The present invention relates to photovoltaic systems and, more particularly, photovoltaic systems with wireways.
Photovoltaic systems are installed on building roofs to generate electricity.
In some embodiments, a system includes a plurality of photovoltaic modules installed on a roof deck, wherein the photovoltaic modules are arranged in an array on the roof deck, wherein each of the photovoltaic modules includes a first end and a second end opposite the first end, a baseplate located at the first end, wherein the baseplate of one of the photovoltaic modules is substantially aligned with the baseplate of an adjacent another one of the photovoltaic modules, and wherein the baseplate is configured to receive at least one electrical component wherein the substantially aligned baseplates include a longitudinal axis; and at least one wire cover removably attached to at least one of the baseplates, and wherein the at least one wire cover is moveable in at least a first direction, and wherein the first direction is transverse relative to the longitudinal axis.
In some embodiments, the at least a first direction includes a first direction and a second direction opposite the first direction. In some embodiments, the baseplate includes a hook member, wherein the hook member is slidably attached to the baseplate, and wherein the at least one wire cover is attached to the hook member. In some embodiments, the hook member is moveable in the first direction and the second direction. In some embodiments, the baseplate includes a plurality of rails, wherein the hook member includes a base, and wherein the plurality of rails slidably receives the base of the hook member. In some embodiments, the hook member includes a first prong and a second prong, wherein a slot is located between the first prong and the second prong, and wherein the slot is sized and shaped to receive at least one electrical cable.
In some embodiments, the wire cover includes an inner surface and at least one tab extending from the inner surface, wherein the hook member includes at least one clip, and wherein the at least one clip is sized and shaped to removably receive a corresponding one of the at least one tab. In some embodiments, the at least one tab includes a plurality of tabs, and wherein the at least one clip includes a plurality of clips. In some embodiments, a first one of the plurality of clips extends from the first prong, and wherein a second one of the plurality of clips extends from the second prong. In some embodiments, the at least one wire cover includes a top portion, a pair of first side portions, each of which extends from the top portion on opposite sides thereof, and a pair of second side portions, each of which extends from a corresponding one of the first side portions. In some embodiments, a first one of the plurality of tabs extends from one of the second side portions, and wherein a second one of the plurality of tabs extends from another one of the second side portions.
In some embodiments, the baseplate includes an upper surface, wherein each of the plurality of clips includes a lower surface, wherein the lower surface of each of the plurality of clips is spaced apart from the upper surface of the baseplate, and wherein a space between the lower surface of each of the plurality of clips and the upper surface of the baseplate is sized and shaped to receive at least one electrical cable. In some embodiments, the hook member includes a stop member, wherein the stop member is located between at least two of the plurality of rails of the baseplate, wherein the stop member is configured to engage a first one of the at least two of the plurality of rails when the hook member is moved in the first direction, and wherein the stop member is configured to engage a second one of the at least two of the plurality of rails when the hook member is moved in the second direction. In some embodiments, at least one wire cover is removably attached to a plurality of the baseplates. In some embodiments, each of the plurality of photovoltaic modules includes a first side lap, and wherein one of the at least one baseplate is attached to the first side lap.
In some embodiments, the system further includes a second baseplate installed on the roof deck, and a second wire cover, wherein each of the plurality of photovoltaic modules includes a second side lap, wherein the first side lap is at the first end of the photovoltaic module, wherein the second side lap is at the second end of the photovoltaic module, wherein the second side lap overlays the second baseplate, and wherein the second wire cover is installed on the second baseplate. In some embodiments, the baseplates of the plurality of photovoltaic modules are configured to form a wireway. In some embodiments, the at least one wire cover includes a plurality of wire covers, and wherein a first one of the plurality of wire covers is coupled with a second one of the plurality of wire covers. In some embodiments, the system further includes a transition box installed on the roof deck, wherein the transition box includes a housing, wherein the housing includes a mating portion, and wherein the mating portion of the transition box is coupled to the at least one wire cover.
In some embodiments, a method includes the steps of obtaining a plurality of photovoltaic modules, wherein each of the photovoltaic modules includes a first end and a second end opposite the first end, a first edge extending from the first end to the second end, and a second edge opposite the first edge and extending from the first end to the second end, a head lap portion, wherein the head lap portion extends from the first end to the second end and from the first edge to a location between the first edge and the second edge, a side lap located at the first end, wherein the side lap includes a length extending from the first end to a location between the first end and the second end, and a baseplate located on the first side lap, wherein the baseplate is configured to receive at least one electrical component; installing at least three of the photovoltaic modules on a slope of a roof deck, wherein a first photovoltaic module of the at least three of the photovoltaic modules is horizontally adjacent to a second photovoltaic module of the at least three of the photovoltaic modules, wherein a third photovoltaic module of the at least three of the photovoltaic modules is vertically adjacent to the first photovoltaic module, wherein the first ends of the first and third photovoltaic modules are substantially aligned with each other, wherein the second ends of the first and third photovoltaic modules are substantially aligned with each other, wherein the first photovoltaic module overlays at least a part of the head lap portion of the third photovoltaic module, wherein the second photovoltaic module overlays at least a part of the side lap of the first photovoltaic module, and wherein the baseplate of the first photovoltaic module is substantially aligned with the baseplate of the third photovoltaic module, wherein the substantially aligned baseplates include a longitudinal axis; installing at least one wire cover to at least one of the baseplates, wherein the at least one wire cover is moveable in at least a first direction, and wherein the first direction is transverse relative to the longitudinal axis; and adjusting a position of the installed at least one wire cover in the at least a first direction.
Referring to
In some embodiments, the at least one solar cell 20 includes a plurality of the solar cells 20. In some embodiments, the plurality of solar cells 20 includes two solar cells. In some embodiments, the plurality of solar cells 20 includes three solar cells. In some embodiments, the plurality of solar cells 20 includes four solar cells. In some embodiments, the plurality of solar cells 20 includes five solar cells. In some embodiments, the plurality of solar cells 20 includes six solar cells. In some embodiments, the plurality of solar cells 20 includes seven solar cells. In some embodiments, the plurality of solar cells 20 includes eight solar cells. In some embodiments, the plurality of solar cells 20 includes nine solar cells. In some embodiments, the plurality of solar cells 20 includes ten solar cells. In some embodiments, the plurality of solar cells 20 includes eleven solar cells. In some embodiments, the plurality of solar cells 20 includes twelve solar cells. In some embodiments, the plurality of solar cells 20 includes thirteen solar cells. In some embodiments, the plurality of solar cells 20 includes fourteen solar cells. In some embodiments, the plurality of solar cells 20 includes fifteen solar cells. In some embodiments, the plurality of solar cells 20 includes sixteen solar cells. In some embodiments, the plurality of solar cells 20 includes more than sixteen solar cells.
In some embodiments, the plurality of solar cells 20 is arranged in one row (i.e., one reveal). In another embodiment, the plurality of solar cells 20 is arranged in two rows (i.e., two reveals). In another embodiment, the plurality of solar cells 20 is arranged in three rows (i.e., three reveals). In another embodiment, the plurality of solar cells 20 is arranged in four rows (i.e., four reveals). In another embodiment, the plurality of solar cells 20 is arranged in five rows (i.e., five reveals). In another embodiment, the plurality of solar cells 20 is arranged in six rows (i.e., six reveals). In other embodiments, the plurality of solar cells 20 is arranged in more than six rows. In some embodiments, the at least one solar cell 20 is electrically inactive (i.e., a “dummy” solar cell).
Referring to
In some embodiments, the photovoltaic module 10 includes a backsheet 44. In some embodiments, the backsheet 44 is juxtaposed with the second surface 34 of the second layer 30b of the encapsulant 30. In some embodiments, the backsheet 44 includes a first surface 46 and a second surface 48 opposite the first surface 46 of the backsheet 44. In some embodiments, the second surface 48 of the backsheet 44 forms a lower surface of the photovoltaic module 10. In some embodiments, the backsheet 44 includes a first layer 50. In some embodiments, the backsheet 44 includes a second layer 52 (see
In some embodiments, each of the encapsulant 30, the frontsheet 36, including each of the glass layer 38, the polymer layer 40, and the first adhesive layer 42, and the backsheet 44, including the first layer 50, the second layer 52, and the second adhesive layer 54 of the photovoltaic module 10, as applicable, includes a structure, composition and/or function of similar to those of more or one of the embodiments of the corresponding components disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled Building Integrated Photovoltaic System, owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.
Referring to
In some embodiments, the reveal portion 18 of one of the photovoltaic modules 10 in the subarray S1 overlays the head lap portion 16 of an adjacent another one of the photovoltaic modules 10 of the subarray S1. In some embodiments, at least a portion of the first side lap 22 of the one of the photovoltaic modules 10 overlays at least a portion of the first side lap 22 of the another one of the photovoltaic modules 10. In some embodiments, at least a portion of the second side lap 24 of the one of the photovoltaic modules 10 overlays at least a portion of the second side lap 24 of the another one of the photovoltaic modules 10.
In some embodiments, the first side lap 22 of one of the photovoltaic modules 10 in the subarray S2 overlays the second side lap 24 of an adjacent another one of the photovoltaic modules 10 in the subarray S1 in the same one of the rows R. In some embodiments, a jumper module 73 overlays an uppermost one of the photovoltaic modules 10 in a column of the subarray S1. In some embodiments, the active portion of the jumper module 73 overlays the head lap portion 16 of the photovoltaic module 10.
In some embodiments, the system 70 includes at least one wireway 74 installed proximate to the first ends 12 of the photovoltaic modules 10. In some embodiments, the at least one wireway 74 is installed proximate to the second end 14 of the photovoltaic modules 10. In some embodiments, the at least one wireway 74 is installed intermediate the first end 12 of one of the photovoltaic modules 10 and a second end 14 of another one of the photovoltaic modules 10. In some embodiments, the at least one wireway 74 includes a wire cover 76. In some embodiments, the wire cover 76 is removably attached to the at least one wireway 74. In some embodiments, the at least one wireway 74 includes a plurality of the wireways 74. In some embodiments, one of the wire covers 76 of one of the plurality of wireways 74 overlaps another of the wire covers 76 of another of the plurality of wireways 74. In some embodiments, the at least one wireway 74 includes a height of 1 mm to 20 mm. In some embodiments, the at least one wireway 74 includes a single wireway installed proximate to the first end of each of the photovoltaic modules 10. In some embodiments, the at least one wireway 74 does not include any electrical components or electrical wires or cables therein. In some embodiments, the at least one wireway 74 and the wire covers 76 include a structure, composition and/or function of similar to those of more or one of the embodiments of the wireways and wire covers disclosed in PCT International Patent Publication No. WO 2022/051593, Application No. PCT/US2021/049017, published Mar. 10, 2022, entitled Building Integrated Photovoltaic System, owned by GAF Energy LLC, and U.S. Pat. No. 11,251,744 to Bunea et al., issued Feb. 15, 2022, entitled “Photovoltaic Shingles and Methods of Installing Same,” the contents of each of which are incorporated by reference herein in their entirety.
Referring to
In some embodiments, the baseplate 100 has a height of 1 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 6 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 5 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 4 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 3 mm. In some embodiments, the baseplate 100 has a height of 1 mm to 2 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 6 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 5 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 4 mm. In some embodiments, the baseplate 100 has a height of 2 mm to 3 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 6 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 5 mm. In some embodiments, the baseplate 100 has a height of 3 mm to 4 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 6 mm. In some embodiments, the baseplate 100 has a height of 4 mm to 5 mm.
In some embodiments, the baseplate 100 has a height of 5 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 5 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 5 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 5 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 5 mm to 6 mm. In some embodiments, the baseplate 100 has a height of 6 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 6 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 6 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 6 mm to 7 mm. In some embodiments, the baseplate 100 has a height of 7 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 7 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 7 mm to 8 mm. In some embodiments, the baseplate 100 has a height of 8 mm to 10 mm. In some embodiments, the baseplate 100 has a height of 8 mm to 9 mm. In some embodiments, the baseplate 100 has a height of 9 mm to 10 mm.
In some embodiments, the baseplate 100 has a height of 1 mm. In some embodiments, the baseplate 100 has a height of 2 mm. In some embodiments, the baseplate 100 has a height of 3 mm. In some embodiments, the baseplate 100 has a height of 4 mm. In some embodiments, the baseplate 100 has a height of 5 mm. In some embodiments, the baseplate 100 has a height of 6 mm. In some embodiments, the baseplate 100 has a height of 7 mm. In some embodiments, the baseplate 100 has a height of 8 mm. In some embodiments, the baseplate 100 has a height of 9 mm. In some embodiments, the baseplate 100 has a height of 10 mm.
In some embodiments, the baseplate 100 is configured to receive one or more electronic components. In some embodiments, the electronic components include a junction box 104, electrical wires 106 and electrical connectors 108. In some embodiments, the baseplate 100 is configured to receive a hook member 110. In some embodiments, the wire cover 102 is removably attached to the hook member 110. In some embodiments, a coupler 112 is configured to couple ends of two of the wire covers 102. In some embodiments, a lower end of a lower one of the wire covers 102 is sized and shaped to receive an end cap 114. In some embodiments, the hook member 110 need not be included and the wire cover 102 is attached directly to the baseplate 100, such as with locking rails, tabs, pins or snaps.
Referring to
In some embodiments, the baseplate 100 includes at least one tab 123 extending from the first surface 120. In some embodiments, the at least one tab 123 includes a plurality of the tabs 123. In some embodiments, the plurality of tabs 123 includes two of the tabs 123. In some embodiments, the tabs 123 are spaced apart from one another.
In some embodiments, the baseplate 100 includes at least one clip 126. In some embodiments, the at least one clip 126 extends outwardly from the first surface 120. In some embodiments, the at least one clip 126 is curvilinear in shape and includes a slot 128. In some embodiments, the at least one clip 126 includes a plurality of the clips 126. In some embodiments, the slot 128 is sized and shaped to receive and hold an electrical wire or cable therein. In some embodiments, one of the plurality of clips 126 is located proximate to a sidewall 130 and proximate to the first end 116. In some embodiments, another of the plurality of clips 126 is located proximate to a sidewall 130 and proximate to the first end 116.
In some embodiments, the baseplate 100 includes a plurality of guiderails 132 extending from the first surface 120. In some embodiments, each of the guiderails 132 is composed of a first portion 132a and a second portion 132b spaced apart from the first portion 132a. In some embodiments, a slot 133 is formed between the first portion 132a and a second portion 132b. In some embodiments, the first portion 132a and a second portion 132b are oblique relative to a longitudinal axis A-A of the baseplate 100. In some embodiments, the guiderails 132 are configured to guide an electrical cable or wire extending within the baseplate 100. In some embodiments, the guiderail 132 maintains the cable or wire a distance away from side edges 134 of the baseplate 100 so that the cable/wire does not impede the attachment of an associated wire cover 102 to the baseplate 100. In some embodiments, the baseplate 100 includes only one of the guiderails 132.
In some embodiments, the baseplate 100 includes a first cutout 136 extending from the first surface 120 to a second surface 121 opposite the first surface 120. In some embodiments, the first cutout 136 is sized and shaped to receive an electrical component. In some embodiments, the electrical component is the junction box 104. In some embodiments, the baseplate 100 includes a second cutout 138. In some embodiments, the second cutout 138 is for weight and material savings of the baseplate 100.
In some embodiments, a corresponding one of the baseplate 100 is located on the first side lap 22 of each of the plurality of photovoltaic modules 10. In some embodiments, the baseplate 100 is attached to the first side lap 22. In some embodiments, the baseplate 100 is attached to the first side lap 22 by an adhesive. In some embodiments, the baseplate 100 includes a sealant located on a second surface 121. In some embodiments, the sealant is composed of a room temperature vulcanizing material. In some embodiments, the sealant is composed of silicone. In some embodiments, the sealant is located around a perimeter of the second surface 121. In some embodiments, the baseplate 100 is attached to the first side lap 22 by thermal bonding. In some embodiments, the baseplate 100 is attached to the first side lap 22 by ultrasonic welding. In some embodiments, the baseplate 100 is laminated with the first side lap 22. In some embodiments, the baseplate 100 is attached to the second side lap 24 of the photovoltaic module 10.
Referring to
In some embodiments, the first portion 150 extends obliquely and outwardly relative to a transverse axis C-C of the hook member 110. In some embodiments, the second portion 152 extends obliquely and inwardly relative to the transverse axis C-C. In some embodiments, each of the prongs 142 includes a clip 154. In some embodiments, the clip 154 is located between the first portion 150 and the second portion 152. In some embodiments, the clip 154 includes a slot 156. In some embodiments, the slot 156 is sized and shaped to receive a portion of the wire cover 102, which will be described in further detail below. In some embodiments, the clip 154 includes a lower surface 155.
In some embodiments, the base 140 includes side edges 158. In some embodiments, the base 140 includes a beam 160 extending outwardly from an upper surface 162 thereof. In some embodiments, the beam 160 extends between the prongs 142. In some embodiments, the base 140 includes a stop member 164 extending from the upper surface 162. In some embodiments, the stop member 164 is perpendicular or substantially perpendicular to the beam 160. In some embodiments, the stop member 164 extends between the side edges 158. In some embodiments, at least one of the side edges 158 of the base 140 includes at least one notch 159 formed therein. In some embodiments each of the side edges 158 of the base 140 includes the notch 159.
Referring to
In some embodiments, the slot 147 of the hook member 110 is sized and shaped to receive the at least one of the electrical connectors 108 therein. In some embodiments, the slot 147 of the hook member 110 is sized and shaped to receive a plurality of the electrical connectors 108 therein. In some embodiments, the inner surfaces 146 of the first members 144 of the prongs 142 are sized and shaped such that the electrical connectors 108 may be juxtaposed with them and facilitate the securement of the wires 106 on the baseplate 100. In some embodiments, a space 166 is formed between each of the lower surfaces 155 of the clips 154 and the first surface 120 of the baseplate 100. In some embodiments, the spaces 166 are sized and shaped to receive a portion of the electrical wire 106. In some embodiments, the position of the wire 106 is maintained or substantially maintained around the hook member 110 when the wire 106 is located within one or both of the spaces 166.
Referring to
Referring to
Referring to
Referring to
In some embodiments, the position of the wire cover 102 via on the baseplate 100 is slidably adjustable in the direction of the longitudinal axis A-A of the baseplate 100. In some embodiments, the hook member 110 is moveable in a third direction D3. In some embodiments, the third direction D3 is along the longitudinal axis A-A. In some embodiments, the hook member 110 is moveable in a fourth direction D4. In some embodiments, the fourth direction D4 is opposite the third direction D3. In some embodiments, the third direction D3 is towards an “upward” direction relative to the baseplate 100, e.g., toward an upper end of the roof deck 72. In some embodiments, the fourth direction D4 is a “downward” direction relative to the baseplate 100, e.g., toward a lower end of the roof deck 72. In some embodiments, it should be understood that references to the third direction D3, the fourth direction D4, upward and downward directions are by way of example, and the third direction D3 and the fourth direction D4 may be different directions relative to a selected reference point.
In some embodiments, the position of the wire cover 102 is moveable adjustable up to 1 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 2 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 3 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 4 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 5 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 6 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 7 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 8 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 9 mm. In some embodiments, the position of the wire cover 102 is moveable adjustable up to 10 mm.
In some embodiments, the wireway 74 is covered by a single one of the wire covers 102. In some embodiments, the wire cover 102 is attached to a plurality of the hook members 110 of a plurality of the baseplates 100 of a plurality of the photovoltaic modules 10 in subarray S1 or subarray S2. In some embodiments, the wireway 74 is covered by a plurality of the wire covers 102. In some embodiments, the plurality of the wire covers 102 is attached to a plurality of the hook members 110 of a plurality of the baseplates 100 of a plurality of the photovoltaic modules 10. In some embodiments, a corresponding one the plurality of the wire covers 102 is attached to a corresponding one of the plurality of the hook members 110. In some embodiments, a corresponding one the plurality of the wire covers 102 is attached to a corresponding pair of the plurality of the hook members 110.
In some embodiments, the each of the wire covers 402a, 402b includes a beam 474 that extends from the inner surface 472 of a top portion 470 thereof. In some embodiments, slots 475 are located between the beam 474 and the inner surface 472. In some embodiments, each of the slots 475 is sized and shaped to receive one of the tabs 481. In some embodiments, one end of each of the tabs 481 on the side 482 of the coupler 480 is inserted within a corresponding one of the slots 475 at the first end 468 of the wire cover 402a. In some embodiments, one end of each of the tabs 481 on the side 483 of the coupler 480 is inserted within a corresponding one of the slots 475 at the second end 469 of the wire cover 402b. In some embodiments, the tabs 481 are friction fit in the slots 475. In some embodiments, the lead-in notches 484 are sized and shaped to facilitate the insertion of the tabs 481 within the slots 475 and align them with the slots 475.
In some embodiments, the coupler 480 includes side portions 485. In some embodiments, each of the side portions 485 includes a post 486 extending outwardly and longitudinally therefrom. In some embodiments, the posts 486 extend from the side 482 of the coupler 480. In some embodiments, the posts 486 extend from the side 483 of the coupler 480. In some embodiments, the coupler 480 includes only one of the posts 486 on the side 482. In some embodiments, the coupler 480 includes only one of the posts 486 on the side 483. In some embodiments, the slots 479 of the wire cover 402a are sized and shaped to receive the posts 486 on the side 482 of the coupler 480. In some embodiments, the slots 479 of the wire cover 402b are sized and shaped to receive the posts 486 on the side 483 of the coupler 480. In some embodiments, the posts 486 are friction fit in the slots 479. In some embodiments, the second side portions 478 of the wire cover 402 need not include the slots 479 and the coupler 480 need not include the posts 486. In some embodiments, the coupler 480 need not include the tabs 481.
Referring to
In some embodiments, the wire cover 102 may include one or more similar features, structure and function of those of the wire cover 402. In some embodiments, at least two of the wire covers 102 in the wireway 74 are coupled with one another in a similar manner as that with the wire cover 402.
Referring to
In some embodiments, the end cap 488 includes a substantially pyramid shape (see
In some embodiments, the end cap 488 is attached to the hook member 110. In some embodiments, each of the tabs 496a is sized and shaped to engage a corresponding one of the slots 156 of the clips 154 of the hook member 110. In some embodiments, the end cap 488 is snapped onto the hook member 110 by the tabs 496a engaging the slots 156 of the hook member 110. In some embodiments, the end cap 488 is adjustable and moveable a manner similar to that as described above with respect to the wire cover 102.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, the bracket 1400 is configured to be used on the wireway 74 on the right side of the second subarray S2. Referring to
Referring to
Referring to
In some embodiments, the first flashing base 1500 is configured to be installed on the roof deck. In some embodiments, the first flashing base 1500 is installed at the top of the wireway 74 of the subarray S1. In some embodiments, the sidewall 1535, the aperture 1533 and the flanged portions 1537 of the first flashing base 1528 are aligned with the baseplate 100 of the photovoltaic module 10 in the uppermost row R of the subarray S1. In some embodiments, the first flashing base is 1500 is configured to be installed to the roof deck by at least one fastener. In some embodiments, the base portion 1531 is configured to receive the at least one fastener. In some embodiments, the at least one fastener includes a plurality of fasteners. In some embodiments, the plurality of fasteners is roofing nails, rivets, screws or staples. In some embodiments, the first flashing base is 1500 is configured to be installed to the roof deck by an adhesive. In some embodiments, the first flashing base 1500 overlays at least one of a step flap 1526.
In some embodiments, a wire cover 1502 is attached to the first flashing base 1500. In some embodiments, the wire cover 1502 is removably attached to the first flashing base 1500. In some embodiments, the wire cover 1502 covers the aperture 1533. In some embodiments, the wire cover 1502 is juxtaposed with the wire cover 102. In some embodiments, a lower portion of the wire cover 1502 of the first flashing base 1500 overlays an upper portion 103 of the wire cover 102. Referring to
Referring to
Referring to
In some embodiments, the housing 1704 includes a first end 1720 and a second end 1722 opposite the first end 1720. In some embodiments, the housing 1704 includes a mating portion 1724 that extends from the first end 1720. In some embodiments, the mating portion 1724 is sized and shaped to be removably inserted into the internal cavity 1723 of the mating portion 1712 of the base 1702. In some embodiments, the housing 1704 includes a first tab 1726 that extends from a lower surface 1727 thereof at the second end 1722. In some embodiments, the tab 1726 of the housing 1704 engages the tab 1718 of the base 1702 when the housing 1704 is installed on the base 1702. In some embodiments, the tab 1726 of the housing 1704 removably engages the tab 1718 of the base 1702. In some embodiments, the tab 1726 of the housing 1704 and the tab 1718 of the base 1702 are snap-fit tabs. In some embodiments, the housing 1704 is attached to the base 1702 without any separate fasteners, such as, for example, screws, pin members, bolts, nuts, or rivets. In some embodiments, the housing 1704 may be attached to the base 1702 by fasteners. In some embodiments, the housing 1704 may be attached to the base 1702 by an adhesive.
In some embodiments, the housing 1704 includes a first compartment 1728. In some embodiments, the housing 1704 includes a second compartment 1730. In some embodiments, the first compartment 1728 is adjacent the second compartment 1730. In some embodiments, the housing 1704. In some embodiments, the first compartment 1728 houses one or more electronic components or electrical components 1729. In some embodiments, the transition box 1700 includes a rapid shutdown device. In some embodiments, the transition box 1700 includes a mid-circuit interrupter (MCI). In some embodiments, the transition box includes a splice box. In some embodiments, the transition box 1700 houses electrical wiring for the photovoltaic system. In some embodiments, the electrical wiring includes THHN electrical wiring. In some embodiments, the THHN electrical wire is electrically connected to an inverter.
In some embodiments, the housing 1704 includes a second tab 1732 extending from the second end 1722 thereof. In some embodiments, the second tab 1732 is located proximate to an upper end 1733 of the housing 1704.
In some embodiments, the housing 1704 is symmetrical. In some embodiments, the housing 1704 is asymmetrical. In some embodiments, the second compartment 1730 includes a sidewall 1731. In some embodiments, either side of the sidewall 1731 is configured to receive an external conduit or electrical cable or wire therethrough. In some embodiments, the sidewall 1731 of the housing 1704 is configured to have an aperture formed therein, either by drilling, punching or cutting. In some embodiments, the second compartment 1730 is sized and shaped to receive the external conduit or electrical cable or wire therein through the aperture. In some embodiments, the aperture is sized and shaped to receive a conduit connected to the splice box. In some embodiments, the conduit is configured to house and run electrical wiring across the roof. In some embodiments, the second compartment 1730 is sized and shaped to receive an electrical cable passthrough. In some embodiments, a gasket 1734 or other seal is located at the upper end of the second compartment 1730 to provide a watertight seal. In some embodiments, a liquid-tight cable gland 1736 is located in a dividing wall 1738 between the first compartment 1728 and the second compartment 1730. In some embodiments, the cable gland 1736 is configured to receive an electrical cable or wire therethrough and provide a liquid-tight seal between the first compartment 1728 and the second compartment 1730.
In some embodiments, the wire cover 1706 includes first end 1740 and a second end 1742 opposite the first end 1740. In some embodiments, the wire cover 1706 includes a tab 1744 located at the second end 1742. In some embodiments, the tab 1744 is located on an interior surface of a top portion 1746 of the wire cover 1706. In some embodiments, the tab 1744 of the wire cover 1706 engages the second tab 1732 of the housing 1704. In some embodiments, the tab 1744 of the wire cover 1706 and the second tab 1732 of the housing 1704 are snap-fit tabs. In some embodiments, the top cap 1600 is located at the first end 1740 of the wire cover 1706. In some embodiments, the top cap 1600 is snap-fit to the first end 1740 of the wire cover 1706 by the lip 1608 of the top cap 1600. In some embodiments, the top cap 1600 is attached to the first end 1740 of the wire cover 1706 by fasteners. In some embodiments, the top cap 1600 is attached to the first end 1740 of the wire cover 1706 by an adhesive. In some embodiments, the top cap 1600 is integral with the wire cover 1706. In some embodiments, the top cap 1600 overlays the upper end of the wire cover 102. In some embodiments, the wire cover 102 is composed of a material that enables it to thermally contract or expand as a result of an external environmental condition, such as temperature. In some embodiments, the overlayment of the top cap 1600 on the wire cover 102 provides clearance to enable the contraction or expansion of the wire cover 102. In some embodiments, the contraction or expansion of the wire cover 102 does not affect the aesthetic appearance of the photovoltaic system.
In some embodiments, a method comprises the steps of:
Referring to
Number | Name | Date | Kind |
---|---|---|---|
1981467 | Radtke | Nov 1934 | A |
3156497 | Lessard | Nov 1964 | A |
3581779 | Gilbert, Jr. | Jun 1971 | A |
4258948 | Hoffmann | Mar 1981 | A |
4349220 | Carroll et al. | Sep 1982 | A |
4499702 | Turner | Feb 1985 | A |
4636577 | Peterpaul | Jan 1987 | A |
5167579 | Rotter | Dec 1992 | A |
5437735 | Younan et al. | Aug 1995 | A |
5590495 | Bressler et al. | Jan 1997 | A |
5642596 | Waddington | Jul 1997 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6033270 | Stuart | Mar 2000 | A |
6046399 | Kapner | Apr 2000 | A |
6201180 | Meyer et al. | Mar 2001 | B1 |
6220329 | King et al. | Apr 2001 | B1 |
6308482 | Strait | Oct 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6320115 | Kataoka et al. | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6341454 | Koleoglou | Jan 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6928781 | Desbois et al. | Aug 2005 | B2 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
7138578 | Komamine | Nov 2006 | B2 |
7155870 | Almy | Jan 2007 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
7487771 | Eiffert et al. | Feb 2009 | B1 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7678991 | McCaskill et al. | Mar 2010 | B2 |
7748191 | Podirsky | Jul 2010 | B2 |
7819114 | Augenbraun et al. | Oct 2010 | B2 |
7824191 | Podirsky | Nov 2010 | B1 |
7832176 | McCaskill et al. | Nov 2010 | B2 |
8118109 | Hacker | Feb 2012 | B1 |
8168880 | Jacobs et al. | May 2012 | B2 |
8173889 | Kalkanoglu et al. | May 2012 | B2 |
8210570 | Railkar et al. | Jul 2012 | B1 |
8276329 | Lenox | Oct 2012 | B2 |
8312693 | Cappelli | Nov 2012 | B2 |
8319093 | Kalkanoglu et al. | Nov 2012 | B2 |
8333040 | Shiao et al. | Dec 2012 | B2 |
8371076 | Jones et al. | Feb 2013 | B2 |
8375653 | Shiao et al. | Feb 2013 | B2 |
8404967 | Kalkanoglu et al. | Mar 2013 | B2 |
8410349 | Kalkanoglu et al. | Apr 2013 | B2 |
8418415 | Shiao et al. | Apr 2013 | B2 |
8438796 | Shiao et al. | May 2013 | B2 |
8468754 | Railkar et al. | Jun 2013 | B2 |
8468757 | Krause et al. | Jun 2013 | B2 |
8505249 | Geary | Aug 2013 | B2 |
8512866 | Taylor | Aug 2013 | B2 |
8513517 | Kalkanoglu et al. | Aug 2013 | B2 |
8586856 | Kalkanoglu et al. | Nov 2013 | B2 |
8601754 | Jenkins et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8646228 | Jenkins | Feb 2014 | B2 |
8656657 | Livsey et al. | Feb 2014 | B2 |
8671630 | Lena et al. | Mar 2014 | B2 |
8677702 | Jenkins | Mar 2014 | B2 |
8695289 | Koch et al. | Apr 2014 | B2 |
8713858 | Xie | May 2014 | B1 |
8713860 | Railkar et al. | May 2014 | B2 |
8733038 | Kalkanoglu et al. | May 2014 | B2 |
8776455 | Azoulay | Jul 2014 | B2 |
8789321 | Ishida | Jul 2014 | B2 |
8793940 | Kalkanoglu et al. | Aug 2014 | B2 |
8793941 | Bosler et al. | Aug 2014 | B2 |
8826607 | Shiao et al. | Sep 2014 | B2 |
8835751 | Kalkanoglu et al. | Sep 2014 | B2 |
8863451 | Jenkins et al. | Oct 2014 | B2 |
8898970 | Jenkins et al. | Dec 2014 | B2 |
8925262 | Railkar et al. | Jan 2015 | B2 |
8943766 | Gombarick et al. | Feb 2015 | B2 |
8946544 | Jabos et al. | Feb 2015 | B2 |
8950128 | Kalkanoglu et al. | Feb 2015 | B2 |
8959848 | Jenkins et al. | Feb 2015 | B2 |
8966838 | Jenkins | Mar 2015 | B2 |
8966850 | Jenkins et al. | Mar 2015 | B2 |
8994224 | Mehta et al. | Mar 2015 | B2 |
9032672 | Livsey et al. | May 2015 | B2 |
9153950 | Yamanaka et al. | Oct 2015 | B2 |
9166087 | Chihlas et al. | Oct 2015 | B2 |
9169646 | Rodrigues et al. | Oct 2015 | B2 |
9170034 | Bosler et al. | Oct 2015 | B2 |
9178465 | Shiao et al. | Nov 2015 | B2 |
9202955 | Livsey et al. | Dec 2015 | B2 |
9212832 | Jenkins | Dec 2015 | B2 |
9217584 | Kalkanoglu et al. | Dec 2015 | B2 |
9270221 | Zhao | Feb 2016 | B2 |
9273885 | Rordigues et al. | Mar 2016 | B2 |
9276141 | Kalkanoglu et al. | Mar 2016 | B2 |
9331224 | Koch et al. | May 2016 | B2 |
9356174 | Duarte et al. | May 2016 | B2 |
9359014 | Yang et al. | Jun 2016 | B1 |
9412890 | Meyers | Aug 2016 | B1 |
9528270 | Jenkins et al. | Dec 2016 | B2 |
9605432 | Robbins | Mar 2017 | B1 |
9711672 | Wang | Jul 2017 | B2 |
9755573 | Livsey et al. | Sep 2017 | B2 |
9786802 | Shiao et al. | Oct 2017 | B2 |
9831818 | West | Nov 2017 | B2 |
9912284 | Svec | Mar 2018 | B2 |
9923515 | Rodrigues et al. | Mar 2018 | B2 |
9938729 | Coon | Apr 2018 | B2 |
9991412 | Gonzalez et al. | Jun 2018 | B2 |
9998067 | Kalkanoglu et al. | Jun 2018 | B2 |
10027273 | West et al. | Jul 2018 | B2 |
10115850 | Rodrigues et al. | Oct 2018 | B2 |
10128660 | Apte et al. | Nov 2018 | B1 |
10156075 | McDonough | Dec 2018 | B1 |
10187005 | Rodrigues et al. | Jan 2019 | B2 |
10256765 | Rodrigues et al. | Apr 2019 | B2 |
10284136 | Mayfield et al. | May 2019 | B1 |
10454408 | Livsey et al. | Oct 2019 | B2 |
10530292 | Cropper et al. | Jan 2020 | B1 |
10560048 | Fisher et al. | Feb 2020 | B2 |
10563406 | Kalkanoglu et al. | Feb 2020 | B2 |
D879031 | Lance et al. | Mar 2020 | S |
10579028 | Jacob | Mar 2020 | B1 |
10784813 | Kalkanoglu et al. | Sep 2020 | B2 |
D904289 | Lance et al. | Dec 2020 | S |
11012026 | Kalkanoglu et al. | May 2021 | B2 |
11177639 | Nguyen et al. | Nov 2021 | B1 |
11217715 | Sharenko et al. | Jan 2022 | B2 |
11251744 | Bunea et al. | Feb 2022 | B1 |
11258399 | Kalkanoglu et al. | Feb 2022 | B2 |
11283394 | Perkins et al. | Mar 2022 | B2 |
11309828 | Sirski et al. | Apr 2022 | B2 |
11394344 | Perkins et al. | Jul 2022 | B2 |
11424379 | Sharenko et al. | Aug 2022 | B2 |
11431280 | Liu et al. | Aug 2022 | B2 |
11431281 | Perkins et al. | Aug 2022 | B2 |
11444569 | Clemente et al. | Sep 2022 | B2 |
11454027 | Kuiper et al. | Sep 2022 | B2 |
11459757 | Nguyen et al. | Oct 2022 | B2 |
11486144 | Bunea et al. | Nov 2022 | B2 |
11489482 | Peterson et al. | Nov 2022 | B2 |
11496088 | Sirski et al. | Nov 2022 | B2 |
11508861 | Perkins et al. | Nov 2022 | B1 |
11512480 | Achor et al. | Nov 2022 | B1 |
11527665 | Boitnott | Dec 2022 | B2 |
11545927 | Abra et al. | Jan 2023 | B2 |
11545928 | Perkins et al. | Jan 2023 | B2 |
11658470 | Nguyen et al. | May 2023 | B2 |
11661745 | Bunea et al. | May 2023 | B2 |
11689149 | Clemente et al. | Jun 2023 | B2 |
11705531 | Sharenko et al. | Jul 2023 | B2 |
11728759 | Nguyen et al. | Aug 2023 | B2 |
11732490 | Achor et al. | Aug 2023 | B2 |
11811361 | Farhangi et al. | Nov 2023 | B1 |
11824486 | Nguyen et al. | Nov 2023 | B2 |
11824487 | Nguyen et al. | Nov 2023 | B2 |
11843067 | Nguyen et al. | Dec 2023 | B2 |
20020053360 | Kinoshita et al. | May 2002 | A1 |
20020129849 | Heckeroth | Sep 2002 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030132265 | Villela et al. | Jul 2003 | A1 |
20030217768 | Guha | Nov 2003 | A1 |
20040000334 | Ressler | Jan 2004 | A1 |
20050030187 | Peress et al. | Feb 2005 | A1 |
20050115603 | Yoshida et al. | Jun 2005 | A1 |
20050144870 | Dinwoodie | Jul 2005 | A1 |
20050178428 | Laaly et al. | Aug 2005 | A1 |
20050193673 | Rodrigues et al. | Sep 2005 | A1 |
20060042683 | Gangemi | Mar 2006 | A1 |
20060046084 | Yang et al. | Mar 2006 | A1 |
20070074757 | Mellott et al. | Apr 2007 | A1 |
20070181174 | Ressler | Aug 2007 | A1 |
20070193618 | Bressler et al. | Aug 2007 | A1 |
20070249194 | Liao | Oct 2007 | A1 |
20070295385 | Sheats et al. | Dec 2007 | A1 |
20080006323 | Kalkanoglu et al. | Jan 2008 | A1 |
20080035140 | Placer et al. | Feb 2008 | A1 |
20080315061 | Placer et al. | Feb 2008 | A1 |
20080078440 | Lim et al. | Apr 2008 | A1 |
20080185748 | Kalkanoglu | Aug 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20090000222 | Kalkanoglu et al. | Jan 2009 | A1 |
20090014057 | Croft et al. | Jan 2009 | A1 |
20090014058 | Croft et al. | Jan 2009 | A1 |
20090019795 | Szacsvay et al. | Jan 2009 | A1 |
20090044850 | Kimberley | Feb 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090133340 | Shiao et al. | May 2009 | A1 |
20090159118 | Kalkanoglu et al. | Jun 2009 | A1 |
20090178350 | Kalkanoglu et al. | Jul 2009 | A1 |
20090229652 | Mapel et al. | Sep 2009 | A1 |
20090275247 | Richter et al. | Nov 2009 | A1 |
20100019580 | Croft et al. | Jan 2010 | A1 |
20100095618 | Edison et al. | Apr 2010 | A1 |
20100101634 | Frank et al. | Apr 2010 | A1 |
20100116325 | Nikoonahad | May 2010 | A1 |
20100131108 | Meyer | May 2010 | A1 |
20100139184 | Williams et al. | Jun 2010 | A1 |
20100146878 | Koch et al. | Jun 2010 | A1 |
20100159221 | Kourtakis et al. | Jun 2010 | A1 |
20100170169 | Railkar et al. | Jul 2010 | A1 |
20100186798 | Tormen et al. | Jul 2010 | A1 |
20100242381 | Jenkins | Sep 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100325976 | DeGenfelder et al. | Dec 2010 | A1 |
20100326488 | Aue et al. | Dec 2010 | A1 |
20100326501 | Zhao et al. | Dec 2010 | A1 |
20110030761 | Kalkanoglu et al. | Feb 2011 | A1 |
20110036386 | Browder | Feb 2011 | A1 |
20110036389 | Hardikar et al. | Feb 2011 | A1 |
20110048507 | Livsey et al. | Mar 2011 | A1 |
20110058337 | Han et al. | Mar 2011 | A1 |
20110061326 | Jenkins | Mar 2011 | A1 |
20110100436 | Cleereman et al. | May 2011 | A1 |
20110104488 | Muessig et al. | May 2011 | A1 |
20110132427 | Kalkanoglu et al. | Jun 2011 | A1 |
20110168238 | Metin et al. | Jul 2011 | A1 |
20110239555 | Cook et al. | Oct 2011 | A1 |
20110277806 | Gillenwater | Nov 2011 | A1 |
20110302859 | Crasnianski | Dec 2011 | A1 |
20110314753 | Farmer et al. | Dec 2011 | A1 |
20120034799 | Hunt | Feb 2012 | A1 |
20120060434 | Jacobs | Mar 2012 | A1 |
20120060902 | Drake | Mar 2012 | A1 |
20120085392 | Albert et al. | Apr 2012 | A1 |
20120137600 | Jenkins | Jun 2012 | A1 |
20120176077 | Oh et al. | Jul 2012 | A1 |
20120212065 | Cheng et al. | Aug 2012 | A1 |
20120233940 | Perkins et al. | Sep 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120260977 | Stancel | Oct 2012 | A1 |
20120266942 | Komatsu et al. | Oct 2012 | A1 |
20120279150 | Pislkak et al. | Nov 2012 | A1 |
20120282437 | Clark et al. | Nov 2012 | A1 |
20120291848 | Sherman et al. | Nov 2012 | A1 |
20130008499 | Verger et al. | Jan 2013 | A1 |
20130014455 | Grieco | Jan 2013 | A1 |
20130118558 | Sherman | May 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130247988 | Reese et al. | Sep 2013 | A1 |
20130284267 | Plug et al. | Oct 2013 | A1 |
20130306137 | Ko | Nov 2013 | A1 |
20140090697 | Rodrigues et al. | Apr 2014 | A1 |
20140150843 | Pearce et al. | Jun 2014 | A1 |
20140173997 | Jenkins | Jun 2014 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
20140182222 | Kalkanoglu et al. | Jul 2014 | A1 |
20140208675 | Beerer et al. | Jul 2014 | A1 |
20140254776 | O'Connor et al. | Sep 2014 | A1 |
20140266289 | Della Sera et al. | Sep 2014 | A1 |
20140311556 | Feng et al. | Oct 2014 | A1 |
20140352760 | Haynes et al. | Dec 2014 | A1 |
20140366464 | Rodrigues et al. | Dec 2014 | A1 |
20150089895 | Leitch | Apr 2015 | A1 |
20150162459 | Lu et al. | Jun 2015 | A1 |
20150340516 | Kim et al. | Nov 2015 | A1 |
20150349173 | Morad et al. | Dec 2015 | A1 |
20160105144 | Haynes et al. | Apr 2016 | A1 |
20160142008 | Lopez et al. | May 2016 | A1 |
20160254776 | Rodrigues et al. | Sep 2016 | A1 |
20160276508 | Huang et al. | Sep 2016 | A1 |
20160359451 | Mao et al. | Dec 2016 | A1 |
20170159292 | Chihlas et al. | Jun 2017 | A1 |
20170179319 | Yamashita et al. | Jun 2017 | A1 |
20170179726 | Garrity et al. | Jun 2017 | A1 |
20170237390 | Hudson et al. | Aug 2017 | A1 |
20170331415 | Koppi et al. | Nov 2017 | A1 |
20180094438 | Wu et al. | Apr 2018 | A1 |
20180097472 | Anderson et al. | Apr 2018 | A1 |
20180115275 | Flanigan et al. | Apr 2018 | A1 |
20180254738 | Yang et al. | Sep 2018 | A1 |
20180294765 | Friedrich et al. | Oct 2018 | A1 |
20180351502 | Almy | Dec 2018 | A1 |
20180367089 | Stutterheim et al. | Dec 2018 | A1 |
20190030867 | Sun et al. | Jan 2019 | A1 |
20190081436 | Onodi et al. | Mar 2019 | A1 |
20190123679 | Rodrigues et al. | Apr 2019 | A1 |
20190253022 | Hardar et al. | Aug 2019 | A1 |
20190305717 | Allen et al. | Oct 2019 | A1 |
20200109320 | Jiang | Apr 2020 | A1 |
20200144958 | Rodrigues et al. | May 2020 | A1 |
20200220819 | Vu et al. | Jul 2020 | A1 |
20200224419 | Boss et al. | Jul 2020 | A1 |
20200343397 | Hem-Jensen | Oct 2020 | A1 |
20210083619 | Hegedus | Mar 2021 | A1 |
20210115223 | Bonekamp et al. | Apr 2021 | A1 |
20210159353 | Li et al. | May 2021 | A1 |
20210301536 | Baggs et al. | Sep 2021 | A1 |
20210343886 | Sharenko et al. | Nov 2021 | A1 |
20220149213 | Mensink et al. | May 2022 | A1 |
20220166372 | Bunea | May 2022 | A1 |
Number | Date | Country |
---|---|---|
2829440 | May 2019 | CA |
700095 | Jun 2010 | CH |
202797032 | Mar 2013 | CN |
217150978 | Aug 2022 | CN |
1958248 | Nov 1971 | DE |
1039361 | Sep 2000 | EP |
1837162 | Sep 2007 | EP |
1774372 | Jul 2011 | EP |
2446481 | May 2012 | EP |
2784241 | Oct 2014 | EP |
3772175 | Feb 2021 | EP |
10046767 | Feb 1998 | JP |
2002-106151 | Apr 2002 | JP |
2001-098703 | Oct 2002 | JP |
2017-027735 | Feb 2017 | JP |
2018053707 | Apr 2018 | JP |
20090084060 | Aug 2009 | KR |
10-1348283 | Jan 2014 | KR |
10-2019-0000367 | Jan 2019 | KR |
10-2253483 | May 2021 | KR |
2026856 | Jun 2022 | NL |
2010151777 | Dec 2010 | WO |
2011049944 | Apr 2011 | WO |
2015133632 | Sep 2015 | WO |
2018000589 | Jan 2018 | WO |
2019201416 | Oct 2019 | WO |
2020-159358 | Aug 2020 | WO |
2021-247098 | Dec 2021 | WO |
WO-2021247098 | Dec 2021 | WO |
Entry |
---|
Sunflare, Procducts: “Sunflare Develops Prototype For New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021. |
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021. |
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021. |
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021. |