The present invention relates generally to wireless communications and more specifically to a repeater configuration for increasing the coverage of wireless networks.
Several standard protocols for wireless local area networks, commonly referred to as WLANs, are becoming popular. These include protocols such as 802.11 (as set forth in the 802.11 wireless standards), Wi-MAX, and Bluetooth. The standard wireless protocol with the most commercial success to date is the 802.11g protocol.
While the specifications of products utilizing the above standard wireless protocols commonly indicate data rates on the order of, for example, 54 MBPS and ranges on the order of, for example, 100 meters, these performance levels are rarely, if ever, realized. This lack of performance is due to attenuation of the radiation paths of RF signals, which are typically in the range of 2.4 GHz, in an indoor environment. Base to receiver ranges are generally less than the coverage range required in a typical home, and may be as little as 10 to 15 meters. Further, in structures that have split floor plans, such as ranch style or two story homes, or that are constructed of materials that attenuate RF signals, areas in which wireless coverage is needed may be physically separated by distances outside of the range of, for example, an 802.11 protocol based system. Finally, the data rates of the above standard wireless protocols are dependent on the signal strength. As distances in the area of coverage increase, wireless system performance typically decreases.
One way to increase the range of wireless systems is by the use of repeaters. This is a common practice in the mobile wireless industry. One significant complication is that the system receivers and transmitters operate at the same frequency for a WLAN utilizing an 802.11 or an 802.16 WMAN wireless protocol. Such operation is commonly referred to as time division duplexing (TDD). This operation is significantly different than the operation of many cellular repeater systems, such as those systems based on IS-136, IS-95 or IS-2000 standards, where the receive and transmit bands are separated by a duplexing frequency offset. Frequency division duplexing makes the repeater operation easier than in the case where the receiver and transmitter channels are on the same frequency.
There are, however, cellular mobile systems that separate the receive and transmit channels by time rather than by frequency. These systems utilize scheduled times for specific uplink/downlink transmissions. Repeaters for these systems are more easily built, as the transmission and reception times are well known and are broadcast by a base station. Receivers and transmitters for these systems may be isolated by any number of means including physical separation, antenna patterns, or polarization isolation.
The random packet nature of the WLAN protocols provides no defined receive and transmit periods. The packets from each wireless network node are spontaneously generated and transmitted and are not temporally predictable. A protocol referred to as a collision avoidance and random back-off protocol is used to avoid two units transmitting their packets at the same time. For an 802.11 standard protocol, this is referred to as the distributed coordination function (DCF). In the case where the receive and transmit times are known, synchronization of the timing can be problematic and can drive up the expense of the product.
WLAN repeaters have unique constraints due to the above spontaneous transmission capabilities and therefore require a unique solution. Another unique requirement is that, since these repeaters use the same frequency for receive and transmit, some form of isolation must exist between the receiver and transmitter of each repeater. While existing CDMA systems employ directional antennas and physical separation of the receive and transmit antennas to achieve this isolation, such techniques are not practical for WLAN repeaters in many operating environments such as in the home where lengthy cabling is not desirable or may be too costly.
Further, in a WLAN environment utilizing the proposed IEEE 802.11n standard protocol, wireless devices rely on multi-path transmissions to increase data rates and range. However, in a typical home WLAN environment, multi-path transmission capability and spatial diversity are limited for many of the same reasons discussed above in connection with lack of performance of wireless products in a home or indoor environment.
The present invention provides a wireless network with at least one Multiple Input Multiple Output (MIMO) wireless network station and two or more physical layer repeaters each for receiving wireless signal to or from the at least one MIMO wireless network station and each for re-transmitting the wireless signal while continuing to receive the wireless signal.
In the above wireless network, at least one MIMO wireless network station and the two or more physical layer repeaters may operate according to a protocol, such as the proposed 802.11n protocol. Each repeater can receive and transmit a wireless signal from or to the at least one MIMO wireless network station on a first frequency and synchronously re-transmitting the wireless signal while continuing to receive the wireless signal on a second frequency. In addition, the repeaters may be time division duplexed (TDD), or, alternatively, may be frequency division duplexed (FDD), and can be configured to transmit or receive the wireless signals to or from the MIMO wireless network station and re-transmitting the wireless signals in a synchronized manner when operating in a translating mode. In addition, the at least one MIMO wireless network station comprises a frequency translating MIMO wireless network station. It will be appreciated that in accordance with 802.11n proposed standards, in a MIMO environment, an access point configured as a MIMO wireless network station has two or possibly more antenna for transmitting a signal in a diversity like configuration and the MIMO client has two or more receive antenna for diversity reception.
According to another embodiment, the present invention provides a time division duplex (TDD) wireless repeater configuration including a first TDD wireless repeater capable of recognizing that it is operating in a Multiple Input Multiple Output (MIMO) wireless network, and a second TDD wireless repeater spatially separated from the first TDD wireless repeater by a predetermined distance or may be in the same package and may not be physically seperate. The first TDD wireless repeater is capable of identifying a presence of the second TDD wireless repeater, entering into a mode with the second TDD wireless repeater to receive wireless transmissions in a synchronous manner with the second TDD wireless repeater on a same first frequency, and of re-transmitting the wireless transmissions in a manner that is synchronous with the second TDD wireless repeater on a same second frequency. In an alternative embodiment, two or more repeaters may be physically integrated into the same package simplifying synchronization control. In yet another alternative embodiment, the physical layer repeaters can be coupled using telephone wiring or household wiring is described in greater detail in the applications noted below. In still another alternative embodiment, the physical layer repeaters can repeat in a non-frequency translating mode where receive and transmit isolation becomes the key issue. Accordingly, physical separation of the client side and AP side antennae must be achieved using a variety of methods such as using household wiring, again, as discussed in the incorporated applications noted below.
In the above configuration, the first TDD wireless repeater may be a master repeater, and the second TDD wireless repeater a slave repeater. The master repeater, which may be a repeater that is first to be activated, or a repeater having the strongest signal power with respect to a MIMO base station, is for re-transmitting the wireless transmissions independently of the slave repeater, and the slave repeater is for re-transmitting the wireless transmissions only after re-transmission of the wireless transmissions by the master repeater. The master repeater is for communicating a master/slave protocol to the slave repeater that activates the slave repeater in a slave mode. Thereafter, the slave repeater is for re-transmitting the wireless transmissions during periods of MIMO operation as designated by MIMO device generated messages, and the master repeater is for re-transmitting the wireless transmissions during both MIMO and non-MIMO periods of operation. The slave repeater may include an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions. The first TDD wireless repeater and the second TDD wireless repeater may also be a first TDD frequency translating wireless repeater and a second TDD frequency translating wireless repeater.
According to yet another embodiment, a time division duplex (TDD) wireless repeater configuration includes a first TDD wireless repeater capable of detecting transmissions from Multiple Input Multiple Output (MIMO) enabled devices in a wireless network, and a second TDD wireless repeater also capable of detecting the transmissions from the MIMO enabled devices. The first TDD wireless repeater and the second TDD wireless repeater begin to re-transmit in a synchronous mode with one another upon at least one of the first TDD wireless repeater and the second TDD wireless repeater detecting the transmissions from the MIMO enabled devices.
As will be discussed in detail below, the repeaters 106, 108, which may be either TDD or FDD type frequency translating repeaters, are capable of reacting to the particular protocol implemented in the network 100 in which they operate. In other words, the repeaters 106, 108 are capable of addressing the backwards compatibility issue that will exist in the network, as the network must be capable of enabling both current generation and legacy network stations to communicate regardless of the respective operating protocols of the devices.
The repeaters 106, 108 react based on one of two fundamental modes of synchronous operation. A first exemplary mode of operation is a physical layer mode of operation in which the repeaters 106, 108 operate in a master/slave relationship during MIMO signal transmission irrespective of the underlying message protocol. A second mode of operation is a protocol based mode of operation in which the repeaters 106, 108 may or may not operate in a master/slave relationship and are triggered into MIMO operation based on an underlying protocol detected during MIMO transmissions to/from network stations that are communicating in the network 100. Regardless of the mode of operation, a repeater is dedicated as a master repeater based on, for example, it being the first repeater to be activated, or it being the repeater having the strongest signal power with respect to a MIMO base station (not shown), with all other repeaters automatically being designated as slave repeaters. In addition, the repeater operating as the slave repeater preferably includes an oscillation detection circuit for identifying when a frequency translation direction is erroneously chosen by the master repeater and for terminating re-transmission of the wireless transmissions. Each of these modes of operation will be discussed below in detail.
Radio waves propagate from various wireless devices such as the network stations 102, 104 in
The antenna 300 shown in
At this point, one skilled in the art will readily recognize that the antenna 300, the LNA 310 and the RF splitter 315 are the primary components forming a receiver. Further, one skilled in the art will readily recognize that the antenna 300, the power amplifier 325, the amplifier 330, the filter 335, the switch 345 and the mixer 350 are the primary components forming a transmitter.
Mixers 320, 321 are frequency conversion devices that mix signals passed from the splitter 315 with signals output from the local oscillators 340, 341 at respective frequencies designated as LO1, LO2 to produce intermediate frequency (IF) or typically lower frequency signals. The local oscillators 340, 341 are tuned to the different frequencies LO1, LO2 such that two different signals at two different frequencies fed from the splitter 315 can be converted to a common IF frequency. For example, if signals at two different frequencies F1=2.412 GHz and F2=2.462 are output from the splitter 315 to the mixers 320, 321, respectively, and assuming the mixer 320 is performing a low side mixing function and the mixer 321 is performing a high side mixing function, then with the local oscillator 340 tuned to LO1=2.342 GHz and the local oscillator 341 tuned to LO2=2.532 GHz and providing inputs to the mixers 320, 321, respectively, the signals output from mixers 320, 321 would each have their frequencies transformed to an IF of 70 MHz.
The splitters 323, 324, which operate the same as the splitter 315 described above, separate the IF signals output from the respective mixers 320, 321 into two different paths. One path from each of the splitters 323, 324 goes to filters 360, 361, respectively, while the other path from each of the splitters 323, 324 goes to filters 365, 366, respectively.
The filters 360, 361, which are preferably band pass filters with delays, remove all outputs from the mixing operation except the desired frequency components. Preferably, the filters 360, 361 have a sufficient time delay such that the detection and control unit 362 can detect which of the two RF frequencies is present and perform control functions described below prior to the signals being available at the output of the filters 360, 361, as detectors 370, 371 are in parallel with the delay filters 360, 361. Methods of delaying electrical signals are well known to those of ordinary skill in the art, and include but are not limited to Surface Acoustic Wave (SAW) devices and the like. However, if it is acceptable to truncate a portion of the first part of the RF signal, then the filters 360, 361 would not need specified delays.
One skilled in the art will readily recognize that the mixers 320, 321, the splitters 323, 324 and the filters 360, 361 are the primary components forming a frequency converter.
The filters 365, 366 in the detection and control unit 362 also perform the same type of band pass filtering as the filters 360, 361. The main difference is that the filters 365, 366 are preferably fast filters without specified long time delays. Additionally, the filters 365, 366 preferably do not require the same level of filtering performance as the filters 360, 361, although one skilled in the art would recognize that varying filter performance within the confines of performing the filtering objective is a design choice. One skilled in the art would also recognize that filters or devices other than band pass filters might be used to perform the above discussed band pass functions.
Power detectors 370, 371 are simple power detection devices that detect if a signal is present on either of the respective frequencies F1, F2 and provide a proportional voltage output if the signal is present. Many types of analog detectors that perform this function may be used. For example, such detectors could include, but are not limited to, diode detectors. Such diode detection could be performed at RF, IF or base band. Detectors providing higher performance than simple power detectors may be used as well. These detectors may be implemented as matched filtering at RF or IF using SAW devices, and matched filtering or correlation at base band after analog to digital conversion. The power detectors 370, 371 are utilized to determine the presence of a wireless transmission on one of the two IF channels by comparing signals on the two IF channels with a threshold. Such a threshold could be predetermined or calculated based on monitoring the channels over time to establish a noise floor.
Further, the power detectors 370, 371 may be used to determine start and stop times of a detected transmission. The proportional voltage output by one of the power detectors 370, 371 in response to signal detection will be used by the digital sequencer 385 to detect whether a received signal is on F1 or F2 and to control the retransmission of the signal as is described below. One of ordinary skill in the art will recognize that the power detection can be placed earlier or later in the signal processing path, as it is possible to detect signals so that the retransmission process may be switched on or off. Further, one of ordinary skill in the art will recognize that techniques for determining or limiting transmission time can be employed, including but not limited to placing a time limit on retransmission using a timer.
The filters 375, 376 are low pass filters and preferably have narrower bandwidths than the filters 365, 366. The filters 375, 376 are required to remove the high frequency components that remain after signal detection in the power detectors 370, 371 and to provide an increase in signal to noise ratio by providing processing gain by reducing the detection signal bandwidth. The signals output from low pass filters 375, 376 are input to the digital sequencer 385, which is configured to detect the presence of the received signal on either F1 or F2 based on appropriate control functions discussed below. The digital sequencer has the ability to transmit and receive (TX/RX), as it includes a modem that is capable of monitoring MIMO-based protocol messaging between nodes in the network 100. In addition, the digital sequencer 385 is capable of communicating with other like repeaters through an 802.11, or similar, protocol.
Feedback to a user can be controlled by the digital sequencer 385 via an indicator 390 which could be, but is not limited to, a series of light emitting diodes. Feedback to the user could be an indication that the wireless repeaters 106, 108 is in an acceptable location such that either or both frequencies F1, F2 from the wireless access point 100 and the network station 105 can be detected, or that power is supplied to the wireless repeaters 106, 108.
Once either of the frequencies F1, F2 is detected, the digital sequencer 385 controls switches 345, 355. The switch 355 is switched to allow the detected signal, either on F1 or F2, which is at an IF frequency, to be routed to the input of a frequency converter 350, which is another frequency translation device similar to the mixers 320, 321. Additionally, the digital sequencer 385 will set the switch 345 to allow a signal from the appropriate one of the local oscillators 340, 341 to be routed to the mixer 350 so that the IF frequency at the input to the frequency converter 350 is translated to the proper frequency at the output thereof.
While many of the concepts herein are discussed and described herein in connection with frequency translating repeaters, it will be appreciated that, in alternative embodiments, a non-frequency translating approach may be used. Further, such approaches may be used in connection with the use of household wiring as described in co-pending U.S. patent application Ser. No. 10/465,817 entitled “WIRELESS LOCAL AREA NETWORK USING EXISTING WIRING AND WIRELESS REPEATER MODULES,” and under protocols such as 802.16 as described for example, in co-pending U.S. patent application Ser. No. 11/127,320 entitled “NON-FREQUENCY TRANSLATING REPEATER WITH DETECTION AND MEDIA ACCESS CONTROL,” the contents of both applications being incorporated herein by reference.
It should be noted that problems can arise in terms of frequency error in a MIMO scenario where two or more repeaters are used to repeat a signal from a first frequency channel to a second frequency channel due to variance in local oscillator or reference frequencies. Since the error level in the typical LO is in the order of 10-30 ppm, normal repeater operations produce an error proportional to the net frequency. For example, if the repeater is repeating a signal of 2.4 GHz, a 10 ppm frequency error in the LO results in a 24 KHz frequency error in the signal. Such error is relatively small in proportion to the base frequency and, for single repeater operations, can be handled internally within the repeater with negligible effect. However, when the error is transmitted to another repeater with its own error, the potential clock variance of 10-30 ppm of the second repeater becomes more significant relative to the error transmitted from the first repeater and problems can arise due to the cascading frequency error.
One solution to the above noted problem is to determine a frequency offset of the incoming signal. It will be appreciated that the frequency offset or frequency offset estimate value is often available as a standard output of a typical MODEM or MODEM section of a wireless receiver such as a MODEM 363. The MODEM 363 is configured to be selectively coupled to one of the intermediate frequency signal lines, such as the output of mixers 320 and 321. The MODEM 363 is also coupled on the output side to control switch 355. The frequency offset output of the MODEM 363 can be coupled to the detection and control unit 362 and in particular is coupled to the digital sequencer 385. When a frequency offset is determined, it can be used to correct or synchronize the receiving repeater to the transmitting repeater so that the end-to-end frequency error is reduced, minimized, or otherwise eliminated. Various approaches can be used such as open loop control or closed loop control using the frequency offset value or estimate. A loop filter can further be included to minimize noise values in the error estimate and/or the error estimate can be integrated over a time interval to remove at least transient noise, as is well understood in the art. The corresponding one of local oscillator 340 and 341 corresponding to the detected frequency and to the transmitter section can be adjusted using control lines as shown, for example, in
An example of operation of the wireless repeaters 106, 108 will now be described using the frequency in the previous examples: F1=2.412 GHz; F2=2.462 GHzIF=70 MHz; LO1=2.342 GHz; and LO2=2.532 GHz. Assume F1 is detected and is output from the filter 361. The switch 355 is set to receive its input from the filter 361, which is F1 translated to 70 MHz. Since it is desired to retransmit F1 at F2=2.462 GHz, then the switch 345 is connected to the signal from the local oscillator 341. The output of the frequency translator 350 includes two components (LO2−IF) and (LO2+IF). The desired component is LO2−IF or 2.532 GHz−70 MHz=2.462 GHz. Since the frequency translator 350 produces the sum and difference of switch 345 output and switch 355 output, then a filter 335 is required to remove the undesirable term. In the example above, the undesirable term would be LO2+IF or 2.602 GHZ.
The filter 335 performs the required filtering operations. The same is true if F2 was detected. A sum and difference product will occur, and the filter 335 must filter out the undesirable component. The translated and filtered version of the received signal is applied to the amplifier 330, which is preferably a variable gain amplifier. The amplifier 330 applies a variable amount of gain under control of the digital sequencer 385 to make sure that the signal being feed to the amplifier 325 is in the target transmit power range. The amplifier 325 is preferably the final power amplification stage for the transmit signal. It feeds its output to the isolator 305, which then sends the signal to the antenna 300. The signal is then converted back to an electromagnetic field or radio wave by the antenna 300 in a manner well known to those of ordinary skill in the art. This radio wave is a frequency translated and power amplified version of what was received by the antenna 300.
The above descriptions and example assumes frequencies F1 and F2. It is also possible to operate with any frequencies F1 and F2 by moving the frequencies LO1, LO2 of the local oscillators 340, 341 to different defined channels and checking for power detection at those channels. Once the channels are determined, the digital sequencer 385 will use those frequencies, and all operations will be performed as described above. Control of the frequencies of the local oscillators 340, 341 can be accomplished by the digital sequencer 385 or by user tuning. In the case of user tuning for the control of the selected frequencies, the repeater would have a set of switches (rotary or other) that a technician would set at the time of installation to specify the frequencies of operation.
Those of ordinary skill in the art will recognize that the point at which the input signal is down converted from RF to a digital signal may be altered such that more or fewer functions are performed in the RF domain or the digital domain. Further, multiple devices such as the network stations 102, 104 may be utilized in the present invention. The repeaters 106, 108 will detect and retransmit signals from any of these devices. The network stations 102, 104 communicate with each other within the protocol of a system (such as 802.11n) that provides that the desired recipient of the retransmitted signal is identified. Thus, the repeaters 106, 108 may serve many network stations.
The digital sequencer 385 is shown in more detail in
Detection algorithms may be based on a statistical analysis of samples of a received signal at ADCs 402, 412 and can include level crossing rates, average multipliers, and the like. Alternatively, a SAW tooth control algorithm may be used to observe the “qualified” false detection rate, for example, on the comparators 401, 411. The SAW tooth control algorithm works by determining when a false detection has occurred and further qualifying the false detection using known parameters of the relevant packet protocol, such as packet duration. If a threshold is crossed for only short periods of time, shorter than the packet duration, a false detection is most probable. It should be noted that valid ranges for packet durations are defined in accordance with protocol standards and specifications, such as 802.11. If a detection interval is too short, the detection cannot be associated with a valid 802.11 packet. If a detection interval is too long, the detection also cannot be associated with a valid 802.11 packet.
Accordingly, it would be likely that in such situations, the detection threshold is set too low, interference may be present, the repeater could be oscillating, or the like. A SAW tooth control algorithm adds an increment to the threshold for the comparator every time a false detection occurs, then subtracts a small amount from the threshold every time there is no detection. It will be appreciated that the relative increments and decrements of the detection threshold level will determine the false alarm rate, and the time constant of the resulting control loop. While SAW tooth control schemes have been effectively used in reverse link “outer loop power control” in, for example, IS-95 CDMA base stations, the application of a SAW tooth control loop to detection in accordance with various exemplary embodiments, provides advantages not previously appreciated.
For detection of signals on the bi-directional frequencies F1 and F2, the output signal 415 from comparator 411 is input to digital logic 416, which produces and outputs a logic 0 when a signal is present on F2. When a signal is present on F1, the output signal 405 from the comparator 401 is input to the digital logic 416, which in turn produces and outputs a logic 1 or high level.
As shown at 502 in
If at 504 it is determined that the MIMO signal is transmitted by the transmitting network station 102 on F2, the MIMO signal therefore must be transmitted by both the master repeater 106 and the slave repeater 108 on F2. At 506 and 508, the slave repeater 108 waits with the above associated delay until both MIMO signals have been respectively transmitted and received on F1 and F2. Once the presence of transmitted and received MIMO signals is detected on both F1 and F2, at 510 the slave repeater 108 begins to transmit on F2 and to receive on F1, and continues until at 512 it no longer detects the presence of a received signal on F1.
In the above physical layer synch approach, both the master and the slave repeaters 106, 108 are capable of operating in MIMO mode to determine the transmit/receive frequencies and the direction in which a MIMO signal is to be transmitted irrespective of the underlying system protocol.
The protocol based mode of MIMO operation will now be discussed with respect to the repeaters 106, 108. The protocol based mode of MIMO operation is based upon the triggering of MIMO operating modes at the master and slave repeaters 106, 108 by network station MIMO transmissions, enable the master and slave repeaters 106, 108 to determine on which frequency the MIMO signals are being transmitted. In connection with the protocol based mode of operation, three methods of determining the repeater transmit direction, hereinafter referred to as Request To Send/Clear To Send (RTS/CTS), Clear to Send To Self (CTS To Self), and encapsulated MIMO packet protocol related methods, will also be discussed.
Subsequently, after the transmitting network station 102 receives the CTS packet, at 602, the transmitting network station then transmits the MIMO packet having a time duration (T), as defined either in the MIMO RTS packet and/or the MIMO CTS packet, to the receiving network station. At 606 and 608, both the master and slave repeaters 106, 108 are triggered and begin to operate in MIMO mode to transmit on F2 MIMO packets received on F1, or vice versa, depending upon the transmission direction, which is determined as follows.
If at 704 the master repeater 106 determines that it has not received an RTS packet transmitted from the transmitting network station 102 on F2, then the master repeater 106 determines that the network is operating in, for example, a CTS to Self Mode in which the transmitting network station 102 sends the CTS packet to reserve the frequency (F1 or F2) for a predetermined time to send the MIMO signal. Upon determining that the network is operating in the CTS to Self Mode, the master repeater 106 communicates with the slave repeater 108 to force the slave repeater 108 to operate in the CTS To Self Mode in a manner that is synchronous with the operation of the master repeater 108 by turning on its transmitter for the predetermined time indicated by the CTS packet. Therefore, at 710 and 712 both the master and slave repeaters 106, 108 receive on F1 and transmit on F2 until the master repeater 106 determines at 710 that F2 is no longer active.
At 802, the slave repeater 108 operates in normal, non-translating WLAN repeater mode and receives incoming signals. At 804, the slave repeater 108 determines through messaging with the master repeater 106 whether the payload of a received packet includes an encapsulated MIMO packet. If the master repeater 106 determines that the payload does include an encapsulated MIMO packet, at 806 the slave repeater 108 determines based on communication with the master repeater 106 whether the payload was received on F1 or F2, and also determines the length of the payload packet. At 808, the slave repeater 108 turns on in the transmit direction for a duration corresponding to the length of the MIMO packet to transmit (and receive) MIMO packets in a synchronous manner. The slave repeater 108 then monitors the transmission of the encapsulated packet at 810 and continues at 812 to transmit the MIMO packet until the entire encapsulated packet has been sent.
Regarding the above protocols under which the repeaters 106, 108 can be triggered into a protocol based synch mode of operation, the RTS/CTS (and CTS to Self) method of determining transmit direction is preferable during transmission of large data packets, such as for transmission of streaming video. The encapsulated data method of determining transmit direction is preferable when shorter packets are being transmitted, such as in Internet surfing applications.
It should be noted that the network 100 may be alternatively configured using non-frequency translating physical layer repeaters rather than the frequency translating physical layer repeaters 106, 108 as shown in
The invention is described herein in detail with particular reference to presently preferred embodiments. However, it will be understood that variations and modifications can be effected within the scope and spirit of the invention.
The present invention is based on and claims priority to U.S. Provisional Application Ser. No. 60/647,386, entitled “PHYSICAL LAYER REPEATER CONFIGURATION FOR INCREASING MIMO PERFORMANCE,” filed Jan. 28, 2005, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3363250 | Jacobson | Jan 1968 | A |
4000467 | Lentz et al. | Dec 1976 | A |
4001691 | Gruenberg et al. | Jan 1977 | A |
4061970 | Magneron et al. | Dec 1977 | A |
4081752 | Sumi et al. | Mar 1978 | A |
4124825 | Webb et al. | Nov 1978 | A |
4204016 | Chavannes et al. | May 1980 | A |
4334323 | Moore et al. | Jun 1982 | A |
4368541 | Evans et al. | Jan 1983 | A |
4509206 | Carpe et al. | Apr 1985 | A |
4701935 | Namiki et al. | Oct 1987 | A |
4723302 | Fulmer et al. | Feb 1988 | A |
4777653 | Bonnerot et al. | Oct 1988 | A |
4783843 | Leff et al. | Nov 1988 | A |
4820568 | Harpell et al. | Apr 1989 | A |
4922259 | Hall et al. | May 1990 | A |
5023930 | Leslie et al. | Jun 1991 | A |
5095528 | Leslie et al. | Mar 1992 | A |
5214788 | Delaperriere et al. | May 1993 | A |
5220562 | Takada et al. | Jun 1993 | A |
5280480 | Pitt et al. | Jan 1994 | A |
5333175 | Ariyavisitakul et al. | Jul 1994 | A |
5341364 | Marra et al. | Aug 1994 | A |
5349463 | Hirohashi et al. | Sep 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5371734 | Fischer et al. | Dec 1994 | A |
5373503 | Chen et al. | Dec 1994 | A |
5383144 | Kato | Jan 1995 | A |
5408197 | Miyake et al. | Apr 1995 | A |
5408618 | Aho et al. | Apr 1995 | A |
5430726 | Moorwood et al. | Jul 1995 | A |
5446770 | Urabe et al. | Aug 1995 | A |
5465251 | Judd et al. | Nov 1995 | A |
5471642 | Palmer et al. | Nov 1995 | A |
5485486 | Gilhousen et al. | Jan 1996 | A |
5509028 | Marque-Pucheu et al. | Apr 1996 | A |
5515376 | Murthy et al. | May 1996 | A |
5519619 | Seda et al. | May 1996 | A |
5608755 | Rakib et al. | Mar 1997 | A |
5610916 | Kostreski et al. | Mar 1997 | A |
5648984 | Kroninger et al. | Jul 1997 | A |
5654979 | Levin et al. | Aug 1997 | A |
5659879 | Dupuy et al. | Aug 1997 | A |
5678177 | Beasley et al. | Oct 1997 | A |
5678198 | Lemson et al. | Oct 1997 | A |
5684801 | Amitay et al. | Nov 1997 | A |
5697052 | Treatch et al. | Dec 1997 | A |
5726980 | Rickard et al. | Mar 1998 | A |
5732334 | Miyake et al. | Mar 1998 | A |
5745846 | Myer et al. | Apr 1998 | A |
5754540 | Liu et al. | May 1998 | A |
5764636 | Edsall et al. | Jun 1998 | A |
5767788 | Ness | Jun 1998 | A |
5771174 | Spinner et al. | Jun 1998 | A |
5784683 | Sistanizadeh et al. | Jul 1998 | A |
5794145 | Milam et al. | Aug 1998 | A |
5812933 | Niki et al. | Sep 1998 | A |
5815795 | Iwai et al. | Sep 1998 | A |
5825809 | Sim | Oct 1998 | A |
5852629 | Iwamatsu | Dec 1998 | A |
5857144 | Mangum et al. | Jan 1999 | A |
5862207 | Aoshima et al. | Jan 1999 | A |
5875179 | Tikalsky et al. | Feb 1999 | A |
5883884 | Atkinson et al. | Mar 1999 | A |
5884181 | Arnold et al. | Mar 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5903553 | Sakamoto et al. | May 1999 | A |
5907794 | Lehmusto et al. | May 1999 | A |
5963846 | Kurby et al. | Oct 1999 | A |
5963847 | Ito et al. | Oct 1999 | A |
5987304 | Latt et al. | Nov 1999 | A |
6005855 | Zehavi et al. | Dec 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6014380 | Hendel et al. | Jan 2000 | A |
6032194 | Gai et al. | Feb 2000 | A |
6061548 | Reudink | May 2000 | A |
6088570 | Komara et al. | Jul 2000 | A |
6101400 | Ogaz et al. | Aug 2000 | A |
6108364 | Weaver, Jr. et al. | Aug 2000 | A |
6128512 | Trompower et al. | Oct 2000 | A |
6128729 | Kimball et al. | Oct 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6188694 | Fine et al. | Feb 2001 | B1 |
6188719 | Collomby et al. | Feb 2001 | B1 |
6195051 | McCoy et al. | Feb 2001 | B1 |
6202114 | Dutt et al. | Mar 2001 | B1 |
6215982 | Trompower et al. | Apr 2001 | B1 |
6219739 | Dutt et al. | Apr 2001 | B1 |
6222503 | Gietema et al. | Apr 2001 | B1 |
6272351 | Langston et al. | Aug 2001 | B1 |
6285863 | Zhang et al. | Sep 2001 | B1 |
6298061 | Chin et al. | Oct 2001 | B1 |
6304563 | Blessent et al. | Oct 2001 | B1 |
6304575 | Carroll et al. | Oct 2001 | B1 |
6331792 | Tonietto et al. | Dec 2001 | B1 |
6339694 | Komara et al. | Jan 2002 | B1 |
6342777 | Takahashi et al. | Jan 2002 | B1 |
6363068 | Kinoshita et al. | Mar 2002 | B1 |
6370185 | Schmutz et al. | Apr 2002 | B1 |
6370369 | Kraiem et al. | Apr 2002 | B1 |
6377612 | Baker et al. | Apr 2002 | B1 |
6377640 | Trans et al. | Apr 2002 | B2 |
6384765 | Sjostrand et al. | May 2002 | B1 |
6385181 | Tsutsui et al. | May 2002 | B1 |
6388995 | Gai et al. | May 2002 | B1 |
6393299 | Mizumoto et al. | May 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6441781 | Rog et al. | Aug 2002 | B1 |
6473131 | Neugebauer et al. | Oct 2002 | B1 |
6480481 | Park et al. | Nov 2002 | B1 |
6501955 | Durrant et al. | Dec 2002 | B1 |
6535732 | McIntosh et al. | Mar 2003 | B1 |
6539028 | Soh et al. | Mar 2003 | B1 |
6539204 | Marsh et al. | Mar 2003 | B1 |
6549542 | Dong et al. | Apr 2003 | B1 |
6549567 | Fullerton et al. | Apr 2003 | B1 |
6563468 | Hill et al. | May 2003 | B2 |
6574198 | Petersson et al. | Jun 2003 | B1 |
6628624 | Mahajan et al. | Sep 2003 | B1 |
6664932 | Sabet et al. | Dec 2003 | B2 |
6671502 | Ogawa et al. | Dec 2003 | B1 |
6684058 | Karacaoglu et al. | Jan 2004 | B1 |
6690657 | Lau et al. | Feb 2004 | B1 |
6694125 | White et al. | Feb 2004 | B2 |
6718160 | Schmutz et al. | Apr 2004 | B2 |
6728541 | Ohkura et al. | Apr 2004 | B2 |
6766113 | Al-Salameh et al. | Jul 2004 | B1 |
6781544 | Saliga et al. | Aug 2004 | B2 |
6788256 | Hollister | Sep 2004 | B2 |
6880103 | Kim et al. | Apr 2005 | B2 |
6888881 | Nagano | May 2005 | B1 |
6904266 | Jin et al. | Jun 2005 | B1 |
6906669 | Sabet et al. | Jun 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934555 | Silva et al. | Aug 2005 | B2 |
6944139 | Campanella et al. | Sep 2005 | B1 |
6957042 | Williams et al. | Oct 2005 | B2 |
6983162 | Garani et al. | Jan 2006 | B2 |
6985516 | Easton et al. | Jan 2006 | B1 |
6990313 | Yarkosky et al. | Jan 2006 | B1 |
7027418 | Gan et al. | Apr 2006 | B2 |
7027770 | Judd et al. | Apr 2006 | B2 |
7043203 | Miquel et al. | May 2006 | B2 |
7050442 | Proctor et al. | May 2006 | B1 |
7050452 | Sugar et al. | May 2006 | B2 |
7058071 | Myles et al. | Jun 2006 | B1 |
7058368 | Nicholls et al. | Jun 2006 | B2 |
7088734 | Newberg et al. | Aug 2006 | B2 |
7103344 | Menard et al. | Sep 2006 | B2 |
7120930 | Maufer et al. | Oct 2006 | B2 |
7123670 | Gilbert et al. | Oct 2006 | B2 |
7123676 | Gebara et al. | Oct 2006 | B2 |
7132988 | Yegin et al. | Nov 2006 | B2 |
7133391 | Belcea et al. | Nov 2006 | B2 |
7133460 | Bae et al. | Nov 2006 | B2 |
7139527 | Tamaki et al. | Nov 2006 | B2 |
7167526 | Liang et al. | Jan 2007 | B2 |
7187904 | Gainey et al. | Mar 2007 | B2 |
7193975 | Tsutsumi et al. | Mar 2007 | B2 |
7194275 | Bolin et al. | Mar 2007 | B2 |
7200134 | Proctor, Jr. et al. | Apr 2007 | B2 |
7215964 | Miyake et al. | May 2007 | B2 |
7230935 | Proctor, Jr. et al. | Jun 2007 | B2 |
7233771 | Proctor, Jr. et al. | Jun 2007 | B2 |
7248645 | Vialle et al. | Jul 2007 | B2 |
7254132 | Takao et al. | Aug 2007 | B2 |
7299005 | Yarkosky et al. | Nov 2007 | B1 |
7315573 | Lusky et al. | Jan 2008 | B2 |
7319714 | Sakata et al. | Jan 2008 | B2 |
7321787 | Kim et al. | Jan 2008 | B2 |
7339926 | Stanwood et al. | Mar 2008 | B2 |
7352696 | Stephens et al. | Apr 2008 | B2 |
7406060 | Periyalwar et al. | Jul 2008 | B2 |
7409186 | Van Buren et al. | Aug 2008 | B2 |
7430397 | Suda et al. | Sep 2008 | B2 |
7450936 | Kim et al. | Nov 2008 | B2 |
7457587 | Chung | Nov 2008 | B2 |
7486929 | Van Buren et al. | Feb 2009 | B2 |
7577398 | Judd et al. | Aug 2009 | B2 |
7590145 | Futch et al. | Sep 2009 | B2 |
7623826 | Pergal et al. | Nov 2009 | B2 |
7676194 | Rappaport et al. | Mar 2010 | B2 |
7729669 | Van Buren et al. | Jun 2010 | B2 |
20010031646 | Williams et al. | Oct 2001 | A1 |
20010040699 | Osawa et al. | Nov 2001 | A1 |
20010050580 | O'toole et al. | Dec 2001 | A1 |
20010050906 | Odenwalder et al. | Dec 2001 | A1 |
20010054060 | Fillebrown et al. | Dec 2001 | A1 |
20020004924 | Kim et al. | Jan 2002 | A1 |
20020018487 | Chen et al. | Feb 2002 | A1 |
20020034958 | Oberschmidt et al. | Mar 2002 | A1 |
20020045461 | Bongfeldt et al. | Apr 2002 | A1 |
20020061031 | Sugar et al. | May 2002 | A1 |
20020089945 | Belcea et al. | Jul 2002 | A1 |
20020101843 | Sheng et al. | Aug 2002 | A1 |
20020102948 | Stanwood et al. | Aug 2002 | A1 |
20020109585 | Sanderson et al. | Aug 2002 | A1 |
20020115409 | Khayrallah | Aug 2002 | A1 |
20020119783 | Bourlas et al. | Aug 2002 | A1 |
20020136268 | Gan et al. | Sep 2002 | A1 |
20020141435 | Newberg et al. | Oct 2002 | A1 |
20020159506 | Alamouti et al. | Oct 2002 | A1 |
20020163902 | Takao et al. | Nov 2002 | A1 |
20020177401 | Judd et al. | Nov 2002 | A1 |
20030026363 | Stoter et al. | Feb 2003 | A1 |
20030063583 | Padovani et al. | Apr 2003 | A1 |
20030124976 | Tamaki et al. | Jul 2003 | A1 |
20030139175 | Kim et al. | Jul 2003 | A1 |
20030179734 | Tsutsumi et al. | Sep 2003 | A1 |
20030185163 | Bertonis et al. | Oct 2003 | A1 |
20030211828 | Dalgleish et al. | Nov 2003 | A1 |
20030235170 | Trainin et al. | Dec 2003 | A1 |
20030236069 | Sakata et al. | Dec 2003 | A1 |
20040029537 | Pugel et al. | Feb 2004 | A1 |
20040038707 | Kim et al. | Feb 2004 | A1 |
20040047333 | Han et al. | Mar 2004 | A1 |
20040047335 | Proctor, Jr. et al. | Mar 2004 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040131025 | Dohler et al. | Jul 2004 | A1 |
20040146013 | Song et al. | Jul 2004 | A1 |
20040157551 | Gainey et al. | Aug 2004 | A1 |
20040166802 | McKay, Sr. et al. | Aug 2004 | A1 |
20040176050 | Steer et al. | Sep 2004 | A1 |
20040198295 | Nicholls et al. | Oct 2004 | A1 |
20040208258 | Lozano et al. | Oct 2004 | A1 |
20040218683 | Batra et al. | Nov 2004 | A1 |
20040229563 | Fitton et al. | Nov 2004 | A1 |
20040235417 | Dean | Nov 2004 | A1 |
20040248581 | Seki et al. | Dec 2004 | A1 |
20040264511 | Futch et al. | Dec 2004 | A1 |
20050014464 | Larsson | Jan 2005 | A1 |
20050030891 | Stephens et al. | Feb 2005 | A1 |
20050042999 | Rappaport | Feb 2005 | A1 |
20050130587 | Suda et al. | Jun 2005 | A1 |
20050190822 | Fujii et al. | Sep 2005 | A1 |
20050201315 | Lakkis et al. | Sep 2005 | A1 |
20050254442 | Proctor, Jr. et al. | Nov 2005 | A1 |
20050256963 | Proctor Jr. et al. | Nov 2005 | A1 |
20050286448 | Proctor et al. | Dec 2005 | A1 |
20060019603 | Pergal | Jan 2006 | A1 |
20060028388 | Schantz | Feb 2006 | A1 |
20060035643 | Vook et al. | Feb 2006 | A1 |
20060041680 | Proctor, Jr. et al. | Feb 2006 | A1 |
20060052066 | Cleveland et al. | Mar 2006 | A1 |
20060052099 | Parker et al. | Mar 2006 | A1 |
20060056352 | Proctor et al. | Mar 2006 | A1 |
20060063484 | Proctor et al. | Mar 2006 | A1 |
20060063485 | Gainey et al. | Mar 2006 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060183421 | Proctor et al. | Aug 2006 | A1 |
20060203757 | Young et al. | Sep 2006 | A1 |
20060262026 | Gainey et al. | Nov 2006 | A1 |
20070025349 | Bajic et al. | Feb 2007 | A1 |
20070025486 | Gainey et al. | Feb 2007 | A1 |
20070032192 | Gainey et al. | Feb 2007 | A1 |
20070121546 | Zuckerman et al. | May 2007 | A1 |
20070286110 | James, Jr. et al. | Dec 2007 | A1 |
20080057862 | Smith et al. | Mar 2008 | A1 |
20080233942 | Kim et al. | Sep 2008 | A9 |
Number | Date | Country |
---|---|---|
1186401 | Jul 1998 | CN |
0523687 | Jan 1993 | EP |
0709973 | May 1996 | EP |
0715423 | Jun 1996 | EP |
0847146 | Jun 1998 | EP |
0853393 | Jul 1998 | EP |
0860953 | Aug 1998 | EP |
2272599 | May 1994 | GB |
2351420 | Dec 2000 | GB |
62040895 | Feb 1987 | JP |
63160442 | Jul 1988 | JP |
64011428 | Jan 1989 | JP |
2100358 | Apr 1990 | JP |
3021884 | Jan 1991 | JP |
05063623 | Mar 1993 | JP |
05102907 | Apr 1993 | JP |
6013947 | Jan 1994 | JP |
06334577 | Dec 1994 | JP |
07030473 | Jan 1995 | JP |
7079187 | Mar 1995 | JP |
07079205 | Mar 1995 | JP |
07131401 | May 1995 | JP |
8097762 | Apr 1996 | JP |
8274706 | Oct 1996 | JP |
09018484 | Jan 1997 | JP |
09130322 | May 1997 | JP |
09162801 | Jun 1997 | JP |
9162903 | Jun 1997 | JP |
09182155 | Jul 1997 | JP |
09214418 | Aug 1997 | JP |
10032557 | Feb 1998 | JP |
10107727 | Apr 1998 | JP |
10135892 | May 1998 | JP |
11055713 | Feb 1999 | JP |
11127104 | May 1999 | JP |
11298421 | Oct 1999 | JP |
2000031877 | Jan 2000 | JP |
2000502218 | Feb 2000 | JP |
2000082983 | Mar 2000 | JP |
2000236290 | Aug 2000 | JP |
2000269873 | Sep 2000 | JP |
2001016152 | Jan 2001 | JP |
2001111575 | Apr 2001 | JP |
2001136115 | May 2001 | JP |
2001244864 | Sep 2001 | JP |
2002033691 | Jan 2002 | JP |
2002111571 | Apr 2002 | JP |
2002271255 | Sep 2002 | JP |
2003174394 | Jun 2003 | JP |
2003198442 | Jul 2003 | JP |
2003244050 | Aug 2003 | JP |
2004056210 | Feb 2004 | JP |
2004328666 | Nov 2004 | JP |
2005072646 | Mar 2005 | JP |
2005110150 | Apr 2005 | JP |
2005236626 | Sep 2005 | JP |
2005531202 | Oct 2005 | JP |
2005531265 | Oct 2005 | JP |
2006503481 | Jan 2006 | JP |
2006505146 | Feb 2006 | JP |
20040004261 | Jan 2004 | KR |
100610929 | Aug 2006 | KR |
2120702 | Oct 1998 | RU |
WO9214339 | Aug 1992 | WO |
WO9715991 | May 1997 | WO |
WO9734434 | Sep 1997 | WO |
WO9858461 | Dec 1998 | WO |
WO9959264 | Nov 1999 | WO |
WO0050971 | Aug 2000 | WO |
WO0152447 | Jul 2001 | WO |
WO0182512 | Nov 2001 | WO |
WO0199308 | Dec 2001 | WO |
WO0208857 | Jan 2002 | WO |
WO0217572 | Feb 2002 | WO |
WO03013005 | Feb 2003 | WO |
WO04001892 | Dec 2003 | WO |
WO04001986 | Dec 2003 | WO |
WO04002014 | Dec 2003 | WO |
WO04002014 | Dec 2003 | WO |
WO2004004365 | Jan 2004 | WO |
WO2004032362 | Apr 2004 | WO |
WO2004036789 | Apr 2004 | WO |
WO2004038958 | May 2004 | WO |
WO2004062305 | Jul 2004 | WO |
WO2005115022 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060193271 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60647386 | Jan 2005 | US |