure one or more circuit parameters (e.g. voltage or current) and control these parameters to obtain a more effective operating point.


One of the challenges of photovoltaic system design is proper design and integration of photovoltaic power devices (e.g. optimizers). Properly designed and well-integrated, optimization circuits may improve system performance without incurring excessive additional costs. Poorly designed power devices and/or systems may not be cost-effective. For instance, some designs may result in photovoltaic string currents which require installation of long, thick and expensive cables.


SUMMARY

The following summary is a short summary of some of the inventive concepts for illustrative purposes only, and is not intended to limit or constrain the inventions and examples in the detailed description. One skilled in the art will recognize other novel combinations and features from the detailed description.


Embodiments herein may employ photovoltaic strings including a photovoltaic (PV) power device (e.g. optimizer) with a specialized wiring configuration, which enables high string efficiency without incurring excessive wiring costs.


In illustrative systems, a circuit may be utilized to reduce the cost of the system. For example, an illustrative PV power device may divide the current of a photovoltaic string into two or more portions, creating smaller current portions that allow for cables which may be thinner and cheaper than those which would otherwise be needed. In some embodiments, the cabling savings may be substantial. In some embodiments, a cable built into photovoltaic generators may be used to carry one portion of the current, and the other portions of the current may be carried by direct-current (DC) or alternating-current (AC) cables bypassing the photovoltaic generators. In certain embodiments, the circuit may be implemented on a single integrated circuit with a photovoltaic generator, DC-DC converter, DC-AC inverter or micro-inverter. In some embodiments, the circuit can be coupled to one or more photovoltaic generators, DC-DC converters, DC-AC inverters or micro-inverters. In some embodiments, photovoltaic power devices may be coupled to one another with cables at the time of manufacturing and stored in a convenient manner (e.g. wound around a cylindrical reel) to allow fast and easy deployment in the field.


As noted above, this summary is merely a summary of some of the features described herein. It is not exhaustive, and it is not to be a limitation on the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures.



FIGS. 1A-1F are block diagrams according to various aspects of the present disclosure.



FIG. 2A illustrates a string section according to various aspects of the present disclosure.



FIG. 2B illustrates a PV power device according to various aspects of the present disclosure.



FIGS. 3A-3B illustrate PV power device circuits according to various aspects of the present disclosure.



FIG. 4A illustrates a PV power device configuration according to various aspects of the present disclosure.



FIG. 4B illustrates a portion of a string of PV power devices according to various aspects of the present disclosure.



FIG. 4C illustrates a PV power device configuration according to various aspects of the present disclosure.



FIG. 5 illustrates a PV power device and PV generator arrangement according to various aspects of the present disclosure.



FIG. 6 illustrates a PV system according to various aspects of the present disclosure.



FIGS. 7A-7B illustrate a PV system according to various aspects of the present disclosure.



FIG. 7C illustrates a PV system and associated method according to various aspects of the present disclosure.



FIG. 7D illustrates a method according to various aspects of the present disclosure.



FIGS. 8, ‘9A and 9B illustrate various components of a PV system according to various aspects of the present disclosure.



FIGS. 10A-10G illustrate operational aspects of a PV system according to various aspects of the present disclosure.



FIGS. 11A-11C illustrate methods of operating and associated states of a PV system according to various aspects of the present disclosure.





DETAILED DESCRIPTION

In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made, without departing from the scope of the present disclosure.


Referring to FIG. 1A, illustrative photovoltaic installation 100 may include one or more photovoltaic (PV) generators 101. Each PV generator may be coupled to a one or more photovoltaic (PV) power device(s) 102. Each PV generator 101 may comprise one or more solar cells, solar cell strings, solar panels or solar shingles. In some embodiments, PV power device 102 may comprise a power conversion circuit such as a direct current-direct current (DC/DC) converter such as a buck, boost, buck-boost, buck+boost, flyback and/or forward converter, or a charge-pump. In some embodiments, PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter or a micro-inverter. In some embodiments, PV power device 102 may comprise a maximum power point tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) to which the power device is coupled. PV power device 102 may further comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA). In some embodiments, the control device may implement MPPT control discussed above (e.g. “perturb and observe” methods, impedance matching) for determining an optimal or preferred operating point for a connected power source.


In some embodiments, PV power device 102 may comprise circuitry and/or sensors configured to measure parameters on or near the photovoltaic generator(s), such as the voltage and/or current output by the photovoltaic generator(s), the power output by the photovoltaic generator (s), the irradiance received by the module and/or the temperature on or near the photovoltaic generator (s).


In the illustrative embodiment depicted in FIG. 1A, a plurality of PV power devices 102 are coupled to a plurality of PV generators 101, to form a photovoltaic string 105. One terminal of the resultant photovoltaic string 105 may be coupled to a power (e.g., direct current) bus, and the other terminal of the string 105 may be coupled to a ground bus. In some embodiments, the power and ground buses may be input to system power device 106. In some embodiments, system power device 106 may include a DC/AC inverter and may output alternating current (AC) power to a power grid, home or other destinations. In some embodiments, system power device 106 may comprise a combiner box, transformer and/or safety disconnect circuit. For example, system power device 106 may comprise a DC combiner box for receiving DC power from a plurality of PV strings 105 and outputting the combined DC power. In some embodiments, system power device 106 may include a fuse coupled to each string 105 for overcurrent protection, and/or one or more disconnect switches for disconnecting one or more PV strings 105.


In some embodiments, system power device 106 may include or be coupled to a control device and/or a communication device for controlling or communicating with PV power devices 102. For example, system power device 106 may comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA) configured to control the operation of system power device 106. System power device 106 may further comprise a communication device (e.g. a Power Line Communication circuit and/or a wireless transceiver) configured to communicate with linked communication devices included in PV power devices 102. In some embodiments, system power device 106 may comprise both a control device and a communication device, the control device configured to determine desirable modes of operation for PV power devices (e.g. power devices 102), and the communication device configured to transmit operational commands and receive reports from communication devices included in the PV power devices.


In some embodiments, the power and ground buses may be further coupled to energy storage devices such as batteries, flywheels or other storage devices.


PV power devices 102 may be coupled to photovoltaic generators 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of one power device coupled to the ground or power bus. Similarly, each PV generator 101 may be coupled to two PV power devices 102, with the possible exception of one PV generator coupled to the ground or Power bus.


In some embodiments, the PV power devices may be “standalone” products, manufactured and packaged separately. In some embodiments, the PV power devices may be coupled to one another using conductors of appropriate length at the time of manufacturing, packaged and sold as an integrated unit, and deployed as an integrated unit when installing a PV system (e.g. photovoltaic installation 100). For example, power devices 102 may be assembled as an integrated string of power devices or part of a string of power devices, and may be coupled to one another during manufacturing. During installation, the integrated string may be simply strung out alongside photovoltaic generators 101 and each power device 102 may be coupled to a corresponding one of the photovoltaic generators 101 quickly and easily, forming photovoltaic string 105, or part of string 105.


Each PV power device 102 may comprise several terminals for coupling (e.g. connecting) to photovoltaic generators 101 and/or other PV power devices 102. In the illustrative embodiment of FIG. 1A, each PV power device 102 comprises four terminals: One “Vin” terminal for receiving power from the positive output of a PV generator 101, two “Vout” terminals for outputting power from the PV power device 102, and one “common” terminal for coupling to a “Vout” terminal of a different PV power device 102 or to a ground bus. In some embodiments, each PV power device 102 may feature a different number of terminals, and/or may feature four terminals configured differently, as will be illustrated in further embodiments.


Electrical current is routed along string 105 in two paths. A first path is formed by conductors coupling PV power devices 102 while bypassing photovoltaic generators 101, and a second path is formed by coupling photovoltaic generators 101 to PV power devices 102. For example, conductors 103b and 103c are connected between “Vout” and “common” terminals of PV power devices, without being directly connected to a PV generator. Conductors 104a, 104b and 104c are examples of conductors which connect PV generators 101 to terminals of a PV power device 102. Conductors deployed at either end of a PV string (e.g. PV string 105) may be connected in a manner different from the conductors forming the first and second paths. For example, conductor 103a is connected on one end to the ground bus and a terminal of a PV generator, and on the other end the “common” terminals of a PV power device 102. Conductor 103n connects the two “Vout” terminals of one PV power device 102 to each other and to the power bus, to combine the currents from the two paths and deliver the combined currents to the power bus.


Reference is now made to FIG. 1B, which shows an illustrative embodiment of the external connection terminals of a photovoltaic power device 102, such as those featured in illustrative photovoltaic installation 100. PV power device 102 may include four terminals configured for electrically connecting to terminals labeled “Vin”, “Vout” and “common” in FIG. 1A Terminal T1 may be configured to receive an input current from a photovoltaic generator or power device. Terminal T2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output. Terminals T3 and T4 may be configured to output electrical power (voltage and current) to additional PV generators and/or power devices. Terminals T3 and T4 may output the same voltage in reference to the common terminal T2, though they may output different current and different power. The physical location of the terminals in relation to the casing of the power device may be variously configured to allow for convenient coupling in a photovoltaic string. This illustrative embodiment features terminals T1 and T4 on opposite sides of the power device, with terminals T2, T3 along one side. Other configurations may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.


Reference is now made to FIG. 1C, which shows a numerical illustrative embodiment featuring a part of a photovoltaic string 105. Photovoltaic string 105 as depicted in this figure may be used as PV string 105 in FIG. 1A. PV string 105 may include a plurality of photovoltaic (PV) generators 101. Each PV generator 101 may be coupled to a one or more photovoltaic power device(s) 102. Each PV generator 101 may comprise one or more solar cells, one or more solar cell strings, one or more solar panels, one or more solar shingles, or combinations thereof. For example, a PV generator 101 may include a solar panel, two solar panels connected in series or in parallel, or eight solar panels connected in series. In some embodiments, PV power device 102 may comprise a power conversion circuit such as a direct-current-to-direct current (DC/DC) converter such as a buck, boost, buck+boost (e.g., a buck converter followed by a bust converter or a boost converter followed by a book converter), buck-boost, flyback and/or forward converter. In some embodiments, PV power device 102 may comprise a time-varying DC/DC converter, configured to output a different DC voltage at different times. For example, PV power device 102 may comprise a time-varying DC/DC converter configured to output a positive voltage triangular wave, or a voltage wave resembling a rectified sine wave. In some embodiments, PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter (e.g., a micro-inverter). In some embodiments, PV power device 102 may comprise a Maximum Power Point Tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) the PV power device is coupled to. PV power devices 102 may be coupled to photovoltaic generator 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of a PV power device coupled to the ground bus (e.g. beginning PV power device 102a) or a PV power device coupled to the power bus (e.g. ending PV power device 102m). Similarly, each PV generator 101 may be coupled to two PV power device 102, with the possible exception of one PV generator coupled to the ground or power bus, such as PV generator 101a depicted in FIG. 1C. The combined string current (i.e. the current flowing between the ground bus and the power bus) may be, in this illustrative embodiment, 15[A]. In other embodiments the string current may be higher or lower. Each photovoltaic generator 101 may operate at a current of 10[A]. The full string current may be routed through two paths, one path flowing through the PV generators 101 and carrying 10[A], the other path bypassing the PV generators and flowing from one PV power device to another. In the illustrative embodiment shown in FIG. 1C, the string bypass path may be comprised of conductors 103a, 103b etc. Conductor 103a may route 5[A] from the ground bus to beginning PV power device 102a, bypassing PV generator 101a. Bypass path 103b may be coupled to an output of PV beginning power device 102a and carry 5[A] to PV power device 102b, bypassing PV generator 101b. Additional bypass paths may be similarly coupled, to route 5[A] through the string while bypassing the PV generators. In some embodiments, the current flowing through the modules may vary from module to module and from time to time, and the current flowing through the bypass paths may similarly vary. FIG. 1C illustrates an illustrative embodiment in which all PV generators 101 (e.g. 101a, 101b etc.) are operating at a maximum power point current of 10[A]. In some operating conditions, different PV generators may have different maximum power points such that different PV generators conduct maximum-power currents of different magnitudes, as will be described in other embodiments disclosed herein.


Different PV generators may operate at different power points, even in the same PV installation. As a numerical example, two PV generators may be capable of outputting 300[W], with one PV generator operating at a maximum power point of 20[V] and 15[A], and another PV generator operating at a maximum power point of 30[V] and 10[A]. As a different example, two PV generators may be capable of generating different maximum power levels. For example, one PV generator may output 300[W] and operate at a maximum power point of 20[V] and 15[A], while a second PV generator may be partially shaded and/or dirty, and be capable of outputting only 266[W] at a maximum power point of 19[V] and 14[A]. An MPPT circuit may be configured to identify the maximum power point of one or more PV generators the MPPT circuit is coupled to, and to operate the PV generator at the PV generator's maximum power point independent of temperature, solar radiance, shading or other performance deterioration factors of other PV generators in the installation. In some PV installations, a plurality of PV generators may all be operating at their respective maximum power points, with each PV generator operating at a different current independent of the other generators. In illustrative embodiments, bypass paths (e.g. conductors 103a, 103b etc.) may carry differing currents to compensate for differing PV generator maximum power point currents.


Reference is now made to FIG. 1D, which shows a portion of a photovoltaic string according to some illustrative embodiments. Photovoltaic string 105 comprises a plurality of PV generators 101 (e.g. 101a, 101b etc.) and PV power devices 102 (e.g. 102a, 102b etc.). Photovoltaic string 105 may be the same as or part of PV string 105 of FIG. 1A. The coupling method of the PV generators and PV power devices to one another may be similar to embodiments previously described herein. In this illustrative embodiment, the PV string 105 current may be 15[A]. PV generator 101a may operate at 10[A], with 5[A] bypassing the module via conductor 103a, which is coupled to beginning PV power device 102a. PV generator 101b may operate at 8[A], with 8[A] flowing to the PV generator from beginning PV power device 102a. Beginning PV power device 102a may further output 7[A] flowing over bypass path 103b, which is coupled to PV power device 102b. PV power device 102b may receive 8[A] from PV generator 101b and 7[A] via conductor 103b, and output 18[A] to the next PV generator in the string (not depicted) and output −3[A] over conductor 103c to the next PV power device in the string (not depicted). A negative bypass current simply indicates a reverse direct current (i.e. flowing in the opposite direction compared to the current portion flowing through the photovoltaic generators). In some embodiments, the bypass current may be an alternating current (AC), while the current portion which flows through the PV generators may be a direct current (DC) as further described below. In some embodiments, both the PV generator and bypass paths may carry a direct current.


By splitting the full string current into multiple portions and routing each portion along a different path, some embodiments may offer advantages. Conduction losses along a photovoltaic string may be expressed as Ploss=I2*R, where Ploss denotes the total conduction losses, I denotes the string current and R the combined resistance of the string conductors. Conductor resistance is calculated as







R
=


ρ





l

A


,





when ρ denotes the resistivity of the conducting material, l is the conductor length and A denotes the conductor cross section. As indicated by the first equation, a decrease in current results in a quadratic decrease in conduction losses. Therefore, it is beneficial to minimize current flowing through any single path in the system, as losses may decrease and higher efficiency may be obtained. Furthermore, many photovoltaic generators (e.g. solar panels) are sold already featuring cables which may be rated to support a current which is lower than the desired string current. In one type of PV installation featuring PV generators and PV power devices, PV generator cables may couple a PV generator to a PV power device while carrying the PV generator's maximum power point current, with the PV power device featuring additional cables to carry the entire string current. In certain PV installations, this may result in both higher losses (e.g. because of losses incurred by both the PV generator cables carrying the full generator currents and the PV power device cables carrying the full string current) and higher cabling costs (e.g. not taking advantage of the length of the PV generator cables to reduce the length of the PV power device cables). By splitting the string current into multiple portions, the included photovoltaic generator cables may be utilized to support a portion of the current, and an additional cable (which may also be required only to support a portion of the current, and may therefore be thinner and cheaper) may be added at a lower cost than the cost of replacing the entire photovoltaic generator cable. Additionally, the cost of conductors is not always linear, and the price of a cable rated to carry 15[A] may sometimes be higher than the combined costs of a 10[A]-rated cable and a 5[A]-rated cable.


Referring now to FIG. 1E, illustrative photovoltaic power devices utilized in illustrative embodiments herein may feature different numbers of terminals. For example, power device 112 may include three terminals: terminal T17 may be utilized to receive an input voltage (Vin), terminal T37 may be utilized to output an output voltage (Vout), and terminal T27 may output a voltage level common to the input and output. The internal circuitry of power device 112 may be similar to that of other power devices discussed in detail herein, with only one output voltage terminal made available. If desirable, the output voltage terminal may be split during system deployment using a splitting device, such as a splice connector (e.g. a T-connector).


Reference is now made to FIG. 1F, which shows an illustrative embodiment of photovoltaic string 115 according to certain embodiments. PV string 115 may be used as string 105 of FIG. 1A. In this illustrative embodiment, each of a plurality of PV generators in a PV string (e.g. PV string 115) may be coupled to two PV power devices, with the exception of one PV generator (e.g. PV generator 101a) which may be coupled to the ground bus. Each of a plurality of PV power devices in a PV string (e.g. PV string 115) may be coupled to two PV generators, with the exception of one PV power device (e.g. PV power device 112n) which may be coupled to the power bus. Similar to other embodiments disclosed herein, the string current may be divided into two portions and routed along two paths, with a first path passing through PV generators 101 (e.g., 101a, 101b, etc.) and a second path comprising bypass paths 113 (e.g. path 113a, path 113b, etc.) which bypass the modules and carry current from one PV power device to the next PV power device in the string. As a numerical example, the string current may be 15[A], with 10[A] being routed through the PV generators, and 5[A] being routed through the power devices. Each power device 112 may output 15[A] from its single Vout terminal. The power devices 112 depicted may be arranged and implemented similarly to the power device depicted in FIG. 1E, where the power device's Vin terminal is at the bottom of the power device, the common terminal is at the side and the device's Vout terminal is at the top. The power devices 112 may be implemented using a device similar to the device shown in FIG. 1B, with a reduced number of terminals (e.g. combining T3 and T4 to a single terminal).


Reference is now made to FIG. 2A, which shows an illustrative embodiment of a series string section of photovoltaic string 205, which may be part of or the same as photovoltaic string 105 that may be found in systems such as photovoltaic installation 100. PV generator 201a may comprise a photovoltaic panel including junction box 207a.


PV power device 202a may be coupled to PV generators 201a and 201b, and PV power device 202b may be coupled to PV generators 201b and 201c. PV power devices 202a and 202b may be similar to or the same as PV power devices 102 of FIG. 1A, and may feature four electrical terminals (“Vin”, “common” and two “vout” terminals) arranged as depicted in FIG. 2A. In some embodiments, the two “Vout” terminals may be arranged differently (e.g. arranged such as power device 102 of FIG. 1B) or combined into one, similarly to PV power device 112 of FIG. 1E. Bypass cable 203b may be connected between a “Vout” terminal of PV power device 202a and the “common” terminal of PV power device 202b. Panel cable 204b may couple a terminal (e.g. the higher-voltage terminal) of PV generator 201a to the “Vin” terminal of PV power device 202a, and panel cable 204c may couple a “Vout” terminal of PV power device 202a to PV generator 201b (e.g. to the lower voltage terminal of PV generator 201b).


In some embodiments, PV generator 201a may be the “first” module in a section of photovoltaic series string 205. In some embodiments, a splice connector (e.g. a “T-connector”) may combine panel cable 204a and bypass cable 203a and be connected to a ground bus. Similarly, in some embodiments, PV generator 201c may be the “last” module in photovoltaic series string section 200. In some embodiments, a splice connector (e.g. a “T-connector”) may combine panel cable 204f and bypass cable 203c and be connected to a power bus.


PV generator 201 (e.g. any of PV generators 201a-201c), the connected junction box 207 and the connected panel cables 204 may be a pre-integrated assembly before connection to PV power devices 202. Bypass cables 203 may be pre-integrated with one of the connected PV power devices (e.g., bypass cable 203b may be an integrated part of PV power device 202a or 202b). Bypass cables 203 may be two cables spliced together during assembly of the string section, with each portion an integrated part of a PV power device (e.g., bypass cable 203b may be comprise two cables, with one cable integral to 202a and the other cable integral to 202b).


Reference is now made to FIG. 2B, which shown an illustrative embodiment of the external connection terminals of a photovoltaic power device 202, such as those featured in the illustrative string section in FIG. 1B. PV power device 202 may include four terminals. Terminal T1 may be configured to receive an input from a photovoltaic generator or power device. Terminal T2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output. Terminals T3 and T4 may be configured to output voltage, current and/or power to additional PV generators and/or power devices. Terminals T3 and T4 may output the same voltage in reference to the common terminal T2, though they may output different current and different power. The physical location of the terminals in relation to the casing of the power device may be arranged to allow for convenient coupling in a photovoltaic string. This illustrative embodiment features terminals T1, T2 on the same side of the power device, with terminals T3, T4 located on the opposite side. Other arrangements may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.


Reference is now made to FIG. 3A, which shows some of the internal circuitry of a photovoltaic power device 302a according to various illustrative embodiments (e.g., PV power device 302a may be similar to or the same as PV power device 102 of FIGS. 1A-1D, or PV power device 202 of FIGS. 2A-2B). In some embodiments, photovoltaic power device 302a may be implemented using a variation of a Buck DC/DC converter. The power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The input and output voltages are in relation to the common terminal. The circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals. The circuit may include a central point used for reference. The circuit may include a pair of switches (e.g. MOSFET transistors) Q1 and Q2, with Q1 coupled between Vin and the central point, and Q2 coupled between the common terminal and central point. The circuit may further include inductor L coupled between the Vout terminals and the central point. By staggering the switching of switches Q1 and Q2, the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout stay about constant at voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L to form an inductor current which is about equal to the sum of the current input at the Vin and common terminals. The inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but the voltage ripples over the capacitors are generally small, and similarly the inductor current ripple may be generally small. The inductor current may be output by the pair of output terminals Vout. In some embodiments, more than two Vout terminals may be utilized to split the output current into more than two portions. In some embodiments, a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired. The switching of switches Q1 and Q2 may be controlled by an external control device (not explicitly depicted). If the electrical terminals Vin, common and Vout are arranged as depicted in FIG. 3A, power device 302a may be used as the power device in configurations such as those shown in FIG. 1A-1D (e.g. device 102).


Reference is now made to FIG. 3B, which shows some of the internal circuitry of a photovoltaic power device according to one illustrative embodiment. In some embodiments, photovoltaic power device 302b may be implemented using a variation of a Buck+Boost DC/DC converter. The power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The output voltage is in relation to the common terminal. The circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals. The circuit may include two central points used for reference. The circuit may include a plurality of switches (e.g. MOSFET transistors) Q1, Q2, Q3 and Q4 with Q1 connected between Vin and the first central point, and Q2 connected between the common terminal and the first central point. Q3 may be connected between the Vout terminal and the second central point, and Q4 may be connected between the common terminal and the second central point. The circuit may further include inductor L coupled between the two central points.


The operation of the Buck+Boost DC/DC converter in PV power device 302b may be variously configured. If an output voltage lower than he input voltage is desired, Q3 may be statically ON, Q4 may be statically OFF, and with Q1 and Q2 being PWM-switched in a complementary manner to one another, the circuit is temporarily equivalent to the Buck converter depicted in FIG. 3A and the input voltage is bucked. If an output voltage higher than he input voltage is desired, Q1 may be statically ON, Q2 may be statically OFF, and with Q3 and Q4 being PWM-switched in a complementary manner to one another, the input voltage is boosted. Staggering the switching of switches Q1 and Q2, the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout are about constant voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L to form an inductor current which is equal to the sum of the current input at the Vin and common terminals. The inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but if the voltage drop across capacitors Cin and Cout are about constant, the voltage ripples over the capacitors are small, and similarly the inductor current ripple may be small. The inductor current may be output by the pair of output terminals Vout. In some embodiments, more than two Vout terminals may be utilized to split the output current into more than two portions. In some embodiments, a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired.


Reference is now made to FIG. 4A, which illustrates a photovoltaic power device according to illustrative embodiments. Photovoltaic power device 402 may include a casing 431. The casing 431 may house circuitry 430 (illustrated functionally). In some embodiments, circuitry 430 may include power converter 440. Power converter 440 may include a direct current-direct current (DC/DC) converter such as a buck, boost, buck+boost, flyback, Cuk and/or forward converter. In some embodiments, power converter 440 may include a direct current—alternating current (DC/AC) converter (e.g., an inverter, or a micro-inverter designed to convert a small portion of power from DC to AC, such as a 300 W micro-inverter) instead of, or in addition to, a DC/DC converter.


In some embodiments, circuitry 430 may include Maximum Power Point Tracking (MPPT) circuit 495, configured to extract increased power from the PV generator the power device is coupled to. In some embodiments, MPPT circuit 495 may be configured extract increased power from a PV generator connected to its input terminal, and in some embodiments, MPPT circuit 495 may be configured extract increased power from a PV generator connected to its output terminal(s). In some embodiments, power converter 440 may include MPPT functionality, rendering MPPT circuit 495 unnecessary. Circuitry 430 may further comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA. Control device 470 may control and/or communicate with other elements of circuitry 430 over common bus 490. In some embodiments, circuitry 430 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters directly or receive measured parameters from connected sensors on or near the photovoltaic generator, such as the voltage and/or current output by the module, the power output by the module, the irradiance received by the module and/or the temperature on or near the module. In some embodiments, circuitry 430 may include communication device 450, configured to transmit and/or receive data and/or commands to/from other devices. Communication device 450 may communicate using Power Line Communication (PLC) technology, acoustic communications technologies, or wireless technologies such as BlueTooth™, ZigBee™, Wi-Fi™, cellular communication or other wireless methods.


In some embodiments, circuitry 430 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors). For example, fuses may be connected in series with some or all of conductors 403a 403b, and terminals 404a and 404b, with the fuses designed to melt and disconnect circuitry at certain currents. As another example, PV power device 402 may include a circuit breaker, with control device 470 configured to activate the circuit breaker and disconnect PV power device 402 from a PV string or a PV generator in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450) from a system control device. As yet another example, PV power device 402 may include a bypass circuit featuring a switch, with control device 470 configured to activate the bypass circuit and short-circuit the input and/or output terminals of PV power device 402 in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450) from a system control device.


The various components of circuitry 430 may communicate and/or share data over common bus 490. Input voltage (Vin) terminal 404a may be configured to be coupled to the positive output of a photovoltaic generator (e.g. as in FIGS. 1A-1D). Output voltage (Vout) terminal 404b may be configured to be coupled to the negative output of a different photovoltaic generator, as described with regard to some of the embodiments herein (e.g. as in FIGS. 1A-1D). In some configurations, Common conductor 403a and output voltage (Vout) conductor 403b may be coupled to other photovoltaic power devices.


In some embodiments, conductors 403a and 403b may be integrated to photovoltaic power devices at each end, at the time of manufacturing, creating a string of connected photovoltaic power devices as depicted in FIG. 4B, allowing a plurality of coupled power devices to be manufactured and sold as a single unit for fast and easy field deployment. The length of the conductors (e.g. 403a, 403b) between adjacent power devices may be selected according to a length (or width) of a photovoltaic generator, to enable connecting adjacent power devices to adjacent photovoltaic generators. Manufacturing a string of power devices as a single unit, with the power devices interconnected using integrated (e.g. pre-connected) conductors 403 may provide additional advantages such as reduced cost (e.g. by saving the cost of two connectors. For example, PV power device 402 is depicted in FIG. 4A having two connectors and two conductors, and if the conductors 403a, 403b do not connect PV power device 402 to an adjacent power device, an additional two connectors may be required) and a lower risk of electrical arcing or overheating due to a faulty connection between connectors. In some embodiments, PV power device 402 may feature an integrated conductor 403a, with conductor 403b replaced by a terminal for connecting to an integrated conductor from a different PV power device. In some embodiments, conductors 403a and 403b may be replaced by terminals (e.g. MC4™ connectors made by Multi-Contact or other equivalent connectors) similar to 404a and 404b, to allow an installer to insert a cable of his or her choosing to be deployed. Terminals 404a and 404b and conductors 403a and 403b may be coupled to the terminals of DC/DC or DC/AC power converter 440. For example, power converter 440 may include a Buck converter similar to the converter depicted in FIG. 3a. In that case, Vin terminal 404a of FIG. 4A may be coupled to the corresponding Vin terminal of FIG. 3a, Vout terminal 404b and Vout conductor 403b of FIG. 4A may be coupled to the Vout terminals of FIG. 3a, and the common conductor 403a of FIG. 4A may be coupled to the common terminal of FIG. 3a. For visual clarity, these connections are not depicted explicitly, and in some embodiments the connections may differ.


Reference is now made to FIG. 4B, which shows a portion of a string of PV power devices. String 405 may be part of a string of PV power devices 402 (e.g. devices similar to or the same as PV power device 402 of FIG. 4A) connected to each other via conductors 403 which may be the same as or similar to common conductor 403a of FIG. 4A. The length of each conductor 403 may be about the same as the length a dimension of a PV generator, to enable each PV power devices to be coupled to more than one PV generator (as depicted in FIG. 2A) and/or to enable coupling adjacent PV power devices to adjacent PV generators in a series string. In some embodiments, string 405 may be manufactured and/or packaged, stored and sold as a single unit, enabling fast and easy deployment in a PV installation.


Reference is now made to FIG. 4C, which illustrates a photovoltaic power device according to illustrative embodiments. First photovoltaic power device 420 may include a casing 431 and circuitry 430 (illustrated functionally). Circuitry 430 may comprise circuits and devices similar to or the same as circuitry 430 as described with regard to FIG. 4A. PV power device 420 may comprise input voltage (Vin) terminal 411, common terminal 412, output voltage (Vout) terminal 413 and output voltage (Vout) terminal 414. Input voltage terminal 411 may be provided for coupling (e.g. connecting) to a first output terminal (e.g. a positive output terminal) of a first photovoltaic generator. Output voltage terminal 413 may be provided for coupling (e.g. connecting) to a second output terminal (e.g. a negative output terminal) of a second photovoltaic generator. Common terminal 412 may be provided for coupling to an output voltage terminal (e.g. similar to or the same as output terminal 414), provided by a second PV power device similar to or the same as PV power device 420. Output voltage terminal 414 may be provided for coupling to a common terminal (e.g. similar to or the same as common terminal 412) provided by a third PV power device similar to or the same as PV power device 420.


In some embodiments, such as embodiments similar to or the same as FIG. 4A, a first conductor couples (e.g. connects) common terminal 412 to an output voltage terminal of the second PV power device, and a second conductor couples (e.g. connects) output voltage terminal 414 to the common terminal of the third PV power device. In some embodiments, the first and second conductors connect the first, second and third power devices at the time of manufacturing, with the first, second and third power devices along with the first and second conductors provided as a single connected apparatus or part of a single connected apparatus. In some embodiments, the first and second conductors are not provided along with PV power device 420, and are connected during installation of PV power device 420.


Reference is now made to FIG. 5, which illustrates an integrated illustrative embodiment. Integrated apparatus 515 may include a photovoltaic generator 501 (e.g., 101, 201 etc.) coupled to a PV power device 502 (e.g., 102, 202, 402a, 402b etc.). Some embodiments may employ the cabling method described herein to couple PV generator 501 to PV power device 502. PV power device 502 may further comprise circuitry similar to or the same as circuitry 430 of FIG. 4A. For example, PV power device 502 may comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA. PV power device 502 may include Maximum Power Point Tracking (MPPT) circuit 495, configured to extract maximum power from the PV generator the power device is coupled to. In some embodiments, control device 470 may include MPPT functionality, rendering MPPT circuit 495 unnecessary. Control device 470 may control and/or communicate with other elements of PV power device 502 over common bus 490. In some embodiments, PV power device 502 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters on or near the photovoltaic generator 501 or PV power device 502, voltage, current, power, irradiance and/or temperature. In some embodiments, PV power device 502 may include communication device 450, configured to transmit and/or receive data and/or commands from other devices. Communication device 450 may communicate using Power Line Communication (PLC) technology, or wireless technologies such as ZigBee, Wi-Fi, cellular communication or other wireless methods. In some embodiments, integrated apparatus 515 and/or PV power device 502 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors). The various components of PV power device 502 may communicate and/or share data over common bus 490. Integrated apparatus 515 may feature four terminals which are accessible from outside the apparatus, at least two of which output the same voltage. The components of integrated apparatus 515 may be similar to or the same as those of circuitry 430 of FIG. 4A. In FIG. 5 the two terminals outputting the same voltage are denoted 512 and 513. The integrated apparatus may be formed by embedding the components into a photovoltaic generator, the casing of the photovoltaic generator or mounting the components onto the photovoltaic generator. The integrated apparatus may include a portion of or all the circuitry required to comprise a “building block” that may be used for simple “plug 'n play” construction of optimized photovoltaic string. In this manner, the advantages of the current splitting detailed herein may be realized in the internal integrated circuit layout, with one current path in the integrated circuit including a photovoltaic generator 501 (e.g. solar cell, panel or shingle) and another current path bypassing the module. Additional advantages of an implementation as an integrated circuit such as ease of connection, possible cost reduction, etc. may also be realized.


Reference is now made to FIG. 6, which shows a photovoltaic system according to another illustrative embodiment. A number of photovoltaic strings 618 (e.g. 618a, 618b) may be coupled in parallel between ground and power buses to provide power to the power bus. The power and ground buses may be coupled to the inputs of system power device 606. In some embodiments, system power device 606 may include a DC/AC inverter and may output AC power to the grid, home or other destinations. In some embodiments, system power device 606 may comprise a combiner box, transformer and/or safety disconnect circuit. One or more photovoltaic strings 618 may comprise a plurality of series-coupled integrated apparatuses 515. In a string 618, one apparatus 515 may have its terminals 510, 511 coupled to the ground bus. The other apparatuses 515 in the string may have their terminals 510, 511 coupled to the terminals 512, 513 of the preceding apparatuses 515 in the string. One apparatus 515 may have its terminals 512, 513 coupled to the power bus. The other apparatuses 515 in the string may their terminals 512, 513 coupled to terminals 510, 511 of the next apparatus 515 in the string. A photovoltaic system constructed in this manner may enjoy the benefits of optimized photovoltaic strings, multiple current paths which enable cheaper cabling, fully integrated components including safety, monitoring and control functions, and simple installation.


In some photovoltaic systems, it may be beneficial to couple devices outputting a voltage which is not strictly AC or DC. For example, PV power devices (e.g. devices comprising circuitry similar to circuitry 430 of FIG. 4A) may be configured to output a voltage waveform similar to a rectified sine wave, a triangle wave or a square wave. In some systems, configuring each PV power device to output a signal other than DC may reduce the size and cost of the filters and switching circuits required of a system power device configured to supply AC power to a grid or home (e.g. a DC/AC inverter).


Reference is now made to FIG. 7A, which shows a photovoltaic system according to another illustrative embodiment in which benefit may be derived by rerouting current portions within a photovoltaic string. System 700 may comprise one or more photovoltaic strings 705 coupled to one another in parallel (only one string is illustrated). Each string may comprise a plurality of PV generators 701 (e.g. 701a, 701b etc.) and PV power devices 702 (e.g. 702a, 702b, etc.). In the embodiment depicted in FIG. 7A, the outputs of each PV generator 701 are coupled across the inputs of a power device 702, and the outputs of the PV power devices are serially coupled to one another to form a photovoltaic serial string. The inputs of each PV power device may receive power from a PV generator, and the outputs of the PV power device deliver power to string 705.


Each power device 702 may include circuitry similar to or the same as circuitry 430 of FIG. 4A. For example, each power device 702 may include a DC/DC converter configured to output a time-varying DC signal which emulates a rectified sine wave, triangular wave, square wave or other wave form which may be later processed and converted to a sine wave. The different power devices may output signals which are identical to one another, or different in shape, magnitude and/or phase. The outputs of the power devices may be summed to form a string voltage signal which is input to system power device 706.


System power device 706 may be configured to receive the string voltage input and output an alternating current (AC) signal such as a sine wave, which may be fed to the grid or home. In the illustrative embodiment depicted in FIG. 7A, each power device 702 outputs a low-voltage rectified sine wave which is synchronized to be in-phase with the rectified sine waves output by the other power devices in the same string. Synchronization may be achieved by a master control device (e.g. a controller 720 and communication device 750 of system power device 706, as depicted in FIG. 7B) commanding the PV power devices to produce a voltage of a certain waveform, and at a certain phase. The synchronized, rectified sine waves may be of a low frequency such as 100 Hz or 120 Hz, and may be summed to form a higher-voltage, rectified sine wave of amplitude about that of the utility grid voltage, such as 311[V] in European systems or 156[V] in the USA.


The voltage output by each power device 702 may be substantially lower than a utility grid voltage. The summed peak output voltages of each group of serially connected power devices 702 may be about the same as a utility grid peak voltage. For example, a string of ten serially connected power devices 702 may have a total peak voltage of about 311V, and the output voltage of each of the ten power devices 702 may output, on average, about 31V.


System power device 706 may configure the output voltage to be appropriate for feeding the grid, home or storage devices. For example, if the string voltage signal is a rectified sine wave of grid-voltage amplitude, system power device 706 may comprise a full-bridge to converter the rectified sine wave to an alternating sine wave. In some embodiments, the string voltage amplitude may be different from grid voltage amplitude, and may be adjusted by circuits and/or devices such as a transformer. In some embodiments, the string voltage may be similar to a triangular or square wave, and filtering may be applied before or after converting the signal from time-varying-DC to AC.


In some embodiments, a plurality of strings 705 may be connected in parallel at the input of system power device 706. Each string 705 may be connected to system power device 706 via a switch (not explicitly shown), the switch being operable to disconnect a string 705 (e.g., an individual string 705 without disconnecting other strings 705) in response to a failure occurring at or in the disconnected string 705 and/or a failure to provide adequate or synchronized power to system power device 706.


In some embodiments, system power device 706 may regulate the voltage across string 705. For example, system power device 706 may set the peak string voltage to a substantially constant value (e.g. a rectified sine voltage signal with a peak value of 350V), with the string current varying according to power available from PV generators 701. The substantially constant peak voltage value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.


In some embodiments, system power device 706 may regulate the current flowing through string 705. For example, system power device 706 may set the string current to a substantially constant value with the string voltage amplitude varying according to power available from PV generators 701. The substantially constant current value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.


Reference is now made to FIG. 7B, which shows a system power device 706 according to illustrative embodiments. System power device 706 may include full bridge 711, controller 720, filter 730 and sensor 740. System power device 706 may further include additional components such as communication device(s), sensor(s)/sensor interfaces, safety and/or disconnect devices(s), monitoring device(s) and/or auxiliary power circuit(s) (not explicitly depicted) similar to or the same as the components of circuitry 430 of FIG. 4A. Full bridge 711 may comprise four switches (e.g. MOSFETs) Q1, Q2, Q3 and Q4, two inputs and two outputs. Q1 may be connected between input1 and X. Q2 may be connected between input1 and Y. Q3 may be connected between input2 and X. Q4 may be connected between input2 and Y.


When switches Q1 and Q4 are ON and switches Q2 and Q3 are OFF, the output terminals may output a signal which is an inversion of the input signal. When switches Q1 and Q4 are OFF and switches Q2 and Q3 are ON, the output terminals may output a signal which is identical to the input signal. If the input signal is a rectified sine wave such as the string voltage of system 700 of FIG. 7A, by inverting every second lobe of the rectified sine wave, an alternating sine wave may be obtained. The switching of the switches Q1-Q4 may be controlled by controller 720. For example, the controller may apply a PWM signal to turn switches Q1 and Q4 OFF and switches Q2 and Q3 ON for the duration of one positive sine lobe, and then reverse the signals (i.e. turn Q1 and Q4 ON and switches Q2 and Q3 OFF) to invert the next sine lobe. Controller 720 may include a microprocessor, Digital Signal Processor (DSP), ASIC, and/or an FPGA. System power device 706 may include filter 730 which may be placed on either the input or output side of the device, to filter higher-order harmonics which may be present in the processed signal. 701 An appropriate filter (e.g. a low-pass LC filter) may reduce higher-order harmonics, creating an output signal which more closely resembles a pure sine wave.


Sensor 740 may comprise a voltage-sensor for measuring the voltage output by system power device 706. In some embodiments, the output of system power device 706 is coupled to a utility grid, and sensor 740 may further measure the grid voltage. Sensor 740 may provide output voltage measurements to controller 720, with controller switching switches Q1-Q4 responsively to the measurements provided by sensor 740. For example, when sensor 740 measures an output voltage of negative polarity, sensor 740 may provide the negative voltage measurements to controller 720, and controller 720 may responsively switch Q1 and Q4 to the ON state and switches Q2 and Q3 to the OFF state. Communication device 750 may be configured to communicate with communication devices deployed in PV power devices, for example, communication devices similar to or the same as communication device 450 of FIG. 4A. For example, if communication device 450 includes a Power Line Communication transceiver, communication device 750 may similarly be a PLC transceiver. If communication device 450 includes a wireless transceiver, communication device 750 may similarly be a wireless transceiver. Communication device 750 may transmit voltage magnitude measurements to PV power devices 702 of FIG. 7A, with each PV power device 702 configured to output a voltage corresponding to the magnitude measurements.


As a numerical example, when sensor 740 measures an output voltage of 100V, communication device 750 may transmit the measurement of 100[V] to PV power devices 702, with each PV power device 702 adjusting its duty cycle to output 100/N [V], where N is the number of serially-connected PV power devices 702. In some embodiments, the total voltage of 100[V] may be split unevenly amongst PV power devices 702, with each PV power device 702 outputting a voltage proportional to the power processed by the respective PV power device, and the total voltage output by all of PV power devices 702 equaling 100[V].


In some illustrative embodiments, two or more system power devices 706 may be deployed in parallel in system 700, reducing the risk of system failure in case of a failure in a single device. While component redundancy often significantly increases system cost, the architecture of system 700 may enable system power device 706 to be implemented using inexpensive circuitry (e.g. low frequency switches Q1-Q4 and/or a controller 720 that does not need expensive processing capabilities), thereby decreasing the cost of adding redundant components to reduce the risk of system failure. By adding a backup system power device 706, system 700 may reduce the number of single points of failure or have no single point of failure, such that a failure of a single device does not cause the entire system to cease producing power. In some embodiments, certain components within system power device 706 may be duplicated for redundancy. For example, system 700 may comprise system power device 706 comprising a single controller 720, a single filter 730 and a single communication device 750, but multiple sensors 740 and full-bridges 711.


Reference is now made to FIG. 7C, which shows an illustrative embodiment of generating a pseudo-AC signal which varies over time, for example, a DC output that is varied in amplitude in a step-wise manner to emulate a biased or rectified alternating-current signal. DC/DC converter 703 may receive an input from a DC voltage source such as PV generator 701. In alternative embodiments, PV generator 701 may be replaced in FIGS. 7A and 7C by an alternating current (AC) power source (e.g. a wind turbine), PV power device 702 comprising an alternating current to direct current (AC/DC) rectifying circuit (not explicitly depicted) converting the AC input power to DC power to be input to DC/DC converter 703. Converter 703 may further receive a reference signal from reference signal generator 704, and may attempt to output a voltage signal which is proportional to the reference signal. For example, signal generator 704 may output a rectified sine wave reference with an amplitude of 100 mV, and converter 703 may output a rectified sine which tracks the reference, but with a different amplitude. If converter 703 operates at a frequency significantly higher than the frequency of the reference signal, the tracking can be highly accurate for any reference waveform. For example, the reference signal may be of a low frequency such as 100 Hz or 120 Hz, and the DC/DC converter may operate at a frequency of tens or hundreds of kHz. The converter's high frequency may allow it to stabilize an output voltage rapidly, within a time-frame that is a small fraction of the period of the reference signal.


Reference signal generator 704 may be implemented in various manners. In some embodiments, digital samples may be stored on a memory device (e.g. Read Only Memory (ROM) Random Access Memory (RAM), Flash memory or similar memory devices) coupled to DC/DC converter 703, with a digital sample provided to DC/DC converter 703 at regular intervals. In some embodiments, reference signal generator 704 may comprise an analog oscillator and an analog-to-digital (A/D) converter configured to sample the oscillator and provide a digital sample to DC/DC converter 703. In some embodiments, reference signal generator 704 may be a communication device for receiving reference samples from a different communication device (e.g. communication device 750 of FIG. 7B, transmitting samples measured by sensor 740) and providing them the DC/DC converter 703.


Still referring to FIG. 7C, DC-DC converter 703 may carry out method 710. At step 707, the DC/DC converter may digitally sample the reference signals. At step 708, the DC/DC converter may adjust the duty cycle of its high-frequency switching components to output a voltage which is proportional (according to a predefined ratio) to the reference signal. At step 709, the converter may wait a short time before the next sample is processed. In some embodiments, the short time is predetermined (e.g. the converter may draw a new reference sample from memory or sample an oscillating reference signal after a period of time such as about 10 microseconds or about 100 microseconds). In some embodiments, the method will wait until a new sample is received from an external device, in which case the short time is not predetermined by the converter. In the illustrative embodiment depicted in FIG. 7C, the reference signal is a rectified sine, and the converter output is a rectified sine of a different amplitude. The higher the frequency, the “smoother” the output signal may be (e.g., because the output voltage would be adjusted in smaller time-interval steps).


In illustrative systems such as system 700, it may be desirable for photovoltaic power devices 702 to be configured to output voltage and current signals shaped similarly to one another, to maintain a system power factor close to one. For example, if the voltage signal output by a PV power device is shaped as a triangular wave, to maintain a power factor equal to one the current output may be a triangular wave proportional to the triangular voltage wave (i.e. of the same frequency, and with no phase shift between the two signals). In some embodiments, the output voltage or current is imposed on the power device outputs, requiring the converter device to configure either the voltage or the current to match the imposed signal. Illustrative embodiments may include, but are not limited to, systems comprising PV power devices configured output in-phase voltage and current waveforms, to obtain a power factor close or equal to unity.


Synchronization of PV power devices to output in-phase voltage and current waveforms may be achieved is several ways. In some embodiments, synchronization may be achieved by providing each DC/DC converter with the same reference sample at the same time. For example, communication device 750 of FIG. 7B may transmit a reference sample to an entire string of serially-connected DC/DC converters at the same time, with each DC/DC converter receiving the sample at about the same time and outputting a voltage derived from the same reference sample. In some embodiments, each DC/DC converter may store (e.g. in a memory device) a group of digital samples to be processed in order according to predetermined time intervals, with a trigger received from an external device signaling each converter to restart processing from the first sample.


In some embodiments, DC/DC converter 703 may include a bypass circuit (not explicitly shown) disposed between the DC/DC converter 703 output terminals (denoted output+ and output− in FIG. 7C), and include a controller configured to activate the bypass circuit (e.g. to directly connect the output+ terminal to the output− terminal) in response to a failure by the DC/DC converter to synchronize the converter output to other converter outputs, or in response to a different failure in the converter or in PV generator 701. In response to such failures (or bypassing) of a DC/DC converter 703 in a PV power device 702 (e.g. PV power device 702a of FIG. 7A), other serially-connected PV power devices 702 (e.g. PV power devices 702b-702n) may adjust (e.g. raise) their output voltages to compensate for the failed device.


Reference is now made to FIG. 7D, which shows a method for synchronizing waveforms according to aspects of the present disclosure. Method 760 may be carried out by one PV power device or a plurality of series or parallel connected PV power devices such as PV power devices 702. Each power device may include a memory device storing a sequence of output voltage reference samples. At step 761, the power device may initialize the counter n to the first reference sample. At step 762, the n-th (at the initialization stage, the first) sample is drawn from memory, and at step 763 the power device adjusts the duty cycle of a high-frequency converter to output a voltage proportional to the n-th sample. At step 764, the method may wait up to a predetermined short period of time (e.g. 10 microseconds or 100 microseconds). If the time elapses, the method may increment n at step 765 and loop back to step 762, where a new sample is drawn from memory. If a trigger is received before the predetermined time elapses, the method may loop back to step 761 and reset n to equal 1.


In some embodiments, the trigger may be received from a system control device. For example, a group of serially connected PV power devices 702 may each hold in memory a sequence of 1000 samples corresponding to a single lobe of a rectified sine wave. System power device 706 may be configured to send a trigger via communication device 750 every 10 milliseconds (corresponding to a frequency of 100 Hz), with each PV power device 702 receiving the trigger at about the same time. Upon reception of the trigger, each PV power device may output 0[V], corresponding to the first sample of a rectified sine wave. Each predetermined short period of time at step 764 may be








10





ms


1000





samples


=
10





microseconds per sample. In some embodiments, each PV power device may be configured to set n=1 after the final sample is processed, even without receiving a trigger. The triggers may be used as a timing synchronization backup method, to ensure that the PV power devices are resynchronized at least once per cycle.


Reference is now made to FIG. 8, which shows how illustrative embodiments of conductor splitting techniques may be applied to illustrative systems such as system 700. Photovoltaic string 805 may be part of or the same as other photovoltaic strings disclosed herein, such as photovoltaic string 105 of FIG. 1A. Photovoltaic string 805 may comprise a plurality of photovoltaic generators (e.g. 801a, 801b etc.) and a plurality of photovoltaic power devices 802 (e.g. 802a, 802b etc.). The string current may be a DC current that is varied (e.g., step-wise adjusted), for example, a current of magnitude 15[A](RMS) shaped as a rectified sine wave with a peak amplitude of 21.2[A]. The string current may be divided into two portions, with a first DC portion being routed through photovoltaic generators 502, and a second AC portion being routed along a second route comprising bypass paths 803 (e.g. 803a, 803b etc.), bypassing the PV generators. The two portions may be joined at the bottom of the string by the ground bus, and at the top of the string by the power bus (not shown). By routing a DC portion of the string current through photovoltaic generators, the current flowing through the bypass paths may comprise biased rectified sine waves. The root-mean-square (RMS) of a biased rectified sine current is given by







I

R





MS


=




A
2

2

-


4

AB

π

+

B
2








where A is the amplitude of the rectified sine wave (routed through bypass paths 803) and B is the DC current bias (routed through the PV generators). Similar formulae exist for other current waveforms such as triangular waves. The root-mean-square of an unbiased rectified sine current is given by







I

R





MS


=

A

2







where A is the amplitude of the rectified sine wave. It can be shown that careful selection of the bias B may reduce the RMS of the current flowing through the bypass paths significantly, possibly requiring thinner, cheaper cables compared to those that would be required to carry the entire, unbiased string current.


Selection of the bias B may include a calculation to minimize an RMS value of a current. For example, given a mathematical expression of an RMS current, the derivative of the expression may be calculated parametrically, and a B selected to set the derivative to zero, corresponding to a minimum value. For example, given the RMS value of a rectified sine wave current signal








I

R





MS


=




A
2

2

-


4

AB

π

+

B
2




,





the minimum value of Iris is calculated to be obtained for






B
=



2

A

π

.






In some embodiments, where the RMS value of a current may be difficult to calculate analytically, simulation may show various RMS values obtained when varying B, and an appropriate B (e.g. to minimize the current RMS) may be selected.


In some embodiments, B may be selected as to increase the power output by a photovoltaic generator, and A may be accordingly selected to minimize an RMS current value (e.g. by analytic methods or by simulation).


With appropriate selection of conductor sizes for the bypass paths, losses may also be reduced, as explained previously herein. In the illustrative embodiment discussed herein, PV generator 801a carries a DC current of 10[A], with the remainder of the string current, a rectified sine-wave bypassing PV generator 801a via bypass path 803a to PV power device 504a may be biased by 10[A]. PV generator 801b carries a DC current of 8[A], with the remainder of the string current, a 8[A]-biased rectified sine-wave bypassing module 502b via bypass path 803b. PV power devices 802 may comprise similar components and may utilize similar methods to the components and methods discussed herein with regard to power devices 702. The terminals and internal circuitry of power devices 702 may be configured to provide input, common and output voltages similarly to the configurations discussed herein with regard to power devices 102, 202, 302a, 302b, 112, 402, 420, and 502.


Reference is now made to FIG. 9A, which shows a photovoltaic power device according to illustrative embodiments. Power device 902 may comprise two DC/DC converters. Different types of DC/DC converters may be used, such as Buck, Boost, Buck+Boost, Flyback and/or Forward converters. In some embodiments, the power device may comprise two different types of converters. For example, one converter may be a Buck converter, and the other converter may be a Buck+Boost converter. The two converters may include, for example, 3 terminals: an input terminal, an output terminal and a common voltage terminal. Each converter's input terminal may be configured to be coupled to a separate set of one or more PV generators. For example, terminal Tin1 may be coupled to the input of one DC/DC converter, and may be configured to be coupled to a first set of one or more PV generators. Terminal Tin2 may be coupled to the input of the other DC/DC converter, and may be configured to be coupled to a second set of one or more PV generators. The converters' common terminals may be coupled to one another and made available via external terminal Tcom. The converters' output terminals may be coupled to one another, with the converters being configured to process the input voltages to allow matching and coupling of output voltages. The coupled output terminals may then be split into three externally available output terminals Tout1, Tout2 and Tout3, with each terminal capable of carrying a portion of a total photovoltaic string current. In some embodiments, power device 902 may comprise more than two converters, may be coupled to more than two sets of photovoltaic generators, and may feature a different number of externally available terminals. In some embodiments, a plurality of photovoltaic power devices may be coupled to one another using conductors of predetermined length at the time of manufacturing, packaged and sold as a single unit, and deployed as a single unit when installing a photovoltaic system.


Reference is now made to FIG. 9B, which shows a portion of a photovoltaic string according to illustrative embodiments. Photovoltaic generators 901a and 901b may have their negative output terminals coupled to the string ground bus, and have their positive output terminals coupled to the Vin1 and Vin2 terminals of PV power device 902a. PV power device 902a's common terminal may also be coupled to the ground bus. Output terminals Vout1 and Vout3 of power device 902a may be coupled to the negative output terminals of additional PV generators 901c and 901d, respectively. Power device 902a may be coupled to the next power device in the string, 902b, by coupling output terminal Vout2 of device 902a to the common terminal of device 902b. Additional PV generators and power devices may be connected similar to the manner described herein to form a photovoltaic string. The three output terminals of the final power device in the string may be coupled to a power bus (not shown). Using the cabling scheme described herein allows the string current to be split along three paths, potentially reducing system losses and allowing cheaper conductors to be used for some of the conduction paths. The portion of the photovoltaic string illustrated in FIG. 9B may be included in photovoltaic installation 100 in place of string 105.


Reference is now made to FIG. 10A, which shows PV power device 1002a comprising circuitry 140a. PV power device may be the same as or similar to previously described photovoltaic power devices according to various illustrative embodiments (e.g., PV power device 102 of FIGS. 1A-1D, PV power device 402 of FIG. 4A-4B, PV power device 502 of FIG. 5, etc.). Circuitry 140a may be similar to or the same as circuitry of FIG. 3A. FIG. 10A depicts the current flowing in the branches of circuitry 140a when switch Q2 is OFF and Q1 is ON. Current Icomm1 flows into the circuitry from the common terminal and current Ip flows into the circuitry from the Vin terminal. Current IL flows through switch Q1 and inductor L, and the current Io is split into two portions, Io1 and Io2, which flow through the two Vout terminals, respectively. The currents Icin and Icout flow through the capacitors Cin and Cout, respectively. According to the denoted capacitor voltage polarities, Cin is discharging, and Cout is charging. The voltage drop across inductor L is about (i.e. assuming negligible voltage drop over switch Q1) Vout-Vin, which in this illustrative embodiment will be negative (since the circuitry comprises a buck converter), leading to a reduction in the current flowing through inductor L. According to Kirchoff's Current Law (KCL), the following relationships hold:

Icin=Icomm1+Icout
IL=Ip+Icin
Icout=IL−Io
Io=Io1+Io2.


Current Io1 flows through a PV generator 101 and into PV power device 1002b comprising circuitry 140b, which may be similar to or the same as circuitry 140a. If no current leaks out of PV generator 101, then Ip2=Io1. Similarly, Io2=Icomm2, i.e. one of the output current portions of circuitry 140a becomes input current at the common terminal of PV power device circuitry 140b.


Reference is now made to FIG. 10B, which shows circuitry 140a when switch Q1 is OFF and switch Q2 is ON. According to the denoted capacitor voltage polarities, Cin is charging, and Cout is discharging. The voltage drop across inductor L is Vout, which is a positive quantity, leading to an increase in the current flowing through inductor L. The increase in inductor current when Q2 is ON compensates for the decrease in inductor current when Q2 is OFF, and the DC current flowing through inductor L is about constant under constant operating conditions (e.g. no change in the solar irradiance, the performance of the PV generators or in the load connected to the photovoltaic system).


Reference is now made to FIG. 10C, which shows a DC-equivalent circuit of circuitry 140a according to the illustrative embodiments of FIGS. 10A and 10B. The inductor L has been replaced with a short-circuit, and the capacitors Cin and Cout have been replaced by open circuits, in accordance with common practice when obtaining equivalent DC-models of electrical circuits. Under the operating condition where Q1 and Q2 are switched in opposing states (e.g., Q2 is off when Q1 is on, and Q2 is off when Q1 is on), D denotes the duty cycle of switch Q1, i.e. the relative portion of each switching cycle in which Q1 is ON (e.g. D=0.2 corresponds to Q1 being ON %20 of the time, and Q2 being on %80 of the time), then the DC current Io can be expressed as Io=D·lp+(1−D)·Icomm1.


Reference is now made to FIG. 10D, which shows a DC-equivalent circuit of serially-connected circuitry 140a and 140b. Output current Io_a1 of circuitry 140a is coupled (e.g. connected) to PV generator 101, with PV generator outputting current Ip2 to the Vin terminal of circuitry 140b. If little or no current leaks out of PV generator 101, then Io_a1≈Ip2. Similarly, Io_a2=Icomm2. Ammeters A1, A2, A3 and A4 may measure the DC components of currents Io_a, Io_a2, Io_b and Io_b2, respectively. Currents Io_a1 and Io_b1 may be readily computed by the results as Io_b1=Io_b−Io_b2, and Io_a1=Io_a−Io_a2. Ammeters A1 and A2 may be part of a power device (e.g. power device 402 of FIG. 4A) and may be coupled to a control device and to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A, where circuitry 140a may be part of power converter 440). Similarly, ammeters A3 and A4 may be part of a different power device (e.g. a second power device 402 of FIG. 4A) coupled to a control device and may be to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A, where circuitry 140b may be part of power converter 440).


Still referring to DC-analysis of the circuitry of FIG. 10D, the absence of electrical storage devices (and assuming no current leakage) leads to the equations Ip1+Icomm1=Io_a=Io_a1+Io_a2=Ip2+Icomm2=Io_b=Io_b1+Io_b2. Switch Q4 is serially connected to ammeter A2. Similarly, switch Q3 is serially connected to PV generator 101, which carries current Io_a1. As mentioned above, Io_a1 is calculated as Io_a1=Io_a−Io_a2, with Io_a and Io_a2 directly measured by ammeters A1 and A2, respectively. In some embodiments, Io_a1 may be directly measured, along with Io_a and/or Io_a2. If Io_a1 and one of either Io_a or Io_a2 are directly measured, then the unmeasured current may be calculated using the two measured currents.


Still referring to FIG. 10D, varying the duty cycles of switches Q3 and Q4 may affect the DC current measurements of ammeters A1 and A2. As a numerical example, if Io_b=Io_a=15[A], and a duty cycle of D=0.5 is selected for the operation of switch Q4, then the equation 15 A=Io_b=0.5·Icomm2+0.5·Ip2 will hold. If the duty cycle is changed from 0.5 to 0.2, then the new equation will be 15 A=Io_b=0.2·I′comm2+0.8·I′p2. Therefore (unless, coincidentally, Icomm2=Ip2, but that condition can be easily avoided by selecting a duty cycle for switch Q1 which creates an inequality), I′comm2≠Icomm2 and I′p2≠Ip2 will hold, and varying the duty cycles of switches Q3 and Q4 of circuitry 140b may cause the DC current readings of ammeters A1 and A2 of circuitry 140a to change.


Reference is now made to FIG. 10E, which illustrates an apparatus for detecting alternating-current components in the current flowing through system conductors according to illustrative embodiments. Conductor 142 may be a conductor carrying current I_142, which may be similar to or the same as currents IL, Io, Io1 or Io2 of FIG. 10B. Current I_142 may include a direct-current (DC) component which may correspond to a DC current such as Io_a, Io_a1 or Io_a2 of FIG. 10D. Current I_142 may further include an alternating-current (AC) component I_rip caused by variations in the current flowing through a power-converter inductor (e.g. inductor L of circuitry 140a in FIG. 10B). Ammeter A5 may be coupled to conductor 142 and may be configured to measure the AC-current component I_rip of current I_142. According to one illustrative embodiment, ammeter A5 comprises windings wound around conductor 142 and coupled (e.g. connected) to resistor R. According to Faraday's Law of Induction, the voltage measured across resistor R will be proportional to the change in magnetic flux through the windings, which in turn will be proportional to the current flowing through the windings. In some embodiments, a different type of AC-ammeter may be used, such as a hall effect sensor.


The current I_rip measured by ammeter A5 may depend on the amplitude, frequency, and duty cycle of the AC-component of the current flowing through conductor 142. For example, if the AC component of current I_142 has a high frequency (e.g. tens or hundreds of kHz, or MHz), ammeter A5 may detect a corresponding high frequency in current I_rip. Similarly, the positive and negative slopes of a triangular current waveform may be calculated by ammeter A5. In some embodiments, ammeter A5 provides current measurements to controller 143, with controller 143 calculating the frequency, slope values and amplitude of the corresponding triangular waveform. Controller 143 may be similar to or the same as control device 270 of FIG. 4A.


Reference is now made to FIG. 10F, which illustrates various alternating current signals which may be generated by controlling the switching of switches Q1-Q4 of FIG. 10D. Sig1 is a 20 kHz triangular wave with an amplitude of 1Vp-p, a rising slope of








1

A


3.5





ms




286


[

A
sec

]







and a falling slope of









-
1


A


1.5





ms




-


667


[

A
sec

]


.







Sig2 is a 100 kHz triangular wave with an amplitude of 0.2Vp-p, a rising slope of









-
0.2


A


0.3





ms




-


667


[

A
sec

]


.







and a falling slope of








0.2

A


0.7





ms




286


[

A
sec

]







It is evident that Sig1 and Sig2 have essentially the same shape and slope values, indicating that they are generated by switches switching at similar duty cycles. However, Sig2 is of a frequency larger by a factor of five than the frequency of Sig1, and the ripple amplitude is correspondingly smaller by a factor of five. Sig1 may represent a current measured by AC ammeter A2 when operating the circuit of FIG. 10B, switching switch Q3 at a frequency of 20 kHz and a duty cycle of 0.7. When the frequency of Q3 is increased to 100 kHz, the current measured by ammeter A2 corresponds to Sig 2. If the switching frequency of Q3 is maintained at 20 kHz, but the duty cycle is changed from 0.7 to 0.3, ammeter A2 measures a current corresponding to Sig3, which has a positive slope of








667


[

A
sec

]







and a negative slope of








-


286


[

A
sec

]


.







In various embodiments, either a DC-current ammeter or an AC-current ammeter (e.g. ammeter A2) deployed in a first power device circuitry (e.g. circuitry 140b) may detect changes in current by changing the switching duty cycle of a switch (e.g. Q3) deployed in a second power device circuitry (e.g. circuitry 140a).


Reference is now made to FIG. 10G, which illustrates PV power device circuitry according to illustrative embodiments. Power line communication (PLC) circuit 144a may be deployed in circuitry 140a, between the common terminal and the negative node of output capacitor Cout. PLC circuit 145a may be deployed in circuitry 140a, between the Vout terminals and the positive node of output capacitor Cout. PLC circuits 144b and 145b may be similarly deployed in PV power device circuitry 140b. PLC circuits 144a-b and 145a-b may be variously implemented. In one embodiment, each PLC circuit comprises a parallel circuit comprising a resistor, an inductor, a capacitor, a current source and a voltmeter. The inductor and capacitor sizes are selected to resonate at a resonance frequency, with the equivalent circuit impedance achieving a maximum value at the resonance frequency. The current source of each PLC circuit injects a high-frequency (e.g. tens or hundreds of KHz) current signal into the PV power device circuitry, with a portion of the current signal reaching the other PLC devices, inducing a high-frequency voltage across the resistor terminals and measured by the voltmeter.


Implementation of Power Line Communications (PLC) over a conventional serial string of photovoltaic power devices may be challenging due to the presence of inductors (e.g. inductor L of circuitry 140a) which inherently suppress high-frequency current signals. This challenge is generally overcome by broadcasting current signals at a high enough amplitude to enable signal detection even after the attenuation caused by inductors. However, point-to-point PLC over serial strings of PV power devices includes the additional challenge of differentiating between current signals generated by different PV power devices. For example, in a string comprising ten serially-connected PV power devices, a current signal broadcast by a first PV power device may be received by the other nine power devices at about the same amplitude, making it difficult to determine the relative order of PV power devices with respect to one another.


By coupling an output of a first to PV power device to an input of an adjacent PV power device, the novel cabling method described herein may enable point-to-point PLC between adjacent PV power devices that is unimpeded by inductors. In the illustrative embodiment of FIG. 10G, PLC circuit 145a of circuitry 140a is coupled to PLC circuit 144b of circuitry 140b with no inductor disposed between them. Because there is no inductor between PLC circuits 145a and 144b, PLC circuit 145a may receive a high-frequency current signal transmitted by PLC circuit 144b at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string. Similarly, PLC circuit 144b may receive a high-frequency current signal transmitted by PLC circuit 145a at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string. The increased PLC signal amplitude detected by an adjacent PV power device enables each PV power device to determine which device(s) are its “neighbors,” e.g., directly adjacently connected.


As mentioned above, in some illustrative embodiments (e.g. the circuitry of FIG. 10D) PV power device circuitry may enable one-way adjacency determination even without specialized PLC circuitry. For example, PV power device circuitry 140a may determine that it is connected to circuitry 140b by on knowing the duty cycle which each serially connected PV power device is being operated at and measuring the currents Io_a1 and Io_a2. However, circuitry 140b might not be able to determine that it is connected to 140a, rather, it may determine that it is connected to the next PV power device in the string (e.g. 140c, not explicitly depicted). By adding PLC circuitry (e.g. as depicted in FIG. 10G), the adjacency determination may be two-way.


Various aspects include mapping the location of power devices in photovoltaic installations, as well as various methods and apparatuses for carrying out localization algorithms. The circuitry disclosed in FIGS. 10A-10G may enable certain PV power devices to determine which other PV power devices are directly connected to them if they are provided with information regarding the operating state of neighboring PV power devices. Aggregation of the determinations made by each PV power device in a serial string of PV power devices may enable a full map to be generated, the map including location information for each PV power device.


Reference is now made to FIG. 11A, which depicts an illustrative method for determining the order of serially coupled PV power devices comprising a photovoltaic string. Method 1100 may be applied to photovoltaic strings comprising PV power devices and circuitry according to illustrative embodiments (e.g. string 105 of FIG. 1A, which may comprise PV power devices 102 having circuitry similar to or the same as circuitry 140a of FIGS. 10A-10D, 10G). Method 1100 may be carried out by a control device in communication with PV power devices. For example, the method may be carried out by system power device 106 of FIG. 1A, system power device 606 of FIG. 6, system power device 1006 of FIG. 11B, or system power device 706 of FIGS. 7A-7B, with control and communication devices (e.g. devices comprised by system power device 110 of FIG. 1A, or controller 720 and communication device 750 of FIG. 7B) carrying out the method steps. In an alternative embodiment, a PV power device (e.g. PV power device 402 or 420 of FIGS. 4a-4c) may operate in a “master mode” and carry out method 1100 with regard to the other PV power devices comprised by the PV string.


At step 1101, the method is initialized The control device carrying out method may discover PV power devices in a photovoltaic string, e.g. by receiving unique ID numbers of the PV power devices comprises by string. As an illustrative example, each PV power device may transmit a telemetry (e.g. by a wireless transmitter, or by power line communications) to the system power device, the telemetry including the PV power device's unique ID. The system power device may store the PV power devices' ID numbers to memory.


In some embodiments, the control device carrying out the method may have a list of PV power devices comprised in the PV string. For example, the control device may have PV power device identification numbers stored to memory. The method may identify an order in which the PV power devices are connected, with all serially coupled PV power devices initially unordered (i.e., there is no available information regarding the sequential order in which PV power devices are arranged. For example, for every pair of a first PV power device and a second PV power device in a serial PV string, it might not be known if the first PV power device is coupled closer to a ground bus than the second PV power device, or if the second PV power device is coupled closer to the ground bus than the first PV power device). At step 1102, a device (e.g., 706) may select one of the PV power devices as a selected power device which has not yet been ordered (i.e. its sequential order in relation to a different PV power device has not been determined). The first time step 1102 is reached, all PV power devices in the string may be candidates for selection as the selected power device. In subsequent iterations of a portion of the method, step 1102 may select a selected power device from a shrinking pool of power devices, since at each iteration, a selected power device may be classified as “ordered” and might not be a candidate for selection at the next iteration.


At step 1103, the device performing the method may command the selected power device to change an operational parameter. For example, the selected power device may comprise switches (e.g., the selected power device may comprise circuitry such as circuitry 140b of FIG. 10D, including switches Q3 and Q4), and at step 1103, the selected power device may be commanded to change a duty cycle or frequency of a switching signal. The command to change an operational parameter may be issued by a system power device, and the transmitted command may include an ID number of the selected power device. In some embodiments, the command is received by some or all of the PV power devices, but may be ignored by all PV power devices not having the ID number indicated by the command (i.e. all PV power devices which are not the selected power device).


In illustrative PV systems, PV power devices comprising a PV string may periodically transmit reports and/or telemetries to system power devices. For example, with reference to FIG. 4A, communication device 250 may periodically transmit measurements (e.g. current, voltage, temperature and/or irradiance measurements) taken by sensor/sensor interfaces 280 to a system power device. At step 1104, the system power device carrying out method 1100 may wait to receive measurements from some or all of the PV power devices comprising the PV string. One or more of the PV power devices may report measurements which indicate that they are adjacent to the selected power device.


As an illustrative example, the selected power device may comprise circuitry 140b of FIG. 10D. Prior to step 1103, switch Q3 may be switched at a duty cycle of 0.7, and the power device comprising circuitry 140a may periodically report (e.g. to a system power device) the DC current measured by ammeters A1 and A2. As explained previously, the DC current measured by ammeter A2 may reflect the duty cycle of switch Q3. At step 1103, the selected power device may be commanded by a system power device to change the duty cycle of switch Q3 from 0.7 to 0.3. The change in duty cycle may be reflected by measurements taken by ammeter A2, and at step 1104, the new measurements may be received by a system power device from the power devices.


At step 1105, the system power device may compare measurements received from PV power devices to previously received measurements, and may detect the change in measurements received from circuitry 140b. In response to detecting the change in measurements received from circuitry 140b, the method may determine that circuitry 140b is adjacent to the selected power device, determine that circuitry 140b is comprised by a second, reporting power device adjacent to the selected power device, and uniquely identify the reporting power device (e.g. identified by its associated unique ID number) as being adjacent to the selected power device (e.g., as identified by its associated unique ID number).


At step 1106, the system power device carrying out method 1100 method may consider the selected power device as “ordered” and remove it from the pool of unordered devices. The method may save to memory an indication that the selected power device is adjacent to the reporting power device. As the method iterates through steps 1102-1107, the method may create a table mapping selected PV power devices to their “neighbors”, i.e. one or more adjacent PV power devices.


At step 1107, if unordered devices remain, the method may loop back to step 1102. If no unordered devices remain, the method may proceed to step 1108, and aggregate the results stored when iterating over steps 1102-1107. The results stored by the time step 1108 is reached may enable the method to identify the sequence in which the PV power devices are wired in the string.


Reference is now made to FIG. 11B, which illustrates, by way of example, a result of running method 1100 on an illustrative PV string. In this illustrative example, PV string 1115 comprises four PV power devices: 1002a, 1002b, 1002c and 1002d, each comprising circuitry similar to or the same as circuitry 140a of FIGS. 10A-10D or of FIG. 10G. At the outset of the method, the order of the power devices is unknown (i.e. the method does not know which (i.e. first) PV power device is coupled to the ground bus, which (i.e. second) PV power device is coupled to the first PV power device, and so on. At the method initialization, table 1110 is empty, and table 111 indicates that the pool of unordered power devices comprises all of the PV power devices in string 1115. The first time the method reaches step 1102, the method selects (e.g. at random, the lowest ID number, etc.) power device 1002b as the selected power device. At step 1102, PV power device 1002b may be commanded to change an operating parameter (e.g. the duty cycle of switching elements in PV power device 1002b). At step 1104 PV power devices 1002a-d report measurements taken by sensors/sensor interfaces such as ammeters. At step 1105, the method may determine that only the measurements taken by PV power device 1002a have changed substantially, and may determine that PV power device 1002a is adjacent to PV power device 1002b. At step 1106, Line #1 of table 1110 may be saved to memory, indicating that PV power devices 1002a, 1002b are adjacent to one another, and PV power device 1002b may be removed from the pool of unordered devices (as indicated by table 1111, in the line corresponding to the end of the first iteration).


At step 1107, the method may determine that the pool of unordered devices is not empty, loop back to step 1102, and select PV power device 1002a as the selected power device. In some embodiments, the selection may be random. In some embodiments, the reporting power device of the previous iteration may become the selected power device (provided it is still in the pool of unordered devices). At the next time step 1105 is reached, the method may determine that no PV power devices have reported changed measurements, and may determine that PV power device 1002a is coupled to the ground bus. In this iteration, no reporting power device may be labeled, and Line #2 of table 1110 may be generated indicating the PV power device 1002a has no neighbor at this iteration. PV power device 1002a may be removed from the pool of unordered devices at step 1106.


After iterating through steps 1102-1107 an additional two times, step 1108 may be reached, with table 1110 having four line indicating the results of the four iterations through steps 1102-1107. At step 1108, the method may determine that PV power device 1002a is coupled to the ground bus, as indicated by Line #2 of table 1110. The method may determine that PV power device 1002b is coupled to PV power device 1002a (as indicated by Line #1 of table 1110), PV power device 1002c is coupled to PV power device 1002b (as indicated by Line #3 of table 1110), and that PV power device 1002d is coupled to PV power device 1002c (as indicated by Line #4 of table 1110). The method may therefore output the determination that the order of the power devices is 1002a-1002b-1002c-1002d, as shown in the figure.


Point-to-point PLC between adjacent power devices may be used for a variety of communication and control applications in addition to mapping photovoltaic installations. For example, in some photovoltaic installations, photovoltaic power devices may measure operational parameters such as input or output voltage, input or output current, input or output power, and the temperature and/or solar irradiance in the vicinity of the power device. These operational parameters may be periodically transmitted via PLC (e.g., by a sequence of point-to-point PLC transmissions along the string of power devices) to a data collection point, such as a memory or control device (e.g. a dedicated data collection or control device, or a device included in a system device such as a power combiner box or DC-to-AC inverter). In PLC that does not use the point-to-point configuration as disclosed herein, a transmitted data packet may be transmitted at a high power amplitude, to enable the transmitted signal to be received at the data collection point at a power amplitude sufficient to be detected by PLC receiving circuitry. For example, a last power device may be located 100 meters away from the data collection point, with 15 other power devices connected in between the last power device and the data collection point. Without using point-to-point PLC, the last power device would need to transmit a high-power signal to be received 100 m away after traversing 15 other power devices. By taking advantage of circuitry deployed in the illustrative embodiment of FIG. 10G, each respective first power device may transmit a signal to be received at the second power device immediately adjacent to the first power device, each power device repeating all messages received from other power devices, reducing the required signal power amplitude. The power device connected to the data collection point may be physically closest to the data collection point, and may transmit data at an amplitude significantly lower than what would otherwise be required by each other power device, still enabling reception of the message by the device collecting data. In some embodiments, the power device connected to the data collection point may transmit data at an amplitude sufficient to traverse several PV power devices. One possible advantage of transmitting data at an increased amplitude may be enablement of continuous communication in case an intermediate device fails. Referring again to FIG. 11B, PV power device 1002a may communicate with PV power device 1002b using Point-to-Point Power Line Communications (PTPPLC) over bypass path 116b. In some embodiments (e.g. each PV power device 1002 has circuitry similar to or the same as circuitry 140a of FIG. 10A), communication may be uni-directional (e.g. power device 1002b is able to send data to power device 1002a, while power device 1002a might not be able to send data to power device 1002b), and in some embodiments (e.g. each PV power device 1002 has circuitry similar to or the same as circuitry 140a of FIG. 10G), communication may be bidirectional (for example, power devices 1003a and 1003b may be able to send data to each other). System power device 1006 (e.g. DC-to-AC inverter or combiner box) may be similar to system power device 110 of FIG. 1A, and may be coupled between the ground bus and power bus, and may comprise a data-collection device (e.g. a memory device, a controller, etc.—not explicitly depicted). System power device 1006 may further comprise PLC device 1007 coupled to carry out power line communications over the power bus and/or the ground bus. Similarly to other illustrative embodiments disclosed herein, additional PV strings similar to PV string 1115 (not explicitly depicted) may be coupled in parallel with PV string 1115, and coupled to system power device 1006. In some embodiments enabling one-way PLC, PV power device 1002d may transmit data to PV power device 1002c, PV power device 1002c may transmit data to PV power device 1002b, PV power device 1002b may transmit data to PV power device 1002a, and PV power device 1002a may transmit data to system power device 1006. In some embodiments enabling two-way PLC, PV power device 1002d may transmit data to system power device 1006 and PV power device 1002c, PV power device 1002c may transmit data to PV power devices 1003d and 1003b, and so on.


System power device 1006 may be configured to transmit commands and/or sent data to PV power devices 1002a-d. For example, step 1103 of method 1100 may comprise system power device 1006 transmitting a PLC signal over the power bus indicating an ID number of a selected PV power device.


In some embodiments, a message sent by a PV power device to an adjacent PV power device may be transmitted at a power amplitude significantly lower than a message which may be sent to system power device (e.g. 1006). For example, communication between PV power devices 1002b and 1002c may utilize much lower power than communication between PV power device 1002b and system power device 1006, due to the much shorter distance and lower number of electrical circuits in between the two communicating devices. In case a PV power device (e.g. 1002b) fails, two PV power devices adjacent to the failed PV power device (e.g. 1002a and 1002c) may communicate via PLC, with PV power device 1002b providing a bypass path for PLC signals. PLC between PV power devices 1002a and 1002c may be carried out at a reduced amplitude compared to the amplitude that would be required for PV power device 1002c to transmit directly to system power device 1006. Significant power savings may be realized by not attempting to transmit data to system power device 1006 by PV power devices not physically close to system power device 1006. Furthermore, the size and cost of associated circuitry for transmitting PLC messages may be significantly reduced by limiting the transmitted data to a lower power amplitude.


Reference is now made to FIG. 11C, which illustrates a method for point-to-point power line communications (PTPPLC) according to illustrative embodiments. Method 1130 may be used when, for example, a first PV power device (e.g. PV power device 1002a of FIG. 11B) may send a message (e.g. comprising telemetry data or other operational data) to a system power device (e.g. system power device 1006.) At step 1131, the first PV power device (e.g., 1002a) generates the message to be sent. At step 1132, the first PV power device transmits the message using PTPPLC to a second, adjacent PV power device (e.g., 1002b). For example, the message may be encoded as a high-frequency (e.g. tens or hundreds of kHz) signal transmitted over a first bypass path between the PV power devices (e.g., 116b of FIG. 11B). In some embodiments, the first PV power device may transmit a message to the second PV power device through a PV generator, e.g. the PV generator 101 coupled between PV power devices 1002a and 1002b). At step 1133, the second PV power device (e.g., 1002b) may receive the message transmitted over the bypass path, and may re-transmit the message to a third PV power device adjacent to the re-transmitting PV power device (e.g., 1002c) over a second bypass path (e.g., 116c). At step 1134, the third PV power device (e.g. 1002c) may receive the message re-transmitted over the second bypass path (e.g., 116c), and may re-transmit for a second time the message to a third PV power device (e.g. 1002d) over a third bypass path (e.g. 116d). Each PV power device in a PV string may receive a message from a first adjacent PV power device, and re-transmit the message to a second adjacent PV power device, until the message is received by a final PV power device adjacent or in close physical proximity to a system power device (e.g. 1006). At step 1134, the final PV power device (e.g. 1002d) may receive the message transmitted over a final bypass path, and may forward the message to a system power device (e.g. 1006) over the power bus. In some embodiments, the communication connections may be reversed, i.e. the first PV power device (e.g. 1002a) may communicate directly with system power device 1006 over the ground bus, with messages generated by the final PV power device (e.g. 1002d) passing through intermittent PV power devices (e.g. 1002c, 1002b and 1002a). In some embodiments, the first and final PV power devices (e.g. 1002a and 1002d) may communicate directly with the system power device (e.g. 1006) over either the ground bus or the power bus, with messages generated by intermediate PV power devices (e.g. 1002b and 1002c) passing through the first or final PV power devices (e.g. 1002a or 1002d) for transmission to system power device (e.g. 1006).


Illustrative embodiments may include a system comprising a plurality of DC/DC converters, each DC/DC converter receiving power from a photovoltaic generator, the DC/DC converters coupled in series or in parallel between a ground bus and a power bus, the DC/DC converters configured to output a time-varying DC voltage. A system power device comprising a group of switches is coupled between the ground bus and the power bus, and is configured to receive the time-varying DC voltage and output an AC voltage. In some embodiments, the system power device further comprises a filter, a controller and/or a communication device. In some embodiments, the controller is configured to switch the switches featured by system power device. In some embodiments, the communication device is configured to communicate with communication devices featured by the PV power devices. In some embodiments, the system power device further comprises a second group of switches, the controller configured to switch the second group of switches in response to a failure of one or more of the first group of switches. In some embodiments, the system includes a second system power device, the second system power device operable in response to a failure of the first system power device. In some embodiments, the DC/DC converters are configured to output synchronized time-varying DC voltage and current signals.


In the illustrative embodiments disclosed herein, photovoltaic generators are used to exemplify power sources which may make use of the novel features disclosed. In some embodiments, the power sources may include batteries, supercapacitors, wind or hydroelectric turbines, fuel cells or other energy sources in addition to or instead of photovoltaic generators. The power sources may be alternating current (AC) power sources or direct current (DC) power sources. In some embodiments, batteries may be both used as a power source and used as an electrical load, and charged by the system power sources. The current routing methods and other techniques disclosed herein may be applied to alternative power sources such as those listed above, and the nearly exclusive mentioning of photovoltaic generators as power sources is not intended to be limiting in this respect.


It is noted that various connections are set forth between elements herein. These connections are described in general and, unless specified otherwise, may be direct or indirect; this specification is not intended to be limiting in this respect. Further, elements of one embodiment may be combined with elements from other embodiments in appropriate combinations or subcombinations. For example, the power device and current routing elements of one embodiment may be interchanged with the power device and current routing elements of other embodiments. For example, PV generator 101 from FIG. 1A may be interchangeable with PV generator 501 from FIG. 5 and/or generator 101 of FIGS. 10A-10D and 10G, and string 105 from FIGS. 1A, 1C and 1D may be interchangeable with string 205 of FIG. 2A and/or string 805 of FIG. 8.

Claims
  • 1. A system comprising: a plurality of power devices arranged in a sequence, wherein each power device comprises an output, an input, and a common; anda plurality of first current paths, wherein, between each adjacent pair of the power devices in the sequence, one of the plurality of first current paths connects the output of a first power device of the adjacent pair to the common of a second power device of the adjacent pair, and wherein the output of the first power device of the adjacent pair is configured to be connected by one of a plurality of second current paths through one of a plurality of power sources to the input of the second power device of the adjacent pair.
  • 2. The system of claim 1, further comprising the plurality of power sources and the plurality of second current paths, wherein for each adjacent pair of the power devices in the sequence, the output of the first power device of the adjacent pair is connected by one of the plurality of second current paths through one of the plurality of power sources to the input of the second power device of the adjacent pair.
  • 3. The system of claim 1, wherein each of the plurality of power devices comprises a second input, wherein for each adjacent pair of the power devices in the sequence, the output of the first power device of the adjacent pair is configured to be connected by one of a plurality of third current paths through a further one of the plurality of power sources to the second input of the second power device of the adjacent pair.
  • 4. The system of claim 3, further comprising the plurality of power sources, the plurality of second current paths, and the plurality of third current paths, wherein for each adjacent pair of the of the power devices in the sequence, the output of the first power device of the adjacent pair is connected by one of the plurality of second current paths through one of the plurality of power sources to the input of the second power device of the adjacent pair, and wherein the output of the first power device of the adjacent pair is connected by one of the plurality of third current paths through the further one of the plurality of power sources to the second input of the second power device of the adjacent pair.
  • 5. The system of claim 1, wherein the plurality of first current paths are configured to carry direct-current (DC).
  • 6. The system of claim 1, wherein the plurality of first current paths are configured to carry alternating-current (AC).
  • 7. The system of claim 1, wherein an ending power device of the plurality of power devices is arranged at an end of the sequence, is the second power device in only one of the adjacent pairs, and has its output connected to a ground bus or a power bus.
  • 8. The system of claim 1, wherein a beginning power device of the plurality of power devices is arranged at a beginning of the sequence, is the first power device in only one of the adjacent pairs of the power devices in the sequence, and is connected to a power bus or a ground bus through separate third and fourth paths, the third path connecting the common of the beginning power device to the power bus or the ground bus and the fourth path connecting the input of the beginning power device through a further one of the power sources to the power bus or the ground bus.
  • 9. The system of claim 2, wherein the plurality of power sources comprise photovoltaic generators.
  • 10. The system of claim 1, further comprising the plurality of power sources, wherein each of the plurality of power devices is integrated with one of the plurality of power sources to form one of a plurality of integrated apparatuses.
  • 11. A power device comprising: an input connector, a common connector, a plurality of output connectors, a conversion circuit, and a photovoltaic generator, integrated together, wherein:the common connector is connected by a first direct-current path to a common node of the conversion circuit, the input connector is connected by a second direct-current path to an input node of the conversion circuit, and the plurality of output connectors are connected by a plurality of additional direct-current paths to an output node of the conversion circuit;the photovoltaic generator is connected serially between the input connector and the input node as part of the second direct-current path or connected serially between one of the plurality of output connectors and the output node as part of one of the plurality of additional direct-current paths; andthe conversion circuit is configured to convert input power received on the input node to output power on the output node.
  • 12. The power device of claim 11, wherein the conversion circuit comprises a direct-current to direct-current (DC/DC) converter or a direct-current to alternating-current (DC/AC) converter.
  • 13. The power device of claim 11, further comprising a communication device configured to communicate with at least one other power device comprising another communication device.
  • 14. The power device of claim 13, wherein the communication device is configured to communicate with the at least one other power device by transmitting a signal over the first direct-current path, the second direct-current path, or one of the plurality of additional direct-current paths.
  • 15. The power device of claim 11, further comprising a current sensor, wherein the power device is configured to compare two or more current measurements taken with the current sensor at two or more different times, and based on the two or more current measurements, detect an identifying characteristic of an adjacent power device connected to the power device.
  • 16. The power device of claim 11, further comprising a control circuit configured to maximize the input power received by the conversion circuit at the input node.
  • 17. A system comprising: a first and second power devices each comprising: a casing,a power conversion circuit housed in the casing and comprising an input node, an output node, and a common node,an input connector accessible from outside of the casing and electrically connected to the input node, andan output connector accessible from outside of the casing and electrically connected to the output node; andan electrical cable connected between the first and the second power devices and electrically connecting the common node of the power conversion circuit in the first power device to the output node of the power conversion circuit in the second power device.
  • 18. The system of claim 17, further comprising: a second output connector of the first power device, or a second cable, accessible from outside of the casing of the first power device and connected to the output node of the power conversion circuit in the first power device; ora common connector of the second power device, or the second cable, connected to the common node of the power conversion circuit in the second power device.
  • 19. The system of claim 17, further comprising: a third power device comprising: a third casing,a third power conversion circuit housed in the third casing and comprising a third input node, a third output node, and a third common node,a third input connector accessible from outside of the third casing and electrically connected to the third input node, and a third output connector accessible from outside of the third casing and electrically connected to the third output node; anda second electrical cable connected between the second and the third power devices and electrically connecting the common node of the power conversion circuit in the second power device to the third output node of the third power conversion circuit in the third power device.
  • 20. The system of claim 17, wherein the first and the second power devices each comprise a maximum power point tracking circuit configured to maximize power received at the input node of the first and the second power devices, respectively.
RELATED APPLICATIONS

The present application claims priority benefit to, and incorporates by reference, in their entireties for all purposes, U.S. provisional application 62/395,461, filed Sep. 16, 2016, and U.S. provisional application 62/341,147, filed May 25, 2016.

US Referenced Citations (1285)
Number Name Date Kind
2367925 Brown Jan 1945 A
2586804 Fluke Feb 1952 A
2758219 Miller Aug 1956 A
2852721 Harders et al. Sep 1958 A
2958171 Deckers Nov 1960 A
3369210 Manickella Feb 1968 A
3392326 Lamberton Jul 1968 A
3496029 King et al. Feb 1970 A
3566143 Paine et al. Feb 1971 A
3569784 Carroll et al. Mar 1971 A
3643564 Uchiyama Feb 1972 A
3696286 Ule Oct 1972 A
3740652 Burgener Jun 1973 A
3958136 Schroeder May 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4104687 Zulaski Aug 1978 A
4127797 Perper Nov 1978 A
4129788 Chavannes Dec 1978 A
4129823 van der Pool et al. Dec 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4171861 Hohorst Oct 1979 A
4183079 Wachi Jan 1980 A
4257087 Cuk Mar 1981 A
4296461 Mallory et al. Oct 1981 A
4321581 Tappeiner et al. Mar 1982 A
4324225 Trihey Apr 1982 A
4327318 Kwon et al. Apr 1982 A
4346341 Blackburn et al. Aug 1982 A
4363040 Inose Dec 1982 A
4367557 Stern et al. Jan 1983 A
4375662 Baker Mar 1983 A
4384321 Rippel May 1983 A
4404472 Steigerwald Sep 1983 A
4412142 Ragonese et al. Oct 1983 A
4452867 Conforti Jun 1984 A
4453207 Paul Jun 1984 A
4460232 Sotolongo Jul 1984 A
4470213 Thompson Sep 1984 A
4479175 Gille et al. Oct 1984 A
4481654 Daniels et al. Nov 1984 A
4488136 Hansen et al. Dec 1984 A
4526553 Guerrero Jul 1985 A
4533986 Jones Aug 1985 A
4545997 Wong et al. Oct 1985 A
4549254 Kissel Oct 1985 A
4554502 Rohatyn Nov 1985 A
4554515 Burson et al. Nov 1985 A
4580090 Bailey et al. Apr 1986 A
4591965 Dickerson May 1986 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4604567 Chetty Aug 1986 A
4611090 Catella et al. Sep 1986 A
4623753 Feldman et al. Nov 1986 A
4626983 Harada et al. Dec 1986 A
4631565 Tihanyi Dec 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4649334 Nakajima Mar 1987 A
4652770 Kumano Mar 1987 A
4683529 Bucher, II Jul 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4719553 Hinckley Jan 1988 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4736151 Dishner Apr 1988 A
4746879 Ma et al. May 1988 A
4772994 Harada et al. Sep 1988 A
4783728 Hoffman Nov 1988 A
4797803 Carroll Jan 1989 A
4819121 Saito et al. Apr 1989 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4873480 Lafferty Oct 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899246 Tripodi Feb 1990 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4951117 Kasai Aug 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5001415 Watkinson Mar 1991 A
5027051 Lafferty Jun 1991 A
5027059 de Montgolfier et al. Jun 1991 A
5045988 Gritter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5097196 Schoneman Mar 1992 A
5138422 Fujii et al. Aug 1992 A
5143556 Matlin Sep 1992 A
5144222 Herbert Sep 1992 A
5155670 Brian Oct 1992 A
5191519 Kawakami Mar 1993 A
5196781 Jamieson et al. Mar 1993 A
5210519 Moore May 1993 A
5235266 Schaffrin Aug 1993 A
5237194 Takahashi Aug 1993 A
5268832 Kandatsu Dec 1993 A
5280133 Nath Jan 1994 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5289998 Bingley et al. Mar 1994 A
5327071 Frederick et al. Jul 1994 A
5329222 Gyugyi et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5379209 Goff Jan 1995 A
5381327 Yan Jan 1995 A
5391235 Inoue Feb 1995 A
5402060 Erisman Mar 1995 A
5404059 Loffler Apr 1995 A
5412558 Sakurai et al. May 1995 A
5413313 Mutterlein et al. May 1995 A
5428286 Kha Jun 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5472614 Rossi Dec 1995 A
5477091 Fiorina Dec 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5501083 Kim Mar 1996 A
5504415 Podrazhansky et al. Apr 1996 A
5504418 Ashley Apr 1996 A
5504449 Prentice Apr 1996 A
5513075 Capper et al. Apr 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5539238 Malhi Jul 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5565855 Knibbe Oct 1996 A
5566022 Segev Oct 1996 A
5576941 Nguyen et al. Nov 1996 A
5580395 Yoshioka et al. Dec 1996 A
5585749 Pace et al. Dec 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5631534 Lewis May 1997 A
5636107 Lu et al. Jun 1997 A
5644212 Takahashi Jul 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5648731 Decker et al. Jul 1997 A
5654740 Schulha Aug 1997 A
5659465 Flack et al. Aug 1997 A
5677833 Bingley Oct 1997 A
5684385 Guyonneau et al. Nov 1997 A
5686766 Tamechika Nov 1997 A
5696439 Presti et al. Dec 1997 A
5703390 Itoh Dec 1997 A
5708576 Jones et al. Jan 1998 A
5719758 Nakata et al. Feb 1998 A
5722057 Wu Feb 1998 A
5726505 Yamada et al. Mar 1998 A
5726615 Bloom Mar 1998 A
5731603 Nakagawa et al. Mar 1998 A
5734258 Esser Mar 1998 A
5734259 Sisson et al. Mar 1998 A
5734565 Mueller et al. Mar 1998 A
5747967 Muljadi et al. May 1998 A
5751120 Zeitler et al. May 1998 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5793184 O'Connor Aug 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5812045 Ishikawa et al. Sep 1998 A
5814970 Schmidt Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5847549 Dodson, III Dec 1998 A
5859772 Hilpert Jan 1999 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5898585 Sirichote et al. Apr 1999 A
5903138 Hwang et al. May 1999 A
5905645 Cross May 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923100 Lukens et al. Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5929614 Copple Jul 1999 A
5930128 Dent Jul 1999 A
5930131 Feng Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5946206 Shimizu et al. Aug 1999 A
5949668 Schweighofer Sep 1999 A
5955885 Kurokami et al. Sep 1999 A
5959438 Jovanovic et al. Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5963078 Wallace Oct 1999 A
5982253 Perrin et al. Nov 1999 A
5986909 Hammond et al. Nov 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6002603 Carver Dec 1999 A
6008971 Duba et al. Dec 1999 A
6021052 Unger et al. Feb 2000 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046470 Williams et al. Apr 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6058035 Madenokouji et al. May 2000 A
6064086 Nakagawa et al. May 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6091329 Newman Jul 2000 A
6093885 Takehara et al. Jul 2000 A
6094129 Baiatu Jul 2000 A
6101073 Takehara Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6130458 Takagi et al. Oct 2000 A
6150739 Baumgartl et al. Nov 2000 A
6151234 Oldenkamp Nov 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6175219 Imamura et al. Jan 2001 B1
6175512 Hagihara et al. Jan 2001 B1
6191456 Stoisiek et al. Feb 2001 B1
6215286 Scoones et al. Apr 2001 B1
6219623 Wills Apr 2001 B1
6225793 Dickmann May 2001 B1
6255360 Domschke et al. Jul 2001 B1
6255804 Herniter et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6268559 Yamawaki Jul 2001 B1
6274804 Psyk et al. Aug 2001 B1
6275016 Ivanov Aug 2001 B1
6281485 Siri Aug 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6297621 Hui et al. Oct 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6307749 Daanen et al. Oct 2001 B1
6311137 Kurokami et al. Oct 2001 B1
6316716 Hilgrath Nov 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6329808 Enguent Dec 2001 B1
6331670 Takehara et al. Dec 2001 B2
6339538 Handleman Jan 2002 B1
6344612 Kuwahara et al. Feb 2002 B1
6346451 Simpson et al. Feb 2002 B1
6348781 Midya et al. Feb 2002 B1
6350944 Sherif et al. Feb 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369461 Jungreis et al. Apr 2002 B1
6369462 Siri Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6396239 Benn et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6425248 Tonomura et al. Jul 2002 B1
6429546 Ropp et al. Aug 2002 B1
6429621 Arai Aug 2002 B1
6433522 Siri Aug 2002 B1
6433978 Neiger et al. Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6445599 Nguyen Sep 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6465910 Young et al. Oct 2002 B2
6465931 Knowles et al. Oct 2002 B2
6469919 Bennett Oct 2002 B1
6472254 Cantarini et al. Oct 2002 B2
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6501362 Hoffman et al. Dec 2002 B1
6507176 Wittenbreder, Jr. Jan 2003 B2
6509712 Landis Jan 2003 B1
6512444 Morris, Jr. et al. Jan 2003 B1
6515215 Mimura Feb 2003 B1
6519165 Koike Feb 2003 B2
6528977 Arakawa Mar 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6560131 vonBrethorst May 2003 B1
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6590794 Carter Jul 2003 B1
6593520 Kondo et al. Jul 2003 B2
6593521 Kobayashi Jul 2003 B2
6600100 Ho et al. Jul 2003 B2
6603672 Deng et al. Aug 2003 B1
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6636431 Seki et al. Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6655987 Higashikozono et al. Dec 2003 B2
6657419 Renyolds Dec 2003 B2
6664762 Kutkut Dec 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6693327 Priefert et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6708507 Sem et al. Mar 2004 B1
6709291 Wallace et al. Mar 2004 B1
6724593 Smith Apr 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6750391 Bower et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6768180 Salama et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6800964 Beck Oct 2004 B2
6801442 Suzui et al. Oct 2004 B2
6807069 Nieminen et al. Oct 2004 B2
6809942 Madenokouji et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6812396 Makita et al. Nov 2004 B2
6828503 Yoshikawa et al. Dec 2004 B2
6828901 Birchfield et al. Dec 2004 B2
6837739 Gorringe et al. Jan 2005 B2
6838611 Kondo et al. Jan 2005 B2
6838856 Raichle Jan 2005 B2
6842354 Tallam et al. Jan 2005 B1
6844739 Kasai et al. Jan 2005 B2
6850074 Adams et al. Feb 2005 B2
6856102 Lin et al. Feb 2005 B1
6882131 Takada et al. Apr 2005 B1
6888728 Takagi et al. May 2005 B2
6894911 Telefus et al. May 2005 B2
6897370 Kondo et al. May 2005 B2
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6933714 Fasshauer et al. Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6940735 Deng et al. Sep 2005 B2
6949843 Dubovsky Sep 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6966184 Toyomura et al. Nov 2005 B2
6970365 Turchi Nov 2005 B2
6980783 Liu et al. Dec 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
6987444 Bub et al. Jan 2006 B2
6996741 Pittelkow et al. Feb 2006 B1
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7045991 Nakamura et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7061211 Satoh et al. Jun 2006 B2
7061214 Mayega et al. Jun 2006 B2
7064967 Ichinose et al. Jun 2006 B2
7068017 Willner et al. Jun 2006 B2
7072194 Nayar et al. Jul 2006 B2
7078883 Chapman et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7088595 Nino Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7142997 Widner Nov 2006 B1
7148669 Maksimovic et al. Dec 2006 B2
7150938 Munshi et al. Dec 2006 B2
7157888 Chen et al. Jan 2007 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7161082 Matsushita et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7176667 Chen et al. Feb 2007 B2
7183667 Colby et al. Feb 2007 B2
7193872 Siri Mar 2007 B2
7202653 Pai Apr 2007 B2
7208674 Aylaian Apr 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7259474 Blanc Aug 2007 B2
7262979 Wai et al. Aug 2007 B2
7276886 Kinder et al. Oct 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7282924 Wittner Oct 2007 B1
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7315052 Alter Jan 2008 B2
7319313 Dickerson et al. Jan 2008 B2
7324361 Siri Jan 2008 B2
7336004 Lai Feb 2008 B2
7336056 Dening Feb 2008 B1
7339287 Jepsen et al. Mar 2008 B2
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7361952 Miura et al. Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7388348 Mattichak Jun 2008 B2
7391190 Rajagopalan Jun 2008 B1
7394237 Chou et al. Jul 2008 B2
7405117 Zuniga et al. Jul 2008 B2
7414870 Rottger et al. Aug 2008 B2
7420354 Cutler Sep 2008 B2
7420815 Love Sep 2008 B2
7432691 Cutler Oct 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7443152 Utsunomiya Oct 2008 B2
7450401 Iida Nov 2008 B2
7456510 Ito et al. Nov 2008 B2
7456523 Kobayashi Nov 2008 B2
7463500 West Dec 2008 B2
7466566 Fukumoto Dec 2008 B2
7471014 Lum et al. Dec 2008 B2
7471524 Batarseh et al. Dec 2008 B1
7479774 Wai et al. Jan 2009 B2
7482238 Sung Jan 2009 B2
7485987 Mori et al. Feb 2009 B2
7495419 Ju Feb 2009 B1
7504811 Watanabe et al. Mar 2009 B2
7518346 Prexl et al. Apr 2009 B2
7538451 Nomoto May 2009 B2
7560915 Ito et al. Jul 2009 B2
7589437 Henne et al. Sep 2009 B2
7595616 Prexl et al. Sep 2009 B2
7596008 Iwata et al. Sep 2009 B2
7599200 Tomonaga Oct 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7602626 Iwata et al. Oct 2009 B2
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7615981 Wong et al. Nov 2009 B2
7626834 Chisenga et al. Dec 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7649434 Xu et al. Jan 2010 B2
7701083 Savage Apr 2010 B2
7709727 Roehrig et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7723865 Kitanaka May 2010 B2
7733069 Toyomura et al. Jun 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7772716 Shaver, II et al. Aug 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7807919 Powell et al. Oct 2010 B2
7808125 Sachdeva et al. Oct 2010 B1
7812592 Prior et al. Oct 2010 B2
7812701 Lee et al. Oct 2010 B2
7821225 Chou et al. Oct 2010 B2
7824189 Lauermann et al. Nov 2010 B1
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7883808 Norimatsu et al. Feb 2011 B2
7884278 Powell et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7898112 Powell et al. Mar 2011 B2
7900361 Adest et al. Mar 2011 B2
7906007 Gibson et al. Mar 2011 B2
7906870 Ohm Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
7969133 Zhang et al. Jun 2011 B2
7977810 Choi et al. Jul 2011 B2
8003885 Richter et al. Aug 2011 B2
8004113 Sander et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8004866 Bucella et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8035249 Shaver, II et al. Oct 2011 B2
8039730 Hadar et al. Oct 2011 B2
8049363 McLean et al. Nov 2011 B2
8050804 Kernahan Nov 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8080986 Lai et al. Dec 2011 B2
8089780 Mochikawa et al. Jan 2012 B2
8089785 Rodriguez Jan 2012 B2
8090548 Abdennadher et al. Jan 2012 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8097818 Gerull et al. Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102074 Hadar et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138631 Allen et al. Mar 2012 B2
8138914 Wong et al. Mar 2012 B2
8139335 Quardt et al. Mar 2012 B2
8139382 Zhang et al. Mar 2012 B2
8148849 Zanarini et al. Apr 2012 B2
8158877 Klein et al. Apr 2012 B2
8169252 Fahrenbruch et al. May 2012 B2
8179147 Dargatz et al. May 2012 B2
8184460 O'Brien et al. May 2012 B2
8188610 Scholte-Wassink May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8212408 Fishman Jul 2012 B2
8212409 Bettenwort et al. Jul 2012 B2
8248804 Han et al. Aug 2012 B2
8271599 Eizips et al. Sep 2012 B2
8274172 Hadar et al. Sep 2012 B2
8279644 Zhang et al. Oct 2012 B2
8289183 Foss Oct 2012 B1
8289742 Adest et al. Oct 2012 B2
8294451 Hasenfus Oct 2012 B2
8299773 Jang et al. Oct 2012 B2
8304932 Ledenev et al. Nov 2012 B2
8310101 Amaratunga et al. Nov 2012 B2
8310102 Raju Nov 2012 B2
8314375 Arditi et al. Nov 2012 B2
8324921 Adest et al. Dec 2012 B2
8325059 Rozenboim Dec 2012 B2
8344548 Stern Jan 2013 B2
8369113 Rodriguez Feb 2013 B2
8378656 de Rooij et al. Feb 2013 B2
8379418 Falk Feb 2013 B2
8391031 Garrity Mar 2013 B2
8391032 Garrity et al. Mar 2013 B2
8395366 Uno Mar 2013 B2
8405248 Mumtaz et al. Mar 2013 B2
8405349 Kikinis et al. Mar 2013 B2
8405367 Chisenga et al. Mar 2013 B2
8410359 Richter Apr 2013 B2
8410889 Garrity et al. Apr 2013 B2
8410950 Takehara et al. Apr 2013 B2
8415552 Hadar et al. Apr 2013 B2
8415937 Hester Apr 2013 B2
8427009 Shaver, II et al. Apr 2013 B2
8436592 Saitoh May 2013 B2
8461809 Rodriguez Jun 2013 B2
8466789 Muhlberger et al. Jun 2013 B2
8472220 Garrity et al. Jun 2013 B2
8473250 Adest et al. Jun 2013 B2
8509032 Rakib Aug 2013 B2
8526205 Garrity Sep 2013 B2
8531055 Adest et al. Sep 2013 B2
8542512 Garrity Sep 2013 B2
8570017 Perichon et al. Oct 2013 B2
8581441 Rotzoll et al. Nov 2013 B2
8587151 Adest et al. Nov 2013 B2
8618692 Adest et al. Dec 2013 B2
8624443 Mumtaz Jan 2014 B2
8653689 Rozenboim Feb 2014 B2
8669675 Capp et al. Mar 2014 B2
8670255 Gong et al. Mar 2014 B2
8674548 Mumtaz Mar 2014 B2
8674668 Chisenga et al. Mar 2014 B2
8686333 Arditi et al. Apr 2014 B2
8710351 Robbins Apr 2014 B2
8751053 Hadar et al. Jun 2014 B2
8773236 Makhota et al. Jul 2014 B2
8791598 Jain Jul 2014 B2
8809699 Funk Aug 2014 B2
8811047 Rodriguez Aug 2014 B2
8816535 Adest et al. Aug 2014 B2
8823212 Garrity et al. Sep 2014 B2
8823218 Hadar et al. Sep 2014 B2
8823342 Williams Sep 2014 B2
8835748 Frolov et al. Sep 2014 B2
8841916 Avrutsky Sep 2014 B2
8853886 Avrutsky et al. Oct 2014 B2
8854193 Makhota et al. Oct 2014 B2
8859884 Dunton et al. Oct 2014 B2
8860241 Hadar et al. Oct 2014 B2
8860246 Hadar et al. Oct 2014 B2
8878563 Robbins Nov 2014 B2
8917156 Garrity et al. Dec 2014 B2
8922061 Arditi Dec 2014 B2
8933321 Hadar et al. Jan 2015 B2
8934269 Garrity Jan 2015 B2
8963375 DeGraaff Feb 2015 B2
8963378 Fornage et al. Feb 2015 B1
8972765 Krolak et al. Mar 2015 B1
9130401 Adest et al. Sep 2015 B2
9257848 Coccia et al. Feb 2016 B2
9291696 Adest et al. Mar 2016 B2
9362743 Gazit et al. Jun 2016 B2
9397497 Ledenev Jul 2016 B2
9407161 Adest et al. Aug 2016 B2
9466737 Ledenev Oct 2016 B2
9647442 Yoscovich et al. May 2017 B2
9660527 Glovinski May 2017 B2
9673630 Ledenev et al. Jun 2017 B2
9819178 Gazit et al. Nov 2017 B2
9831916 Behrends Nov 2017 B2
9843193 Getsla Dec 2017 B2
9923516 Har-Shai et al. Mar 2018 B2
9991717 Rowe et al. Jun 2018 B1
10032939 Ledenev et al. Jul 2018 B2
20010000957 Birchfield et al. May 2001 A1
20010023703 Kondo et al. Sep 2001 A1
20010032664 Takehara et al. Oct 2001 A1
20010034982 Nagao et al. Nov 2001 A1
20010035180 Kimura et al. Nov 2001 A1
20010048605 Kurokami et al. Dec 2001 A1
20010050102 Matsumi et al. Dec 2001 A1
20010054881 Watanabe Dec 2001 A1
20020002040 Kline et al. Jan 2002 A1
20020014262 Matsushita et al. Feb 2002 A1
20020017900 Takeda et al. Feb 2002 A1
20020034083 Ayyanar et al. Mar 2002 A1
20020038667 Kondo et al. Apr 2002 A1
20020041505 Suzui et al. Apr 2002 A1
20020044473 Toyomura et al. Apr 2002 A1
20020047309 Droppo et al. Apr 2002 A1
20020047693 Chang Apr 2002 A1
20020056089 Houston May 2002 A1
20020063552 Arakawa May 2002 A1
20020063625 Takehara et al. May 2002 A1
20020078991 Nagao et al. Jun 2002 A1
20020080027 Conley Jun 2002 A1
20020085397 Suzui et al. Jul 2002 A1
20020105765 Kondo et al. Aug 2002 A1
20020113689 Gehlot et al. Aug 2002 A1
20020118559 Kurokami et al. Aug 2002 A1
20020127980 Amanullah et al. Sep 2002 A1
20020134567 Rasmussen et al. Sep 2002 A1
20020148497 Sasaoka et al. Oct 2002 A1
20020149950 Takebayashi Oct 2002 A1
20020162585 Sugawara et al. Nov 2002 A1
20020165458 Carter et al. Nov 2002 A1
20020177401 Judd et al. Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20020180408 McDaniel et al. Dec 2002 A1
20020190696 Darshan Dec 2002 A1
20030002303 Riggio et al. Jan 2003 A1
20030025594 Akiyama et al. Feb 2003 A1
20030038615 Elbanhawy Feb 2003 A1
20030047207 Aylaian Mar 2003 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030066555 Hui et al. Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030085621 Potega May 2003 A1
20030090233 Browe May 2003 A1
20030090246 Shenai et al. May 2003 A1
20030094931 Renyolds May 2003 A1
20030107352 Downer et al. Jun 2003 A1
20030111103 Bower et al. Jun 2003 A1
20030116154 Butler et al. Jun 2003 A1
20030121514 Davenport et al. Jul 2003 A1
20030127126 Yang Jul 2003 A1
20030140960 Baum et al. Jul 2003 A1
20030156439 Ohmichi et al. Aug 2003 A1
20030164695 Fasshauer et al. Sep 2003 A1
20030185026 Matsuda et al. Oct 2003 A1
20030193821 Krieger et al. Oct 2003 A1
20030201674 Droppo et al. Oct 2003 A1
20030214274 Lethellier Nov 2003 A1
20030223257 Onoe Dec 2003 A1
20040004402 Kippley Jan 2004 A1
20040027112 Kondo et al. Feb 2004 A1
20040041548 Perry Mar 2004 A1
20040056642 Nebrigic et al. Mar 2004 A1
20040056768 Matsushita et al. Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040076028 Achleitner et al. Apr 2004 A1
20040117676 Kobayashi et al. Jun 2004 A1
20040118446 Toyomura Jun 2004 A1
20040123894 Erban Jul 2004 A1
20040124816 DeLepaut Jul 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040141345 Cheng et al. Jul 2004 A1
20040144043 Stevenson et al. Jul 2004 A1
20040150410 Schoepf et al. Aug 2004 A1
20040164718 McDaniel et al. Aug 2004 A1
20040165408 West et al. Aug 2004 A1
20040167676 Mizumaki Aug 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040170038 Ichinose et al. Sep 2004 A1
20040189090 Yanagida et al. Sep 2004 A1
20040189432 Yan et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040207366 Sung Oct 2004 A1
20040211458 Gui et al. Oct 2004 A1
20040213169 Allard et al. Oct 2004 A1
20040223351 Kurokami et al. Nov 2004 A1
20040230343 Zalesski Nov 2004 A1
20040233685 Matsuo et al. Nov 2004 A1
20040246226 Moon Dec 2004 A1
20040255999 Matsushita et al. Dec 2004 A1
20040258141 Tustison et al. Dec 2004 A1
20040262998 Kunow et al. Dec 2004 A1
20040263119 Meyer et al. Dec 2004 A1
20040263183 Naidu et al. Dec 2004 A1
20040264225 Bhavaraju et al. Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050006958 Dubovsky Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050017701 Hsu Jan 2005 A1
20050030772 Phadke Feb 2005 A1
20050040800 Sutardja Feb 2005 A1
20050041442 Balakrishnan Feb 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068012 Cutler Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050077879 Near Apr 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050105306 Deng et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050110454 Tsai et al. May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050135031 Colby et al. Jun 2005 A1
20050139258 Liu et al. Jun 2005 A1
20050140335 Lee et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050163063 Kuchler et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050179420 Satoh et al. Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050201397 Petite Sep 2005 A1
20050213272 Kobayashi Sep 2005 A1
20050218876 Nino Oct 2005 A1
20050225090 Wobben Oct 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050242795 Al-Kuran et al. Nov 2005 A1
20050257827 Gaudiana et al. Nov 2005 A1
20050269988 Thrap Dec 2005 A1
20050275386 Jepsen et al. Dec 2005 A1
20050275527 Kates Dec 2005 A1
20050275979 Xu Dec 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20050287402 Maly et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060043792 Hjort et al. Mar 2006 A1
20060043942 Cohen Mar 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060077046 Endo Apr 2006 A1
20060103360 Cutler May 2006 A9
20060108979 Daniel et al. May 2006 A1
20060109009 Banke et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060116968 Arisawa Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060125449 Unger Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060152085 Flett et al. Jul 2006 A1
20060162772 Presher et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060164065 Hoouk et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176029 McGinty et al. Aug 2006 A1
20060176031 Forman et al. Aug 2006 A1
20060176036 Flatness et al. Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060222916 Norimatsu et al. Oct 2006 A1
20060225781 Locher Oct 2006 A1
20060227577 Horiuchi et al. Oct 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060231132 Neussner Oct 2006 A1
20060232220 Melis Oct 2006 A1
20060235717 Sharma et al. Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20060238750 Shimotomai Oct 2006 A1
20060261751 Okabe et al. Nov 2006 A1
20060266408 Horne et al. Nov 2006 A1
20060267515 Burke et al. Nov 2006 A1
20060290317 McNulty et al. Dec 2006 A1
20070001653 Xu Jan 2007 A1
20070013349 Bassett Jan 2007 A1
20070019613 Frezzolini Jan 2007 A1
20070024257 Boldo Feb 2007 A1
20070027644 Bettenwort et al. Feb 2007 A1
20070029636 Kanemaru et al. Feb 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070035975 Dickerson et al. Feb 2007 A1
20070040540 Cutler Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070085523 Scoones et al. Apr 2007 A1
20070089778 Horne et al. Apr 2007 A1
20070103108 Capp et al. May 2007 A1
20070103297 Armstrong et al. May 2007 A1
20070107767 Hayden et al. May 2007 A1
20070115635 Low et al. May 2007 A1
20070119718 Gibson et al. May 2007 A1
20070121648 Hahn May 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070133421 Young Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070158185 Andelman et al. Jul 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070209656 Lee Sep 2007 A1
20070211888 Corcoran et al. Sep 2007 A1
20070223165 Itri et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070235071 Work et al. Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070241720 Sakamoto et al. Oct 2007 A1
20070246546 Yoshida Oct 2007 A1
20070247135 Koga Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070271006 Golden et al. Nov 2007 A1
20070273339 Haines Nov 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070273351 Matan Nov 2007 A1
20070284451 Uramoto Dec 2007 A1
20070290636 Beck et al. Dec 2007 A1
20070290656 Lee Tai Keung Dec 2007 A1
20080021707 Bou-Ghazale et al. Jan 2008 A1
20080023061 Clemens et al. Jan 2008 A1
20080024098 Hojo Jan 2008 A1
20080036440 Garmer Feb 2008 A1
20080055941 Victor et al. Mar 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080111529 Shah et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080121272 Besser et al. May 2008 A1
20080122449 Besser et al. May 2008 A1
20080122518 Besser et al. May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080142071 Dorn et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080149167 Liu Jun 2008 A1
20080150366 Adest et al. Jun 2008 A1
20080150484 Kimball et al. Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080186004 Williams Aug 2008 A1
20080191560 Besser et al. Aug 2008 A1
20080191675 Besser et al. Aug 2008 A1
20080192510 Falk Aug 2008 A1
20080192519 Iwata et al. Aug 2008 A1
20080198523 Schmidt et al. Aug 2008 A1
20080205096 Lai et al. Aug 2008 A1
20080218152 Bo Sep 2008 A1
20080224652 Zhu et al. Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080238372 Cintra et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080264470 Masuda et al. Oct 2008 A1
20080266913 Brotto et al. Oct 2008 A1
20080266919 Mallwitz Oct 2008 A1
20080283118 Rotzoll et al. Nov 2008 A1
20080291707 Fang Nov 2008 A1
20080294472 Yamada Nov 2008 A1
20080297963 Lee et al. Dec 2008 A1
20080298608 Wilcox Dec 2008 A1
20080303503 Wolfs Dec 2008 A1
20080304296 NadimpalliRaju et al. Dec 2008 A1
20080304298 Toba et al. Dec 2008 A1
20090012917 Thompson et al. Jan 2009 A1
20090014050 Haaf Jan 2009 A1
20090014057 Croft et al. Jan 2009 A1
20090014058 Croft et al. Jan 2009 A1
20090015071 Iwata et al. Jan 2009 A1
20090020151 Fornage Jan 2009 A1
20090021877 Fornage et al. Jan 2009 A1
20090039852 Fishelov et al. Feb 2009 A1
20090064252 Howarter et al. Mar 2009 A1
20090066357 Fornage Mar 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090069950 Kurokami et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090078300 Ang et al. Mar 2009 A1
20090080226 Fornage Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090101191 Beck et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090114263 Powell et al. May 2009 A1
20090120485 Kikinis May 2009 A1
20090121549 Leonard May 2009 A1
20090133736 Powell et al. May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090150005 Hadar et al. Jun 2009 A1
20090160258 Allen et al. Jun 2009 A1
20090179500 Ragonese et al. Jul 2009 A1
20090179662 Moulton et al. Jul 2009 A1
20090182532 Stoeber et al. Jul 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090189456 Skutt Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090195081 Quardt et al. Aug 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090207543 Boniface et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090234692 Powell et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090243547 Andelfinger Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090278496 Nakao et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090283129 Foss Nov 2009 A1
20090283130 Gilmore et al. Nov 2009 A1
20090284232 Zhang et al. Nov 2009 A1
20090284240 Zhang et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090295225 Asplund et al. Dec 2009 A1
20090296434 De Rooij et al. Dec 2009 A1
20090322494 Lee Dec 2009 A1
20090325003 Aberle et al. Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100002349 La Scala et al. Jan 2010 A1
20100013452 Tang et al. Jan 2010 A1
20100020576 Falk Jan 2010 A1
20100026097 Avrutsky et al. Feb 2010 A1
20100026736 Plut Feb 2010 A1
20100038907 Hunt et al. Feb 2010 A1
20100043781 Jones et al. Feb 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100057267 Liu et al. Mar 2010 A1
20100060000 Scholte-Wassink Mar 2010 A1
20100071742 de Rooij et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100115093 Rice May 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100124087 Falk May 2010 A1
20100126550 Foss May 2010 A1
20100127570 Hadar et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100131108 Meyer May 2010 A1
20100132757 He et al. Jun 2010 A1
20100132758 Gilmore Jun 2010 A1
20100132761 Echizenya et al. Jun 2010 A1
20100133911 Williams et al. Jun 2010 A1
20100139734 Hadar et al. Jun 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100141041 Bose et al. Jun 2010 A1
20100141153 Recker et al. Jun 2010 A1
20100147362 King et al. Jun 2010 A1
20100154858 Jain Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100191383 Gaul Jul 2010 A1
20100195357 Fornage et al. Aug 2010 A1
20100195361 Stem Aug 2010 A1
20100206378 Erickson, Jr. et al. Aug 2010 A1
20100207764 Muhlberger et al. Aug 2010 A1
20100207770 Thiemann Aug 2010 A1
20100208501 Matan et al. Aug 2010 A1
20100213897 Tse Aug 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100217551 Goff et al. Aug 2010 A1
20100229915 Ledenev et al. Sep 2010 A1
20100241375 Kumar et al. Sep 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100246223 Xuan Sep 2010 A1
20100264736 Mumtaz et al. Oct 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100288327 Lisi et al. Nov 2010 A1
20100289337 Stauth et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100295680 Dumps Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20100309692 Chisenga et al. Dec 2010 A1
20100321148 Gevorkian Dec 2010 A1
20100326809 Lang et al. Dec 2010 A1
20100327657 Kuran Dec 2010 A1
20100327659 Lisi et al. Dec 2010 A1
20100332047 Arditi et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110012430 Cheng et al. Jan 2011 A1
20110019444 Dargatz et al. Jan 2011 A1
20110025130 Hadar et al. Feb 2011 A1
20110031816 Buthker et al. Feb 2011 A1
20110031946 Egan et al. Feb 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110045802 Bland et al. Feb 2011 A1
20110049990 Amaratunga et al. Mar 2011 A1
20110050002 De Luca Mar 2011 A1
20110050190 Avrutsky Mar 2011 A1
20110056533 Kuan Mar 2011 A1
20110061705 Croft et al. Mar 2011 A1
20110061713 Powell et al. Mar 2011 A1
20110062784 Wolfs Mar 2011 A1
20110068633 Quardt et al. Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110080147 Schoenlinner et al. Apr 2011 A1
20110083733 Marroquin et al. Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110088741 Dunton et al. Apr 2011 A1
20110108087 Croft et al. May 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110132424 Rakib Jun 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110141644 Hastings et al. Jun 2011 A1
20110161722 Makhota et al. Jun 2011 A1
20110172842 Makhota et al. Jul 2011 A1
20110173276 Eizips et al. Jul 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110183537 Fornage et al. Jul 2011 A1
20110198935 Hinman et al. Aug 2011 A1
20110210610 Mitsuoka et al. Sep 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110210612 Leutwein Sep 2011 A1
20110218687 Hadar et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110232714 Bhavaraju et al. Sep 2011 A1
20110240100 Lu et al. Oct 2011 A1
20110245989 Makhota et al. Oct 2011 A1
20110246338 Eich Oct 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267721 Chaintreuil et al. Nov 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110273017 Borup et al. Nov 2011 A1
20110273302 Fornage et al. Nov 2011 A1
20110278955 Signorelli et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110285375 Deboy Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110298288 Cho et al. Dec 2011 A1
20110301772 Zuercher et al. Dec 2011 A1
20110304204 Avrutsky et al. Dec 2011 A1
20110304213 Avrutsky et al. Dec 2011 A1
20110304215 Avrutsky et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007434 Perreault et al. Jan 2012 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120026763 Humphrey et al. Feb 2012 A1
20120026769 Schroeder et al. Feb 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120033392 Golubovic et al. Feb 2012 A1
20120033463 Rodriguez Feb 2012 A1
20120039099 Rodriguez Feb 2012 A1
20120043818 Stratakos et al. Feb 2012 A1
20120043823 Stratakos et al. Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120049627 Matsuo et al. Mar 2012 A1
20120049801 Chang Mar 2012 A1
20120056483 Capp et al. Mar 2012 A1
20120063177 Garrity Mar 2012 A1
20120080943 Phadke Apr 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120081933 Garrity Apr 2012 A1
20120081934 Garrity et al. Apr 2012 A1
20120081937 Phadke Apr 2012 A1
20120087159 Chapman et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120091817 Seymour et al. Apr 2012 A1
20120098344 Bergveld et al. Apr 2012 A1
20120104861 Kojori et al. May 2012 A1
20120104863 Yuan May 2012 A1
20120113554 Paoletti et al. May 2012 A1
20120119584 Hadar et al. May 2012 A1
20120133372 Tsai et al. May 2012 A1
20120134058 Pamer et al. May 2012 A1
20120138123 Newdoll et al. Jun 2012 A1
20120139343 Adest et al. Jun 2012 A1
20120146420 Wolfs Jun 2012 A1
20120146583 Gaul et al. Jun 2012 A1
20120161526 Huang et al. Jun 2012 A1
20120161528 Mumtaz et al. Jun 2012 A1
20120169124 Nakashima et al. Jul 2012 A1
20120174961 Larson et al. Jul 2012 A1
20120175961 Har-Shai et al. Jul 2012 A1
20120175963 Adest et al. Jul 2012 A1
20120187769 Spannhake et al. Jul 2012 A1
20120194003 Schmidt et al. Aug 2012 A1
20120199172 Avrutsky Aug 2012 A1
20120200311 Chaintreuil Aug 2012 A1
20120212066 Adest et al. Aug 2012 A1
20120215367 Eizips et al. Aug 2012 A1
20120217973 Avrutsky Aug 2012 A1
20120240490 Gangemi Sep 2012 A1
20120253533 Eizips et al. Oct 2012 A1
20120253541 Arditi et al. Oct 2012 A1
20120255591 Arditi et al. Oct 2012 A1
20120271576 Kamel et al. Oct 2012 A1
20120274145 Taddeo Nov 2012 A1
20120274264 Mun et al. Nov 2012 A1
20120280571 Hargis Nov 2012 A1
20120299380 Haupt Nov 2012 A1
20120318320 Robbins Dec 2012 A1
20130002335 DeGraaff Jan 2013 A1
20130026839 Grana Jan 2013 A1
20130026840 Arditi et al. Jan 2013 A1
20130026842 Arditi et al. Jan 2013 A1
20130026843 Arditi et al. Jan 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130049710 Kraft et al. Feb 2013 A1
20130063119 Lubomirsky Mar 2013 A1
20130082724 Noda et al. Apr 2013 A1
20130094112 Burghardt et al. Apr 2013 A1
20130094262 Avrutsky Apr 2013 A1
20130134790 Amaratunga et al. May 2013 A1
20130181533 Capp et al. Jul 2013 A1
20130192657 Hadar et al. Aug 2013 A1
20130193765 Yoscovich Aug 2013 A1
20130194706 Har-Shai et al. Aug 2013 A1
20130200710 Robbins Aug 2013 A1
20130222144 Hadar et al. Aug 2013 A1
20130229834 Garrity et al. Sep 2013 A1
20130229842 Garrity Sep 2013 A1
20130234518 Mumtaz et al. Sep 2013 A1
20130235637 Rodriguez Sep 2013 A1
20130279210 Chisenga et al. Oct 2013 A1
20130285459 Jaoui et al. Oct 2013 A1
20130294126 Garrity et al. Nov 2013 A1
20130307556 Ledenev et al. Nov 2013 A1
20130313909 Storbeck et al. Nov 2013 A1
20130320778 Hopf et al. Dec 2013 A1
20130321013 Pisklak et al. Dec 2013 A1
20130332093 Adest et al. Dec 2013 A1
20130335861 Laschinski et al. Dec 2013 A1
20140062206 Bryson Mar 2014 A1
20140077756 Kataoka et al. Mar 2014 A1
20140097808 Clark et al. Apr 2014 A1
20140119076 Chang et al. May 2014 A1
20140167715 Wu et al. Jun 2014 A1
20140169053 Ilic et al. Jun 2014 A1
20140191583 Chisenga et al. Jul 2014 A1
20140233136 Heerdt Aug 2014 A1
20140246915 Mumtaz Sep 2014 A1
20140246927 Mumtaz Sep 2014 A1
20140252859 Chisenga et al. Sep 2014 A1
20140265551 Willis Sep 2014 A1
20140265579 Mumtaz Sep 2014 A1
20140265629 Gazit et al. Sep 2014 A1
20140265638 Orr et al. Sep 2014 A1
20140293491 Robbins Oct 2014 A1
20140306543 Garrity et al. Oct 2014 A1
20140327313 Arditi et al. Nov 2014 A1
20140327995 Panjwani et al. Nov 2014 A1
20140354245 Batikoff et al. Dec 2014 A1
20150022006 Garrity et al. Jan 2015 A1
20150028683 Hadar et al. Jan 2015 A1
20150028692 Makhota et al. Jan 2015 A1
20150061409 Dunton et al. Mar 2015 A1
20150131187 Krein et al. May 2015 A1
20150188415 Abido et al. Jul 2015 A1
20150263609 Weida et al. Sep 2015 A1
20150318410 Higuma Nov 2015 A1
20150364918 Singh et al. Dec 2015 A1
20150381108 Hoft et al. Dec 2015 A1
20150381111 Nicolescu et al. Dec 2015 A1
20160006392 Hoft Jan 2016 A1
20160036235 Getsla Feb 2016 A1
20160126367 Dunton et al. May 2016 A1
20160172900 Welch, Jr. Jun 2016 A1
20160181802 Jacobson Jun 2016 A1
20160211841 Harrison Jul 2016 A1
20160226252 Kravtiz et al. Aug 2016 A1
20160226257 Porter et al. Aug 2016 A1
20160241039 Cheng et al. Aug 2016 A1
20160268809 Ledenev et al. Sep 2016 A1
20160270245 Linderman Sep 2016 A1
20160276820 Olivas et al. Sep 2016 A1
20160329715 Orr et al. Nov 2016 A1
20160336899 Ledenev et al. Nov 2016 A1
20160380436 Porter et al. Dec 2016 A1
20170104413 Busch Apr 2017 A1
20170179876 Freeman et al. Jun 2017 A1
20170184343 Freer et al. Jun 2017 A1
20170207746 Yoscovich et al. Jul 2017 A1
20170211190 Glasscock et al. Jul 2017 A1
20170271879 Ledenev et al. Sep 2017 A1
20170278375 Galin et al. Sep 2017 A1
20170288384 Loewenstern Oct 2017 A1
20170331325 Ristau Nov 2017 A1
20180145593 Xi et al. May 2018 A1
20180191292 Ehlmann Jul 2018 A1
20190379279 Adest et al. Dec 2019 A1
Foreign Referenced Citations (659)
Number Date Country
2073800 Sep 2000 AU
2005262278 Jan 2006 AU
2009202125 Dec 2009 AU
2012225199 Oct 2013 AU
1183574 Mar 1985 CA
2063243 Dec 1991 CA
2301657 Mar 1999 CA
2394761 Jun 2001 CA
2658087 Jun 2001 CA
2443450 Mar 2005 CA
2572452 Jan 2006 CA
2613038 Jan 2007 CA
2704605 May 2009 CA
2702392 Sep 2015 CA
2071396 Feb 1991 CN
1106523 Aug 1995 CN
2284479 Jun 1998 CN
1188453 Jul 1998 CN
2305016 Jan 1999 CN
1236213 Nov 1999 CN
1244745 Feb 2000 CN
1262552 Aug 2000 CN
1064487 Apr 2001 CN
1309451 Aug 2001 CN
1362655 Aug 2002 CN
2514538 Oct 2002 CN
1122905 Oct 2003 CN
2579063 Oct 2003 CN
1474492 Feb 2004 CN
1523726 Aug 2004 CN
1551377 Dec 2004 CN
1185782 Jan 2005 CN
2672938 Jan 2005 CN
1588773 Mar 2005 CN
1201157 May 2005 CN
1614854 May 2005 CN
2706955 Jun 2005 CN
1245795 Mar 2006 CN
1787717 Jun 2006 CN
1794537 Jun 2006 CN
1838191 Sep 2006 CN
1841254 Oct 2006 CN
1841823 Oct 2006 CN
1892239 Jan 2007 CN
1902809 Jan 2007 CN
1929276 Mar 2007 CN
1930925 Mar 2007 CN
1933315 Mar 2007 CN
2891438 Apr 2007 CN
101030752 Sep 2007 CN
101050770 Oct 2007 CN
101107712 Jan 2008 CN
100371843 Feb 2008 CN
101128974 Feb 2008 CN
101136129 Mar 2008 CN
101180781 May 2008 CN
101257221 Sep 2008 CN
100426175 Oct 2008 CN
201167381 Dec 2008 CN
201203438 Mar 2009 CN
101488271 Jul 2009 CN
101521459 Sep 2009 CN
101523230 Sep 2009 CN
101647172 Feb 2010 CN
101672252 Mar 2010 CN
101697462 Apr 2010 CN
101779291 Jul 2010 CN
101847939 Sep 2010 CN
201601477 Oct 2010 CN
201623478 Nov 2010 CN
101902051 Dec 2010 CN
101904015 Dec 2010 CN
201663167 Dec 2010 CN
101939660 Jan 2011 CN
101951011 Jan 2011 CN
101951190 Jan 2011 CN
101953051 Jan 2011 CN
101953060 Jan 2011 CN
101976855 Feb 2011 CN
101976952 Feb 2011 CN
101980409 Feb 2011 CN
102084584 Jun 2011 CN
102089883 Jun 2011 CN
102117815 Jul 2011 CN
102148584 Aug 2011 CN
201926948 Aug 2011 CN
201956938 Aug 2011 CN
202034903 Nov 2011 CN
102273039 Dec 2011 CN
202103601 Jan 2012 CN
102362550 Feb 2012 CN
102386259 Mar 2012 CN
202178274 Mar 2012 CN
102474112 May 2012 CN
102565635 Jul 2012 CN
102771017 Nov 2012 CN
202871823 Apr 2013 CN
103280768 Sep 2013 CN
203367304 Dec 2013 CN
103548226 Jan 2014 CN
103875144 Jun 2014 CN
104253585 Dec 2014 CN
104488155 Apr 2015 CN
104685785 Jun 2015 CN
105075046 Nov 2015 CN
105164915 Dec 2015 CN
105553422 May 2016 CN
106093721 Nov 2016 CN
1161639 Jan 1964 DE
3236071 Jan 1984 DE
3525630 Jan 1987 DE
3729000 Mar 1989 DE
4019710 Jan 1992 DE
4032569 Apr 1992 DE
4041672 Jun 1992 DE
9312710 Oct 1993 DE
4232356 Mar 1994 DE
4325436 Feb 1995 DE
4328511 Mar 1995 DE
19515786 Nov 1995 DE
19502762 Aug 1996 DE
19614861 Jul 1997 DE
19609189 Sep 1997 DE
19618882 Nov 1997 DE
19701897 Jul 1998 DE
19718046 Nov 1998 DE
19732218 Mar 1999 DE
19737286 Mar 1999 DE
19838230 Feb 2000 DE
19846818 Apr 2000 DE
19859732 Jun 2000 DE
19904561 Aug 2000 DE
19928809 Jan 2001 DE
019937410 Feb 2001 DE
19961705 Jul 2001 DE
10064039 Dec 2001 DE
10060108 Jun 2002 DE
10103431 Aug 2002 DE
10136147 Feb 2003 DE
10219956 Apr 2003 DE
10222621 Nov 2003 DE
202004001246 Apr 2004 DE
10345302 Apr 2005 DE
102004043478 Apr 2005 DE
102004053942 May 2006 DE
102004037446 Jun 2006 DE
69734495 Jul 2006 DE
69735169 Aug 2006 DE
102005012213 Aug 2006 DE
102005018173 Oct 2006 DE
20 2005 020161 Nov 2006 DE
102005036153 Dec 2006 DE
102005030907 Jan 2007 DE
102005032864 Jan 2007 DE
102006023563 Nov 2007 DE
102006026073 Dec 2007 DE
202007002077 Apr 2008 DE
102006060815 Jun 2008 DE
602004011201 Dec 2008 DE
102007051134 Mar 2009 DE
202008012345 Mar 2009 DE
102007037130 Apr 2009 DE
102007050031 Apr 2009 DE
202009007318 Aug 2009 DE
102008042199 Apr 2010 DE
102008057874 May 2010 DE
102009051186 May 2010 DE
102009022569 Dec 2010 DE
102010023549 Dec 2011 DE
102013101314 Aug 2014 DE
102013106255 Dec 2014 DE
102013106808 Dec 2014 DE
0027405 Apr 1981 EP
169673 Jan 1986 EP
0178757 Apr 1986 EP
0206253 Dec 1986 EP
0231211 Aug 1987 EP
0293219 Nov 1988 EP
0340006 Nov 1989 EP
0418612 Mar 1991 EP
419093 Mar 1991 EP
420295 Apr 1991 EP
0521467 Jan 1993 EP
0576271 Dec 1993 EP
0577334 Jan 1994 EP
604777 Jul 1994 EP
0628901 Dec 1994 EP
0642199 Mar 1995 EP
653692 May 1995 EP
0670915 Sep 1995 EP
677749 Oct 1995 EP
0677749 Jan 1996 EP
756178 Jan 1997 EP
0756372 Jan 1997 EP
0780750 Jun 1997 EP
0809293 Nov 1997 EP
824273 Feb 1998 EP
827254 Mar 1998 EP
0895146 Feb 1999 EP
0906660 Apr 1999 EP
0947905 Oct 1999 EP
964415 Dec 1999 EP
964457 Dec 1999 EP
0978884 Mar 2000 EP
1012886 Jun 2000 EP
1024575 Aug 2000 EP
1034465 Sep 2000 EP
1035640 Sep 2000 EP
1039361 Sep 2000 EP
1039620 Sep 2000 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1130770 Sep 2001 EP
1143594 Oct 2001 EP
1187291 Mar 2002 EP
1235339 Aug 2002 EP
1239573 Sep 2002 EP
1239576 Sep 2002 EP
1254505 Nov 2002 EP
1271742 Jan 2003 EP
1291997 Mar 2003 EP
1330009 Jul 2003 EP
1339153 Aug 2003 EP
1369983 Dec 2003 EP
1376706 Jan 2004 EP
1388774 Feb 2004 EP
1400988 Mar 2004 EP
1407534 Apr 2004 EP
1120895 May 2004 EP
1418482 May 2004 EP
1429393 Jun 2004 EP
1442473 Aug 2004 EP
1447561 Aug 2004 EP
1457857 Sep 2004 EP
1463188 Sep 2004 EP
1475882 Nov 2004 EP
1503490 Feb 2005 EP
1521345 Apr 2005 EP
1526633 Apr 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1532727 May 2005 EP
1552563 Jul 2005 EP
1562281 Aug 2005 EP
1580862 Sep 2005 EP
1603212 Dec 2005 EP
1610571 Dec 2005 EP
1623495 Feb 2006 EP
1642355 Apr 2006 EP
0964457 May 2006 EP
1657557 May 2006 EP
1657797 May 2006 EP
1691246 Aug 2006 EP
1706937 Oct 2006 EP
1708070 Oct 2006 EP
1716272 Nov 2006 EP
1728413 Dec 2006 EP
1734373 Dec 2006 EP
1750193 Feb 2007 EP
1766490 Mar 2007 EP
1782146 May 2007 EP
1785800 May 2007 EP
1837985 Sep 2007 EP
1842121 Oct 2007 EP
1609250 Jan 2008 EP
1887675 Feb 2008 EP
1901419 Mar 2008 EP
1902349 Mar 2008 EP
1911101 Apr 2008 EP
1914857 Apr 2008 EP
2048679 Apr 2009 EP
2054944 May 2009 EP
2061088 May 2009 EP
2092625 Aug 2009 EP
2092631 Aug 2009 EP
2130286 Dec 2009 EP
2135296 Dec 2009 EP
2135348 Dec 2009 EP
2144133 Jan 2010 EP
2179451 Apr 2010 EP
2206159 Jul 2010 EP
2232690 Sep 2010 EP
2234237 Sep 2010 EP
2249457 Nov 2010 EP
2256819 Dec 2010 EP
2315328 Apr 2011 EP
2355268 Aug 2011 EP
2374190 Oct 2011 EP
2386122 Nov 2011 EP
2393178 Dec 2011 EP
2395648 Dec 2011 EP
2495766 Sep 2012 EP
2515424 Oct 2012 EP
2533299 Dec 2012 EP
2549635 Jan 2013 EP
2561596 Feb 2013 EP
2581941 Apr 2013 EP
2615644 Jul 2013 EP
2621045 Jul 2013 EP
2666222 Nov 2013 EP
2722979 Apr 2014 EP
2779251 Sep 2014 EP
3176933 Jun 2017 EP
2139104 Oct 2017 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2796216 Jan 2001 FR
2819653 Jul 2002 FR
2894401 Jun 2007 FR
310362 Sep 1929 GB
612859 Nov 1948 GB
1211885 Nov 1970 GB
1231961 May 1971 GB
1261838 Jan 1972 GB
1571681 Jul 1980 GB
1597508 Sep 1981 GB
2128017 Apr 1984 GB
2327208 Jan 1999 GB
2339465 Jan 2000 GB
2376801 Dec 2002 GB
2399463 Sep 2004 GB
2399465 Sep 2004 GB
2415841 Jan 2006 GB
2419968 May 2006 GB
2421847 Jul 2006 GB
2434490 Jul 2007 GB
2476508 Jun 2011 GB
2480015 Nov 2011 GB
2480015 Nov 2011 GB
2482653 Feb 2012 GB
2483317 Mar 2012 GB
2485527 May 2012 GB
2486408 Jun 2012 GB
2487368 Jul 2012 GB
2497275 Jun 2013 GB
2498365 Jul 2013 GB
2498790 Jul 2013 GB
2498791 Jul 2013 GB
2499991 Sep 2013 GB
S56042365 Apr 1981 JP
S60027964 Feb 1985 JP
S60148172 Aug 1985 JP
61065320 Apr 1986 JP
S62154121 Jul 1987 JP
S62154122 Jul 1987 JP
H01311874 Dec 1989 JP
H04219982 Aug 1992 JP
H04364378 Dec 1992 JP
H05003678 Jan 1993 JP
H06035555 Feb 1994 JP
H06141261 May 1994 JP
H07026849 Jan 1995 JP
H07058843 Mar 1995 JP
H07-222436 Aug 1995 JP
8009557 Jan 1996 JP
H08033347 Feb 1996 JP
H08066050 Mar 1996 JP
H0897460 Apr 1996 JP
H08116628 May 1996 JP
H08181343 Jul 1996 JP
H08185235 Jul 1996 JP
H08204220 Aug 1996 JP
H08227324 Sep 1996 JP
H08316517 Nov 1996 JP
H08317664 Nov 1996 JP
H094692 Jan 1997 JP
H09097918 Apr 1997 JP
H09148611 Jun 1997 JP
H09148613 Jun 1997 JP
H09275644 Oct 1997 JP
2676789 Nov 1997 JP
H1017445 Jan 1998 JP
H1075580 Mar 1998 JP
H10201086 Jul 1998 JP
H10201105 Jul 1998 JP
H10308523 Nov 1998 JP
11041832 Feb 1999 JP
H1146457 Feb 1999 JP
11103538 Apr 1999 JP
2892183 May 1999 JP
11206038 Jul 1999 JP
H11266545 Sep 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
2000020150 Jan 2000 JP
2000051074 Feb 2000 JP
3015512 Mar 2000 JP
2000-112545 Apr 2000 JP
2000-116010 Apr 2000 JP
2000160789 Jun 2000 JP
2000166097 Jun 2000 JP
2000174307 Jun 2000 JP
2000232791 Aug 2000 JP
2000232793 Aug 2000 JP
2000316282 Nov 2000 JP
2000324852 Nov 2000 JP
2000339044 Dec 2000 JP
2000341974 Dec 2000 JP
2000347753 Dec 2000 JP
2000358330 Dec 2000 JP
2001060120 Mar 2001 JP
2001075662 Mar 2001 JP
2001086765 Mar 2001 JP
2001178145 Jun 2001 JP
2001189476 Jul 2001 JP
2001224142 Aug 2001 JP
2001238466 Aug 2001 JP
2001250964 Sep 2001 JP
2002073184 Mar 2002 JP
2002231578 Aug 2002 JP
2002238246 Aug 2002 JP
2002-262461 Sep 2002 JP
2002270876 Sep 2002 JP
2002300735 Oct 2002 JP
2002339591 Nov 2002 JP
2002354677 Dec 2002 JP
2003102134 Apr 2003 JP
2003124492 Apr 2003 JP
2003134661 May 2003 JP
2003134667 May 2003 JP
2003282916 Oct 2003 JP
2003289674 Oct 2003 JP
3499941 Feb 2004 JP
2004055603 Feb 2004 JP
2004-096090 Mar 2004 JP
2004111754 Apr 2004 JP
2004-147465 May 2004 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004312994 Nov 2004 JP
2004334704 Nov 2004 JP
2005-151662 Jun 2005 JP
3656531 Jun 2005 JP
2005192314 Jul 2005 JP
2005-235082 Sep 2005 JP
2005251039 Sep 2005 JP
2005-276942 Oct 2005 JP
2005-312287 Nov 2005 JP
2006041440 Feb 2006 JP
2006262619 Sep 2006 JP
2006278755 Oct 2006 JP
2007058845 Mar 2007 JP
2007104872 Apr 2007 JP
2007225625 Sep 2007 JP
4174227 Oct 2008 JP
2010-146047 Jul 2010 JP
2010245532 Oct 2010 JP
2011-249790 Dec 2011 JP
2012-60714 Mar 2012 JP
2012511299 May 2012 JP
2012178535 Sep 2012 JP
20010044490 Jun 2001 KR
20040086088 Oct 2004 KR
100468127 Jan 2005 KR
200402282 Nov 2005 KR
20060060825 Jun 2006 KR
20070036528 Apr 2007 KR
100725755 May 2007 KR
20080092747 Oct 2008 KR
100912892 Aug 2009 KR
101073143 Oct 2011 KR
1011483 Sep 2000 NL
497326 Aug 2002 TW
200913291 Mar 2009 TW
8202134 Jun 1982 WO
1982002134 Jun 1982 WO
1984003402 Aug 1984 WO
1988004801 Jun 1988 WO
9003680 Apr 1990 WO
1992007418 Apr 1992 WO
1993013587 Jul 1993 WO
9525374 Sep 1995 WO
9534121 Dec 1995 WO
1996007130 Mar 1996 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
1999028801 Jun 1999 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0042689 Jul 2000 WO
0075947 Dec 2000 WO
0077522 Dec 2000 WO
0113502 Feb 2001 WO
01047095 Jun 2001 WO
0217469 Feb 2002 WO
0231517 Apr 2002 WO
02056126 Jul 2002 WO
2002073785 Sep 2002 WO
0278164 Oct 2002 WO
02078164 Oct 2002 WO
02093655 Nov 2002 WO
03012569 Feb 2003 WO
2003012569 Feb 2003 WO
03026114 Mar 2003 WO
2003036688 May 2003 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
03084041 Oct 2003 WO
2003098703 Nov 2003 WO
2004001942 Dec 2003 WO
2004006342 Jan 2004 WO
2004008619 Jan 2004 WO
2004023278 Mar 2004 WO
2004053993 Jun 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004100344 Nov 2004 WO
2004100348 Nov 2004 WO
2004107543 Dec 2004 WO
2005015584 Feb 2005 WO
2005027300 Mar 2005 WO
2005036725 Apr 2005 WO
2005053189 Jun 2005 WO
2005069096 Jul 2005 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2005089030 Sep 2005 WO
2005112551 Dec 2005 WO
2005119278 Dec 2005 WO
2005119609 Dec 2005 WO
2005124498 Dec 2005 WO
2006002380 Jan 2006 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006011071 Feb 2006 WO
2006011359 Feb 2006 WO
2006013600 Feb 2006 WO
2006033143 Mar 2006 WO
2006013600 May 2006 WO
2006048688 May 2006 WO
2006048689 May 2006 WO
2006074561 Jul 2006 WO
2006071436 Jul 2006 WO
2006078685 Jul 2006 WO
2006079503 Aug 2006 WO
2006089778 Aug 2006 WO
2006110613 Oct 2006 WO
2006125664 Nov 2006 WO
2006117551 Nov 2006 WO
2006130520 Dec 2006 WO
2006137948 Dec 2006 WO
2007006564 Jan 2007 WO
2007007360 Jan 2007 WO
2007010326 Jan 2007 WO
2007020419 Feb 2007 WO
2007048421 May 2007 WO
2007072517 Jun 2007 WO
2007073951 Jul 2007 WO
2007080429 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2007124518 Nov 2007 WO
2007129808 Nov 2007 WO
2007142693 Dec 2007 WO
2008008528 Jan 2008 WO
2008026207 Mar 2008 WO
2008046370 Apr 2008 WO
2008077473 Jul 2008 WO
2008069926 Aug 2008 WO
2008097591 Aug 2008 WO
2008119034 Oct 2008 WO
2008121266 Oct 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009003680 Jan 2009 WO
2009006879 Jan 2009 WO
2009007782 Jan 2009 WO
2009011780 Jan 2009 WO
2009020917 Feb 2009 WO
2009026602 Mar 2009 WO
2009007782 Mar 2009 WO
2009046533 Apr 2009 WO
2009051221 Apr 2009 WO
2009051222 Apr 2009 WO
2009051853 Apr 2009 WO
2009051854 Apr 2009 WO
2009051870 Apr 2009 WO
2009055474 Apr 2009 WO
2009059877 May 2009 WO
2009056957 May 2009 WO
2009059028 May 2009 WO
2009064683 May 2009 WO
2009072075 Jun 2009 WO
2009073867 Jun 2009 WO
2009072076 Jun 2009 WO
2009072077 Jun 2009 WO
2009073995 Jun 2009 WO
2009075985 Jun 2009 WO
2009075985 Jul 2009 WO
2009114341 Sep 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009073868 Nov 2009 WO
2009118683 Nov 2009 WO
2009136358 Nov 2009 WO
2009140536 Nov 2009 WO
2009140539 Nov 2009 WO
2009140543 Nov 2009 WO
2009140551 Nov 2009 WO
2009118682 Dec 2009 WO
2009155392 Dec 2009 WO
2010002960 Jan 2010 WO
2010003941 Jan 2010 WO
2009136358 Jan 2010 WO
2009140536 Feb 2010 WO
2009140543 Feb 2010 WO
2009140551 Feb 2010 WO
2010014116 Feb 2010 WO
2010020385 Feb 2010 WO
2010042124 Apr 2010 WO
2010037393 Apr 2010 WO
2010056777 May 2010 WO
2010071855 Jun 2010 WO
2010062410 Jun 2010 WO
2010062662 Jun 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010080672 Jul 2010 WO
2010091025 Aug 2010 WO
2010094012 Aug 2010 WO
2010118503 Oct 2010 WO
2010120315 Oct 2010 WO
2010132369 Nov 2010 WO
2010134057 Nov 2010 WO
20100134057 Nov 2010 WO
2011005339 Jan 2011 WO
2011011711 Jan 2011 WO
2011014275 Feb 2011 WO
2011017721 Feb 2011 WO
2011019936 Feb 2011 WO
2011023732 Mar 2011 WO
2011028456 Mar 2011 WO
2011028457 Mar 2011 WO
2011044641 Apr 2011 WO
2011049985 Apr 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
2011076707 Jun 2011 WO
2011085259 Jul 2011 WO
2011089607 Jul 2011 WO
2011109746 Sep 2011 WO
2011119587 Sep 2011 WO
2011133843 Oct 2011 WO
2011133928 Oct 2011 WO
2011151672 Dec 2011 WO
2012024538 May 2012 WO
2012100263 Jul 2012 WO
2013015921 Jan 2013 WO
2013019899 Feb 2013 WO
1998023021 Jul 2013 WO
2013130563 Sep 2013 WO
2014143021 Sep 2014 WO
2017125375 Jul 2017 WO
2018122835 Jul 2018 WO
Non-Patent Literature Citations (395)
Entry
2000; Bascope, G.V.T. Barbi, I; “Generation of Family of Non-isolated DC-DC PWM Converters Using New Three-state Switching Cells”; 2000 IEEE 31st Annual Power Electronics Specialists Conference in Galway, Ireland; vol. 2.
Jan. 20, 2005; Duncan, Joseph, A Global Maximum Power Point Tracking DC-DC Converter, Massachussetts Institute of Technology, Dept. of Electrical Engineering and Computer Science Dissertation; 8 pages.
2005; Edelmoser, K.H. et al.; High Efficiency DC-to-AC Power Inverter with Special DC Interface; Professional Paper, ISSN 0005-1144, Automatika 46 (2005) 3-4, 143-148, 6 pages.
2006; Esmaili, Gholamreza; “Application of Advanced Power Electornics in Renewable Energy Sources and Hygrid Generating Systems” Ohio State Univerty, Graduate Program in Electrical and Computer Engineering, Dissertation. 169 pages.
Nov. 13, 2007; Gomez, M; “Consulting in the Solar Power Age,” IEEE-CNSV: Consultants' Network of Scilion Valley; 30 pages.
Jul. 25, 1995-Jun. 30, 1998; Kern, G; “SunSine (TM)300: Manufacture of an AC Photovoltaic Module,” Final Report, Phases I & II; National Renewable Energy Laboratory, Mar. 1999; NREL-SR-520-26085; 33 pages.
May 1, 2000; Kroposki, H. Thomas and Witt, B & C; “Progress in Photovoltaic Components and Systems,” National Renewable Energy Laboratory; NREL-CP-520-27460; 7 pages.
Jan. 22-23, 1998 Oldenkamp, H. et al; “AC Modules: Past, Present and Future” Workshop Installing the Solar Solution; Hatfield, UK; 6 pages.
Linear Technology Specification Sheet, LTC3443—“High Current Micropower 600kHz Synchronous Buck-Boost DC/DC Converter”—2004.
Linear Technology Specification Sheet, LTC3780—“High Efficiency Synchronous, 4-Switch Buck-Boost Controller”—2005.
Apr. 22, 2004—MICREL—MIC2182 High Efficiency Synchronous Buck Controller.
Apr. 1972—Methods for Utilizing Maximum Power From a Solar Array—Decker, DK.
2000—Evaluating MPPT converter topologies using a MATLAB PV model—Walker, Geoffrey.
Jun. 30, 2008—Wang, Ucilia; Greentechmedia; “National Semi Casts Solarmagic”; www.greentechmedia.com; 3 pages; accessed Oct. 24, 2017.
Sep. 2004; Yuvarajan, S; Dchuan Yu; Shanguang, Xu; “A Novel Power Converter for PHotovoltaic Applications,” Journal of Power Sources; vol. 135, No. 1-2, pp. 327-331.
Jun. 1998—Stern M., et al., “Development of a Low-Cost Integrated 20-kW-AC Solar Tracking Subarray for Grid-Connected PV Power System Applications—Final Technical Report”—National Renewable Energy Laboratory; 41 pages.
1997; Verhoeve, C.W.G., et al., “Recent Test Results of AC_Module inverters,” Netherlands Energy Research Foundation ECN, 1997; 3 pages.
2004—Nobuyoshi, M. et al., “A Controlling Method for Charging Photovoltaic Generation Power Obtained by a MPPT Control Method to Series Connected Ultra-Electric Double Layer Capacitors”—Industry Application Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE.
Feb. 23-27, 1992—Miwa, Brett et al., “High Efficiency Power Factor Correction Using Interleaving Techniques”—Applied Power Electronics Conference and Exposition, 1992. APEC '92. Conference Proceedings 1992., Seventh Annual.
Mar. 4-8, 2001—Andersen Gert, et al.,—Aalborg University, Institute of Energy Technology, Denmark—“Currect Programmed Control of a Single Phase Two-Switch Buck-Boost Power Factor Correction Circut”—Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE.
Feb. 22-26, 2004—Andersen, Gert et al.,—“Utilizing the free running Current Programmed Control as a Power Factor Correction Technique for the two switch Buck-Boost converter”—Applied Power Electronic Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Mar. 3-7, 1996—Caricchi F et al.,—“Prototype of Innovative Wheel Direct Drive With Water-Cooled Exial-Flux Motor for Electric Vehicle Applications”—Applied Power Electronics Conference and Expositions, 1996. APEC '96. Conference Proceedings 1996., Eleventh Annual IEEE.
Feb. 15-19, 1998—Caricchi, F. et al.,—“Study of Bi-Directional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives”—Applied Power Electronics Conference and Exposition, 1998, APEC '98. COnference Proeedings 1998., Thirteenth Annual IEEE.
Nov. 27-30, 1990—Ensling, JHR—“Maximum Power Point Tracking: A Cost Saving Necessity in Solar Energy Systems”—Industrial Electornics Society, 1990. IECON '90., 16th Annual Conference of IEEE.
Feb. 22-26, 2004—Gaboriault, Mark et al.,—“A High Efficiency, Non-Inverting, Buck-Boost DC-DC Converter”—Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Feb. 15-19, 1998—Hua, et al.,—“Comparative Study of Peak Power Tracking Techniques for Solar Storage System”—Applied POwer Electronics Conference and Exposition, 1998. APEC'98. Conferenced Proceedings 1998., Thirteenth Annual IEEE.
Jun. 20-24. 1993—Sullivan, et al., “A High-Efficiency Maximum Power Point Tracker for Photovoltaic Arrays in a Solar-Powered Race Vehicle”—University of California, Berkeley, Department of Electrical Engineering and OCmputer Sciences—Power Electronics Specialists Conference, 1993. PESC '93 Record., 24th Annual IEEE.
May 19-24, 2002—Bower et at.,—“Certification of Photovoltaic Inverters: The Initial Step Toward PV System certification”—Photovoltaic Specialists Conferences, 2002. Conference Record of the Twenty-Ninth IEEE.
Jun. 17-21, 2001—Tse et al., “A Novel Maximum Power Point Tracking Technique for PV Panels”—Power Electronics Specialists Conferences, 2001. PESC. 2001 IEEE 32nd Annual.
May 12-18, 2008—Cuadras et al., “Smart Interfaces for Low Power Energy Harvesting Systems”—Instrumentation and Measurement Technology Conferences Proceedings, 2008. IMTC 2008. IEEE.
Dec. 5-9, 1994—Haan, et al., “Test Results of a 130 W AC Module; a modular solar as power station”—Photovoltaic Energy Conversion 1994. Conference Record of the Twenty Fourth. IEEE Phtovoltaic Specialists Conference—1994.
Sep. 1-3, 2008—Jung, et al., “Soft Switching Boost Converter for Photovoltaic Power Generation System”—Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008.
Jun. 3-5, 2008—Duan, et al., “A Novel High-Efficiency Inverter for Stand Alone and Grid-Connected Systems”—Industrial Electronics and Applications, 2008. ICIEA 2008.
Nov. 7, 2002—Ertl, et al., “A Novel Multicell DC-AC Converter for Applicaiton in Renewable Energy Systems”—IEEE Transactions on Industrial Electronics (vol. 49, Issue 5, Oct. 2002).
Oct. 8-12, 2000 Hashimoto, et al., “A Novel High Peforamance Utility Interactive Photovoltain Inverter System”—Industry Applications Conference, 2000. Conference Record of the 2000 IEEE.
Feb. 22-26, 2004—Ho, et al., “An Integrated Inverter with Maximum Poer Tracking for Grid-Connected PV Systems”—Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE.
Nov. 14, 1997, Hua et al., “Control of DC/DC Converters for Solar Energy System with Maximum Power Tracking”—Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on Industrial Electronics, Control and Instrumentation vol. 4 of 4.
Sep. 1-3, 2008, Lee et al., “Soft Switching Mutli-Phase Boost Converter for Photovoltaic System”—Power Electronics and Motnion Control Conference, 2008. EPE-PEMC 2008.
Jul. 5, 2005, Yao et al., “Tapped-Inductor Buck Converter for High-Step-Down DC-DC Conversion” IEEE Transactions on Power Electronics (vol. 20, Issue 4, Jul. 2005).
Sep. 21-23, 1998, Kretschmar, et al., “An AC Converter with a Small DC Link Capacitor for a 15KW Permanent Magnet Synchronous Integral Motor”—Power Electronics and Variable Speed Drives, 1998. Sevent International Converterest (Conf. Publ. No. 456).
May 25, 2000—Hong Lim, et al., “Simple Maximum Power Point Tracker for Photovoltaic Arrays”—Electronics Letters (vol. 36, Issue 11, May 25, 2000).
Aug. 14-16, 2004, Nishida et al., “A Novel Type of Utility-Interactive Inverter for Phtovoltaic System”—Power Electronics and Mtion Control Conference, 2004. IPEMC 2004.
May 30-Jun. 3, 2011, Jung, et al., “DC-Link Ripple Reduction of Series-connected Module Integrated Converter for Photovoltaic Systems.”—Power Electronics and ECCE Asia (ICPE & ECCE).
Jan. 8, 2007, Li et al., “An Analysis of ZVS Two-Inductor Boost Converter under Variable Frequency Operation”—IEEE Transactions on Power Electronics (vol. 22, Issue 1, Jan. 2007).
Sep. 17, 2007, Rodriguez et al., “Analytic Solution to the Photovoltaic Maximum Power Point Problem”—IEEE Transactions on Circuits and Systems I: Regular Papers (vol. 54, Issue 9, Sep. 2007).
Jun. 27, 1997, Reimann et al., “A Novel Control Principle of Bi-Directional DC-DC Power Conversion”—Powre Electronics Specialists Conference 1997. PESC '97 Record.
Sep. 15-22, 2000, Russell et al., “The Massachusetts Electric Solar Project: A Pilot Project to Commercialize Residential PV Systems”—Photovoltaic Specialists Conference, 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000.
May 2001, Shimizu et al., “Generation Control Circuit for Photvoltaic Modules”—IEEE Transactions of Power Electronics (vol. 16, Issue 3, May 2001).
Feb. 6-10, 2000, Siri, Kasemsan “Study of System Instability in Current-Mode Converter Power Systems Operating in Solar Array Voltage Regulation Mode”—Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fiftheenth Annual IEEE.
Aug. 13-16, 1990—Rajan, Anita “A Maximum Power Point Tracker Optimized for Solar Powered Cars”—Future Transportation Technology Conference and Expostion.
Storfer, Lior, “Enhancing Cable Modem TCP Performance,” Texas Instruments Inc. white paper, Jul. 2003.
Philips Semiconductors, Data Sheet PSMN005-55B; PSMN005-55P N-channel logic trenchMOS transistor, Oct. 1999, Product specification, pp. 1-11.
International Preliminary Report on Patentability Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Application No. PCT/US13/27965, International Preliminary Examination Report, dated Sep. 2, 2014.
International Patent Application PCT/US13/027965, International Search Report and Written Opinion, dated Jun. 2, 2013.
International Application No. PCT/US12/44045, International Preliminary Examination Report, dated Jan. 28, 2014.
International Patent Application No. PCT/US2012/044045, International Search Report and Written Opinion, dated Jan. 2, 2013.
International Patent Application No. PCT/US2009/047734, International Search Report and Written Opinion, dated May 4, 2010.
Linares, Leonor et al., “Improved Energy Capture in Series String Photovoltaics via Smart Distributed Power Electronics,” 24th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 904-910, Feb. 15, 2009.
International Patent Application No. PCT/US2010/029929, International Search Report and Written Opinion, dated Oct. 27, 2010.
Lowe, Electronics Basis: What is a Latch Circuit, http://www.dummies.com/how-to/content/electronics-basics-what-is-a-latch-circuit.html, from Electronics All-in-One for Dummies, Feb. 2012, downloaded Jul. 13, 2014.
International Patent Application No. PCT/US2011/020591, International Search Report and Written Opinion, dated Aug. 8, 2011.
International Patent Application No. PCT/US2011/033544, International Search Report and Written Opinion, dated Nov. 24, 2011.
J. Keller and B. Kroposki, titled, “Understanding Fault Characteristics of Inverter-Based Distributed Energy Resources”, in a Technical Report NREL/TP-550-46698, published Jan. 2010, pp. 1 through 48.
International Patent Application No. PCT/US2008/081827, International Search Report and Written Opinion, dated Jun. 24, 2009.
International Patent Application No. PCT/US2010/046274 International Search Report and Written Opinion, dated Apr. 22, 2011.
International Patent Application No. PCT/US2011/033658, International Search Report and Written Opinion, dated Jan. 13, 2012.
International Patent Application No. PCT/US2011/029392, International Search Report and Written Opinion, dated Oct. 24, 2011.
European Patent Application No. 09829487.9, Extended Search Report, dated Apr. 21, 2011.
International Patent Application No. PCT/US2009/062536, International Search Report and Written Opinion, dated Jun. 17, 2010.
International Patent Application No. PCT/US2010/022915, International Search Report and Written Opinion, dated Aug. 23, 2010.
International Patent Application No. PCT/US2010/046272, International Search Report and Written Opinion, dated Mar. 31, 2011.
Exell et al., “The Design and Development of a Solar Powered Refrigerator”, [retrieved on Feb. 13, 2013], Retrieved from the Internet <URL: http://www.appropedia.org/The_Design_and_Development_of_a_Solar_Powered_Refrigerator>, pp. 1-64.
“Development of Water-Lithium Bromide Low-Temperature Absorption Refridgerating Machine”, 2002 Energy & Environment on Database on Noteworthy contributions for Science and Technology (Japan), Research Data (No. 1748) [online], [retrieved on Aug. 29, 2012]. Retrieved from the Internet: <URL: http://dbnstl.nii.ac.jp/english/detail/1748>, pp. 1-4.
Dictionary.corn, “air conditioning” [online], [retrieved on Aug. 28, 2012]. Retrieved from the Internet: <URL: http://dictionary.reference.com/browse/air+conditioning?s=t>, pp. 1-3.
International Patent Application No. PCT/US2010/029936, International Search Report and Written Opinion, dated Nov. 12, 2010.
International Patent Application No. PCT/US08/75127, International Search Report and Written Opinion, dated Apr. 28, 2009.
International Patent Application No. PCT/US09/35890, International Search Report and Written Opinion, dated Oct. 1, 2009.
European Patent Application No. 08845104.2, Extended Search Report, dated Jul. 31, 2014.
European Patent Application No. 11772811.3, Extended Search Report, dated Dec. 15, 2014.
International Patent Application No. PCT/US2008/082935, International Search Report and Written Opinion, dated Jun. 25, 2009.
Bhatnagar et al., Silicon Carbide High Voltage (400 V) Shottky Barrier Diodes, IEEE Electron Device Letters, vol. 13(10) p. 501-503 Oct. 10, 1992.
Rodriguez, C., and G. A. J. Amaratunga. “Dynamic stability of grid-connected photovoltaic systems.” Power Engineering Society General Meeting, 2004. IEEE, pp. 2194-2200.
Kikuchi, Naoto, et al. “Single phase amplitude modulation inverter for utility interaction photovoltaic system.” Industrial Electronics Society, 1999. IECON'99 Proceedings. The 25th Annual Conference of the IEEE. vol. 1. IEEE, 1999.
Nonaka, Sakutaro, et al. “Interconnection system with single phase IGBT PWM CSI between photovoltaic arrays and the utility line.” Industry Applications Society Annual Meeting, 1990., Conference Record of the 1990 IEEE.
Calais, Martina, et al. “Inverters for single-phase grid connected photovoltaic systems—an overview.” Power Electronics Specialists Conference, 2002. pesc 02.2002 IEEE 33rd Annual. vol. 4. IEEE, 2002.
Marra, Enes Goncalves, and José Antenor Pomilio. “Self-excited induction generator controlled by a VS-PWM bidirectional converter for rural applications.” Industry Applications, IEEE Transactions on 35.4 (1999): 877-883.
Xiaofeng Sun, Weiyang Wu, Xin Li, Qinglin Zhao: A Research on Photovoltaic Energy Controlling System with Maximum Power Point Tracking:; Proceedings of the Power Conversion Conference—Osaka 2002 (Cat. No. 02TH8579) IEEE—Piscataway, NJ, USA, ISBN 0-7803-7156-9, vol. 2, p. 822-826, XP010590259: the whole document.
International Search Report for corresponding PCT/GB2005/050198 completed Jun. 28, 2006 by C. Wirner of the EPO.
Brunello, Gustavo, et al., “Shunt Capacitor Bank Fundamentals and Protection,” 2003 Conference for Protective Relay Engineers, Apr. 8-10, 2003, pp. 1-17, Texas A&M University, College Station, TX, USA.
Cordonnier, Charles-Edouard, et al., “Application Considerations for Sensefet Power Devices,” PCI Proceedings, May 11, 1987, pp. 47-65.
Kotsopoulos, Andrew, et al., “Predictive DC Voltage Control of Single-Phase PV Inverters with Small DC Link Capacitance,” IEEE International Symposium, Month Unknown, 2003, pp. 793-797.
Meinhardt, Mike, et al., “Multi-String-Converter with Reduced Specific Costs and Enhanced Functionality,” Solar Energy, May 21, 2001, pp. 217-227, vol. 69, Elsevier Science Ltd.
Kimball, et al.: “Analysis and Design of Switched Capacitor Converters”; Grainger Center for Electric Machinery and Electromechanics, University of Illinois at Urbana-Champaign, 1406 W. Green St, Urbana, IL 61801 USA, © 2005 IEEE; pp. 1473-1477.
Martins, et al.: “Interconnection of a Photovoltaic Panels Array to a Single-Phase Utility Line From a Static Conversion System”; Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual; Jun. 18, 2000-Jun. 23, 2000; ISSN: 0275-9306; pp. 1207-1211, vol. 3.
International Search Report for corresponding PCT/GB2005/050197, completed Dec. 20, 2005 by K-R Zettler of the EPO.
Kjaer, Soeren Baekhoej, et al., “Design Optimization of a Single Phase Inverter for Photovoltaic Applications,” IEEE 34th Annual Power Electronics Specialist Conference, Jun. 15-19, 2003, pp. 1183-1190, vol. 3, IEEE.
Shimizu, Toshihisa, et al., “A Flyback-type Single Phase Utility Interactive Inverter with Low-frequency Ripple Current Reduction on the DC Input for an AC Photovoltaic Module System,” IEEE 33rd Annual Power Electronics Specialist Conference, Month Unknown, 2002, pp. 1483-1488, vol. 3, IEEE.
Written Opinion of PCT/GB2005/050197, dated Feb. 14, 2006, Enecsys Limited.
Yatsuki, Satoshi, et al., “A Novel AC Photovoltaic Module System based on the Impedance-Admittance Conversion Theory,” IEEE 32nd Annual Power Electronics Specialists Conference, Month Unknown, 2001, pp. 2191-2196, vol. 4, IEEE.
International Search Report for corresponding PCT/GB2004/001965, completed Aug. 16, 2004 by A. Roider.
Naik et al., A Novel Grid Interface for Photovoltaic, Wind-Electric, and Fuel-Cell Systems With a Controllable Power Factor or Operation, IEEE, 1995, pp. 995-998.
Petkanchin, Processes following changes of phase angle between current and voltage in electric circuits, Aug. 1999, Power Engineering Review, IEEE vol. 19, Issue 8, pp. 59-60.
Mumtaz, Asim, et al., “Grid Connected PV Inverter Using a Commercially Available Power IC,” PV in Europe Conference, Oct. 2002, 3 pages, Rome, Italy.
Koutroulis, Eftichios, et al., “Development of a Microcontroller-Based, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 46-54, vol. 16, No. 1, IEEE.
European Search Report—EP App. 14159457.2—dated Jun. 12, 2015.
European Search Report and Written Opinion—EP Appl. 12150819.6—dated Jul. 6, 2015.
Alonso, O. et al. “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators With Independent Maximum Power Point Tracking of Each Solar Array.” IEEE 34th Annual Power Electronics Specialists Conference. vol. 2, Jun. 15, 2003.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Chinese Office Action—CN Appl. 201280006369.2—dated Aug. 4, 2015.
Chinese Office Action—CN Appl. 201210253614.1—dated Aug. 18, 2015.
Extended European Search Report, EP Application 04753488.8, dated Apr. 29, 2015.
International Search Report from PCT/US04/16668, form PCT/ISA/220, filed May 27, 2004.
Office Action U.S. Appl. No. 13/785,857, dated Jun. 6, 2013.
Partial Extended European Search Report, EP Application 04753488.8, dated Feb. 2, 2015.
The International Search Report (Form PCT /ISA/220) Issued in corresponding international application No. PCT/US04/16668, filed May 27, 2004.
International Search Report—PCT/US2004/016668, form PCT/ISA/220—filed May 27, 2004—dated Jan. 19, 2005.
Written Opinion of the International Searching Authority—PCT/US2004/016668, form PCT/ISA/220—filing date May 27, 2004—dated Jan. 19, 2005.
Extended European Search Report—EP Appl. 04753488.8—dated Apr. 29, 2015.
Supplementary Partial European Search Report—EP Appl. 04753488.8—dated Feb. 2, 2015.
U.S. Office Action—U.S. Appl. No. 13/785,857—dated Jun. 6, 2013.
European Office Action—EP Appl. 09725443.7—dated Aug. 18, 2015.
Definition of Isomorphism by Merriam-Webster, <http://www.merriaum-webster.com/dictionary/isomorphism, dated Oct. 20, 2015.
Definition of Isomorphic by Merriam-Webster, <http://www.merriam-webster.com/dictionary/isomorphic, dated Oct. 20, 2015.
Chinese Office Action—CN Appl. 201110349734.7—dated Oct. 13, 2015.
Chinese Office Action—CN Appl. 201210007491.3—dated Nov. 23, 2015.
European Office Action—EP Appl. 12176089.6—dated Dec. 16, 2015.
Chinese Office Action—CN Appl. 201310035223.7—dated Dec. 29, 2015.
Chinese Office Action—CN Application 201210334311.2—dated Jan. 20, 2016.
European Search Report—EP Appl. 13800859.4—dated Feb. 15, 2016.
Chinese Office Action—CN App. 201310035221.8—dated Mar. 1, 2016.
PCT/2008/058473 International Preliminary Report, 6 pages, dated Nov. 2, 2009.
International Search Report and Written Opinion, WO 2010080672, dated Aug. 19, 2010.
PCT/US2010/045352 International Search Report and Written Opinion; 12 pages; dated Oct. 26, 2010.
International Search Report and Written Opinion dated Feb. 6, 2009,. In counteprart PCT/US2008/008451, 13 pages.
European Search Report: dated Jan. 10, 2013 in corresponding EP application No. 09838022.3, 7 pages.
D. Ton and W. Bower; Summary Report of the DOE High-Tech Inverter Workshop; Jan. 2005.
First Action Interview Pre-Interview Communication from U.S. Appl. No. 13/174,495 dated Jun. 18, 2014, 7 pgs.
Johnson et al., “Arc-fault detector algorithm evaluation method utilizing prerecorded arcing signatures”, Photovoltaic Specialists Conference (PVSC), Jun. 2012.
Philippe Welter, et al. “Electricity at 32 kHz,” Photon International, The Photovoltaic Magazine, Http://www.photon-magazine.com/archiv/articles.aspx?criteria=4&HeftNr=0807&Title=Elec . . . printed May 27, 2011).
PCT/US2009/069582 Int. Search Report—dated Aug. 19, 2010.
Chinese Office Action—CN Appl. 201210007491.3—dated Apr. 25, 2016.
CN Office Action—CN Appl. 201310004123.8—dated May 5, 2016.
Law et al, “Design and Analysis of Switched-Capacitor-Based Step-Up Resonant Converters,” IEEE Transactions on Circuits and Systems, vol. 52, No. 5, published May 2005.
CN Office Action—CN Appl. 201310066888.4—dated May 30, 2016.
European Search Report—EP Appl. 13152966.1—dated Jul. 21, 2016.
European Search Report—EP Appl. 12183811.4—dated Aug. 4, 2016.
European Notice of Opposition—EP Patent 2374190—dated Jul. 19, 2016.
“Es werde Dunkelheit. Freischaltung von Solarmodulen im Brandfall”—“Let there be Darkness: Quality control of Solar Modules in Case of Fire”; Photon, May 2005, 75-77, ISSN 1430-5348, English translation provided.
Chinese Office Action—CN Appl. 201380029450.7—dated Jul. 28, 2016.
Dec. 14, 2017—EP Search Report App No. 17188362.2.
Dec. 15, 2017—EP Search Report App No. 17188365.5.
Jun. 29, 2018—EP Search Report—EP App No. 18175980.4.
Aug. 9, 2010, Hong, Wei, et al., “Charge Equalization of Battery POwer Modules in Series” The 2010 International Power Electronics Conference, IEEE, p. 1568-1572.
Chinese Office Action—CN Appl. 201310035221.8—dated Aug. 11, 2016.
Zhou, Wilson and Theo Phillips—“Industry's First 4-Switch Buck-Boost Controller Achieves Highest Efficiency Using a Single Inducutor—Design Note 369”—Linear Technology Corporation—www.linear.com—2005.
“Micropower Synchronous Buck-Boost DC/DC Converter”—Linear Technology Corporation—www.linear.com/LTC3440—2001.
Caricchi, F et al—20 kW Water-Cooled Prototype of a Buck-Boost Bidirectional DC-DC Converter Topology for Electrical Vehicle Motor Drives—University of Rome—IEEE 1995—pp. 887-892.
Roy, Arunanshu et al—“Battery Charger using Bicycle”—EE318 Electronic Design Lab Project Report, EE Dept, IIT Bombay, Apr. 2006.
Viswanathan, K. et al—Dual-Mode Control of Cascade Buck-Boost PFC Converter—35th Annual IEEE Power Electronics Specialists Conference—Aachen, Germany, 2004.
Zhang, Pei et al.—“Hardware Design Experiences in ZebraNet”—Department of Electrical Engineering, Princeton University—SenSys '04, Nov. 3-5, 2004.
“High Efficiency, Synchronous, 4-Switch Buck-Boost Controller”—Linear Technology Corporation—www.linear.com/LTC3780—2005.
Chomsuwan, Komkrit et al. “Photovoltaic Grid-Connected Inverter Using Two-Switch Buck-Boost Converter”—Department of Electrical Engineering, King Mongkut's Institute of Technology Ladkrabang, Thailand, National Science and Technology Development Agency, Thailand—IEEE—2002.
Midya, Pallab et al.—“Buck or Boost Tracking Power Converter”—IEEE Power Electronics Letters, vol. 2, No. 4—Dec. 2004.
Chinese Office Action—CN Appl. 201510111948.9—dated Sep. 14, 2016.
Chinese Office Action—CN Appl. 201310066888.4—dated Nov. 2, 2016.
“Power-Switching Converters—the Principle, Simulation and Design of the Switching Power (the Second Edition)”, Ang, Oliva, et al., translated by Xu Dehong, et al., China Machine Press, Aug. 2010, earlier publication 2005.
European Notice of Opposition—EP Patent 2092625—dated Nov. 29, 2016.
Vishay Siliconix “Si 7884DP—n-Channel 40-V (D-S) MOSFET” (2003).
Chinese Office Action—CN 201510423458.2—dated Jan. 3, 2017 (english translation provided).
Chinese Office Action—CN 201410098154.9—dated Mar. 3, 2017 (enligsh translation provided).
European Search Report—EP Appl. 13150911.9—dated Apr. 7, 2017.
Howard et al, “Relaxation on a Mesh: a Formalism for Generalized Localization.” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001). Wailea, Hawaii, Oct. 2001.
Chinese Office Action and Search Report—CN 201510578586.4—dated Apr. 19, 2017.
Jul. 12, 2019—European Search Report—EP 19170538.3.
Aug. 4, 2017—European Search Report—EP 17165027.
Jul. 10, 1995—“Battery I.D. chip from Dallas Semiconductor monitors and reports battery pack temperature”—Business Wire.
Nov. 3, 1999—Takahashi et al., “Development of a Long-Life Three-Phase Flywheel UPS Using an Electrolytic Capacitorless Converter/Inverter”—Electrical Engineering in Japan, vol. 127.
Jan. 2001—Walker, Geoffrey “Evaluating MPPT Converter Topologies Using a Matlab PV Model”—“Journal of Electrical and Electronics Engineering, Australia”.
Feb. 13, 2007—Roman et al., “Experimental Results of Controlled PV Module for Building Integrated PV Systems”—Solar Energy 82 (2008) 471-480.
2006—Bower et al., “Innovative PV Micro-Inverter Topology Eliminates Electrolytic Capacitors for Longer Lifetime”—IEEE 1-4244-0016-3/06/ pp. 2038-2041.
Aug. 23-27, 1993—Case et al., “A Minimum Component Photovoltaic Array Maximum Power Point Tracker”—European Space Power Conference vol. 1. Power Systems, Power Electronics.
Jun. 4, 1997—Maranda et al., “Optimization of the Master-Slave Inverter System for Grid-Connected Photovoltaic Plants”—Energy Convers. Mgmt. vol. 39, No. 12 pp. 1239-1246.
2005—Kang et al., “Photovoltaic Power Interface Circuit Incorporated with a Buck-Boost Converter and a Full-Bridge Inverter”—Applied Energy 82, pp. 266-283.
Nov. 21, 1997—Feuermann et al., “Reversable Low Soalr Heat Gain Windows for Energy Savings”—Solar Energy vol. 62, No. 3 pp. 169-175.
May 16, 2005—Enrique et al., “Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies”—Solar Energy 81 (2007) p. 31-38.
Dehbonei, Hooman “Power Conditioning for Distrbuted Renewable Energy Generation”—Curtin University of Technology, School of Electrical and Computer Engineering, 2003 568 pages Dissertation: Thesis. Abstract, 1 page—retrieved on Nov. 13, 2017 on https://books.google.com/books/about/Power_Conditioning_for_Distributed_Renew.html?id=3wVXuAAACAAJ.
Korean Patent Application No. 102005-7008700, filed May 13, 2015. Applicant: Exar Corporation.
Jan. 23, 2018—EP Search Report, EP App No. 17187230.2.
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395306-433, Sep. 2007.
Woyte et al. “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, Achim, Woyte, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. Oh Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, lnc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, dated Nov. 29, 2011.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering the University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—dated Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, May 13, 1996; May 13, 1996-May 17, 1996, May 13, 1996 ( May 13, 1996), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, José Rodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
Apr. 16, 2018—EP Examination Report 12707899.6.
Sep. 28, 2017—European Office Action—EP 08857835.6.
Nov. 2, 2017—EP Search Report App No. 13157876.7.
Nov. 11, 2017—EP Search Report—App No. 17171489.2.
Dec. 24, 2019—CN Office Action—CN Application 201610946835.5.
Jan. 29, 2019—European Search Report for EP App No. 18199117.5.
Aug. 6, 2019—Notice of Opposition of European Patent 2232663—Fronius International GmbH.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Huawei Technologies Co.
Sep. 5, 2019—Notice of Opposition of European Patent 2549635—Fronius International GmbH.
Solide Arbeit, Heinz Neuenstein, Dec. 2007.
Spitzenwirkungsgrad mit drei Spitzen, Heinz Neuenstien and Andreas Schlumberger, Jan. 2007.
Technical Information, Temperature Derating for Sunny Boy, Sunny Mini Central, Sunny Tripower, Aug. 9, 2019.
Prinout from Energy Matters online Forum, Jul. 2011.
Wayback Machine Query for Energy Matters Online Forum Jul. 2011.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, 1998, PESC 98.
Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC converters for Photovoltaic Power System”, IEEE 1998.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE 2000.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Grid Interactive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, 2000, pp. 1280-1282 vol. 2.
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática / 12 a Sep. 16, 2010, Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:ijscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/THESIS. PDF, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th. International Telecommunications Energy Conference Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—Mailing date: Aug. 6, 2011.
Extended European Search Report—EP 13152967.9—dated Aug. 28, 2014.
Extended European Search Report—EP 14159696—dated Jun. 20, 2014.
Gow Ja A et al: “A Modular DC-DC Converter and Maximum Power Tracking Controller for Medium to Large Scale Photovoltaic Generating Plant” 8<SUP>th </SUP> European Conference on Power Electronics and Applications. Lausaane, CH, Sep. 7-9, 1999, EPE. European Conference on Power Electronics and Applications, Brussls: EPE Association, BE, vol. Conf. 8, Sep. 7, 1999, pp. 1-8, XP000883026.
Chihchiang Hua et al: “Comparative Study of Peak Power Tracking Techniques for Solar Storage System” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998, Thirteenth Annual Anaheim, CA USA Feb. 15-19, 1998, New York, NY, USA, IEEE, US, Feb. 15, 1998, pp. 679-685, XP010263666.
Matsuo H et al: “Novel Solar Cell Power Supply System Using the Multiple-input DC-DC Converter” 20<SUP>th</SUP> International telecommunications Energy Conference. Intelec '98 San Francisco, CA, Oct. 4-8, 1998, Intelec International Telecommunications Energy Conference, New York, NY: IEEE, US, Oct. 4, 1998, pp. 797-802, XP000896384.
Chihchiang Hua et al: “DSP-based controller application in battery storage of photovoltaic system” Industrial Electronics, Control, and Instrumentation, 1996, Proceedings of the 1996 IEEE IECON 22<SUP>nd</SUP> International Conference on Taipei, Taiwan Aug. 5-10, 1996, New York, NY, USA, IEEE, US, Aug. 5, 1996, pp. 1705-1710, XP010203239.
Hua C et al: “Implementation of a DSP-Controlled Photovoltaic System with Peak Power Tracking” IEEE Transactions on industrial Electronics, IEEE, Inc. New York, US, vol. 45, No. 1, Feb. 1, 1998, pp. 99-107, XP000735209.
I. Weiss et al.: “A new PV system technology—the development of a magnetic power transmission from the PV module to the power bus” 16th European Photovoltaic Solar Energy Conference, vol. III, May 1-5, 2000, pp. 2096-2099, XP002193468 Glasgow,UK cited in the application.
Basso, Tim, “IEEE Standard for Interconnecting Distributed Resources With the Electric Power System,” IEEE PES Meeting, Jun. 9, 2004.
Boostbuck.com, “The Four Boostbuck Topologies,” located at http://www.boostbuck.com/TheFourTopologies.html, 2003.
Gautam, Nalin K. et al., “An Efficient Algorithm to Simulate the Electrical Performance of Solar Photovoltaic Arrays,” Energy, vol. 27, No. 4, pp. 347-361, 2002.
Nordmann, T. et al., “Performance of PV Systems Under Real Conditions,” European Workshop on Life Cycle Analysis and Recycling of Solar Modules, The “Waste” Challenge, Brussels, Belgium, Mar. 18-19, 2004.
Wiles, John, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices,” Sandia National Laboratories, document No. SAND2001-0674, Mar. 2001.
Hewes, J. “Relays,” located at http://web.archive.org/web/20030816010159/www.kpsec.freeuk.com/components/relay.htm, Aug. 16, 2003.
Definition of “remove” from Webster's Third New International Dictionary, Unabridged, 1993.
Definition of “removable” from Webster's Third New International Dictionary, Unabridged, 1993.
Advanced Energy Group, “The Basics of Solar Power Systems,” located at http://web.archive.org/web/20010331044156/http://www.solar-power.com/solar-power-basics.html, Mar. 31, 2001.
International Patent Application No. PCT/AU2005/001017, International Search Report and Written Opinion, dated Aug. 18, 2005.
Baek, Ju-Won et al., “High Boost Converter using Voltage Multiplier,” 2005 IEEE Conference, IECON 05, pp. 567-572, Nov. 2005.
Wikimedia Foundation, Inc., “Electric Power Transmission,” located at http://web.archive.org/web/20041210095723/en.wikipedia.org/wiki/Electric-power-transmission, Nov. 17, 2004.
Jacobsen, K.S., “Synchronized Discrete Multi-Tone (SDMT) Modulation for Cable Modems: Making the Most of the Scarce Reverse Channel Bandwidth,” Conference Proceedings of Wescon/97, pp. 374-380, Nov. 4, 1997.
Loyola, L. et al., “A Multi-Channel Infrastructure based on DCF Access Mechanism for Wireless LAN Mesh Networks Compliant with IEEE 802.11,” 2005 Asia-Pacific Conference on Communications, pp. 497-501, Oct. 5, 2005.
Jun. 6, 2018—EP Search Report EP App No. 18151594.1.
Nov. 27, 2019—European Search Report—3567562.
Baocheng, DC to AC Inverter with Improved One Cycle Control, 2003.
Brekken, Utility-Connected Power Converter for Maximizing Power Transfer From a Photovoltaic Source While Drawing Ripple-Free Current, 2002.
Cramer, Modulorientierter Stromrichter Geht in Serienfertigung , SPVSE, 1994.
Cramer, Modulorientierter Stromrichter, Juelich, Dec. 31, 1995.
Cramer, String-Wechselrichter Machen Solarstrom Billiger, Elektronik, Sep. 1996.
Dehbonei, A Combined Voltage Controlled and Current Controlled “Dual Converter” for a Weak Grid Connected Photovoltaic System with Battery Energy Storage, 2002.
Engler, Begleitende Untersuchungen zur Entwicklung eines Multi-String-Wechselrichters, SPVSE, Mar. 2002.
Seipel, Untersuchungen zur Entwicklung modulorientierter Stromrichter Modulorientierter Stromrichter für netzgekoppelte Photovoltaik-Anlagen, SPVSE, 1995.
Hoor, DSP-Based Stable Control Loops Design for a Single Stage Inverter, 2006.
Isoda, Battery Charging Characteristics in Small Scaled Photovoltaic System Using Resonant DC-DC Converter With Electric Isolation, 1990.
Jones, Communication Over Aircraft Power lines, Dec. 2006/ Jan. 2007.
Kalaivani, A Novel Control Strategy for the Boost DC-AC Inverter, 2006.
Lee, Powering the Dream, IET Computing & Control Engineering, Dec. 2006/ Jan. 2007.
Lee, A Novel Topology for Photovoltaic Series Connected DC/DC Converter with High Efficiency Under Wide Load Range, Jun. 2007.
Lin, LLC DC/DC Resonant Converter with PLL Control Scheme, 2007.
Niebauer, Solarenergie Optimal Nutzen, Stromversorgung, Elektronik, 1996.
Rodrigues, Experimental Study of Switched Modular Series Connected DC-DC Converters, 2001.
Sanchis, Buck-Boost DC-AC Inverter: Proposal for a New Control Strategy, 2004.
Sen, A New DC-To-AC Inverter With Dynamic Robust Performance, 1998.
Bhaojun, Research on a Novel Inverter Based on DC/DC Converter Topology, 2003.
Siri, Sequentially Controlled Distributed Solar-Array Power System with Maximum Power Tracking, 2004.
Walko, Poised for Power, IEE Power Engineer, Feb./ Mar. 2005.
White, Electrical Isolation Requirements in Power-Over-Ethernet (PoE) Power Sourcing Equipment (PSE), 2006.
Yu, Power Conversion and Control Methods for Renewable Energy Sources, May 2005.
Zacharias, Modularisierung in der PV-Systemtechnik—Schnittstellen zur Standardisierung der Komponenten, Institut für Solare Energieversorgungstechnik (ISET), 1996.
Jan. 30, 2020—EP Office Action—EP 18204177.2.
Feb. 3, 2020—Chinese Office Action—201710749388.9.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies—Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Fagade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded Fi-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solar Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99 —Lausanne.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638.
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18(3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
Jul. 13, 2017—Chinese Office Action—CN201210007491.3.
Jul. 31, 2014—Huimin Zhou et al.—“PV Balancers: Concept, Architectures, and Realization”—IEEE Transactions on Power Electronics, vol. 30, No. 7, pp. 3479-3487.
Sep. 15, 2012—Huimin Zhou et. al—“PV balancers: Concept, architectures, and realization”—Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, IEEE pp. 3749-3755.
Jul. 17, 2017—International Search Report—PCT/US2017/031571.
Sep. 4, 2019—Extended European Search Report—EP 19181247.8.
Jul. 8, 2020—CN Office Action—CN 201710362679.2.
Apr. 20, 2020—European Search Report—EP 20151729.9.
Apr. 23, 2020—European Search Report—EP 19217486.0.
May 12, 2020—Extended European Search Report—EP 20161381.7.
Dec. 31, 2020—CN Invalidation Decision—CN 200780045351.2.
Dec. 31, 2020—CN Invalidation Decision—CN 201210253614.1.
Mar. 3, 2021—EP Office Action—EP 17188365.5.
May 7, 2021—Chinese Office Action—CN 20181025083.8.
Related Publications (2)
Number Date Country
20170346295 A1 Nov 2017 US
20210288503 A9 Sep 2021 US
Provisional Applications (5)
Number Date Country
62395461 Sep 2016 US
62341147 May 2016 US
62318303 Apr 2016 US
62395461 Sep 2016 US
62341147 May 2016 US
Continuation in Parts (1)
Number Date Country
Parent 15478526 Apr 2017 US
Child 15593761 US