The present invention relates generally to wireless local area networks (WLANs) and, particularly, the present invention relates to a discrete time bandpass filter capable of being used, for example, in a WLAN repeater.
WLAN repeaters operating on the same frequencies have unique constraints due to the above spontaneous transmission capabilities and therefore require a unique solution to problems arising from the use of the same frequencies. Since repeaters use the same frequency for receive and transmit channels, some form of isolation must exist between the receive and transmit channels of the repeater. While some related systems such as, for example, CDMA systems used in wireless telephony, achieve channel isolation using sophisticated techniques such as channel coding, directional antennas, physical separation of the receive and transmit antennas, or the like, such techniques are not practical for WLAN repeaters in many operating environments such as in the home where complicated hardware or lengthy cabling is not desirable or may be too costly.
Challenges in the development of a wireless repeater include delaying IF processing in connection with signal detection to allow time to reliably detect the incoming signal and perform transmitter setup for repeating operation. One system, described in International Application No. PCT/US03/16208 and commonly owned by the assignee of the present application, resolves many of the above identified problems by providing a repeater which isolates receive and transmit channels using a frequency detection and translation method. The WLAN repeater described therein allows two WLAN units to communicate by translating packets associated with one device at a first frequency channel to a second frequency channel used by a second device. In order to provide accurate repeating capability certain components such as bandpass filter elements, delay elements, and the like are used and are typically provided through the use of discrete components or subsystems, such as filter elements, delay line units, or the like. As production for such repeaters increases, so does the need to reduce costs by reducing part counts, form factor, and the like. Thus the corresponding need to decrease the costs of individual components increases making it desirable to replace certain discrete high cost components such as bandpass filters, delay lines and the like with more cost effective devices.
In accordance with various exemplary embodiments, RF in circuit propagation delays may be used to facilitate rapid detection by allowing analog storage of received waveforms while signal detection and transmitter configuration take place within digital sections. Signal detection may be performed prior to the expiration of RF delay periods, thereby providing additional time to perform the required configuration for the system. Further an all digital delay line can be used to facilitate the performance of detect and delay in parallel in an all digital implementation.
RF delays previously implemented using Surface Acoustic Wave (SAW) filters can be replaced with a discrete bandpass filter in accordance with various exemplary embodiments. While SAW filters provide the capability to enable analog signal storage, to provide channel selection, to provide jammer suppression, to provide a “feed-forward” variable gain control path, and the like, they can be expensive to implement. Thus the exemplary discrete bandpass filter can further be used to replace delay line elements which can also be expensive to implement particularly where SAW filters are used.
In the exemplary discrete-time bandpass filter sampling delay lines can be used to replace SAW based delay lines digital samples or analog samples can be processed depending on implementation constraints such as die size and the like. For example in applications where die sizes are limited, the components associated with generating and processing digital samples may be too large or expensive to implement. An alternative is to perform discrete-time sampling of analog waveforms avoiding conversion devices and other digital components.
A discrete-time analog bandpass filter can be configured to select a desired channel from undesired signals in an RF digital communications receiver. The discrete time analog bandbass filter can include a preliminary filter stage configured to provide a decimation and/or a delay of an input signal to provide a decimated input signal. An intermediate filter stage can be configured to provide bandpass filtering of the decimated input signal and a terminal filter stage configured to provide an interpolation and/or a delay of the filtered input signal.
In another embodiment, a discrete-time analog bandpass filter can shape a spectrum of a transmitted signal in an RF digital communications transmitter. The discrete time analog bandbasss filter for such shaping can also include a preliminary filter stage configured to provide a decimation and/or a delay of the transmitted signal to provide a decimated transmit signal. An intermediate filter stage can be configured to provide a bandpass filtering of the decimated transmit signal to provide a filtered transmit signal. A terminal filter stage can be configured to provide an interpolation and/or a delay of the filtered transmit signal.
A discrete-time analog bandpass filter has multiple filter stages including a preliminary filter stage, an intermediate filter stage, and a terminal filter stage, the discrete-time analog bandpass filter comprising at least a decimating filter, an interpolating filter, and a single-rate filter. A bandpass frequency range associated with the discrete time analog bandpass filter is translated between a first range and a second range by multiplication of a frequency associated with the decimating filter, the interpolating filter, and the single-rate filter by a periodic signal.
In accordance with various exemplary embodiments, a sampling rate associated with one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable. Further, a center frequency associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable. A pass bandwidth associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable. A stop bandwidth associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable. A stop band attenuation associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable, where different stop band attenuations are included associated with different frequency ranges, for rejecting known signals. A group delay associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adjustable. The frequency response associated with the one or more of the preliminary filter stage, the intermediate filter stage, and the terminal filter stage is adaptive in such a way as to minimize an error signal constructed from an output of the one or more.
It is important to note that a discrete-time analog bandpass filter is configured to perform a discrete-time delay line function, and a discrete-time filter function performed in parallel with a detection function, such as where the discrete-time delay line function the discrete-time filter function are performed as a continuous amplitude sampled delay line function. The discrete time analog bandpass filter and in particular the discrete-time filter function is implemented using a sum of weighted currents derived from the sampled delay line and implemented using one or more of a resistor ratio, a variable resistive structure including a Field Effect Transistor. Alternatively, the discrete-time delay line function is implemented as a digitally sampled delay line having quantized samples and the detection function is performed using the quantized samples in parallel with the discrete-time filter function.
In other embodiments, the detection is performed by another circuit in parallel with the delay line and filter structure. The discrete time delay line function can also be performed using a discrete time sampled delay line to compensate for a delay of a signal detection circuit such that control action is performed prior to a detected signal being available at an output of the discrete time sampled delay line and samples generated from the discrete time sampled delay line are input to multiple filters included in a detector circuit such as a correlator or alternatively a power detector.
After detection and delay, the discrete-time sampled delay line and the multiple filter structure can include a variable gain amplifier, automatic gain control circuit including the variable gain amplifier, or the like. Further, the power detection circuit can generate a power detection output, and wherein the automatic gain control circuit including the variable gain amplifier. The power detection circuit can be configured to receive an input associated with the discrete-time sampled delay line or can be configured to receive an external input.
It will also be appreciated that in accordance with many embodiments, the exemplary discrete time analog bandpass filter can be located in a wireless communication system, network or the like and further can be implemented in a device such as wireless repeater, operating using, for example, a time division duplexed protocol.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages in accordance with the present invention
It will be appreciated that by way of general summary, the discrete time bandpass filter of the present invention can provide a discrete time delay line in either digital or analog to compensate for the delay in detection of a signal in a wireless repeater. The present invention can be used to minimize or eliminate clipping of re-transmitted signals from the wireless repeater which can operate using a TDD frequency translation scheme.
An exemplary delay line can be used to perform discrete time filtering such as FIR, IIR, multi-rate or the like, by inputting delay line output to multiple selectable filters, such as filters with selectable taps, correlation filters, power detection filters which can be used as inputs to the wireless repeater, or the like.
Output of the exemplary delay line can be used to control a variable gain adjustment affecting the output signal level from one/all of the filters or the delay line. It will be appreciated that a variable gain element in the discrete-time sampled delay line and multiple filters can constitute at least part of an automatic gain control unit or circuit.
In accordance with various embodiments, as shown in
Filter characteristics used in accordance with various exemplary embodiments are shown in Table 1. It should be noted that the sampling aperture jitter is based on 1 degree of jitter at 600 MHz. Accordingly, the exemplary filter is centered at the upper end of the IF range, so that the more challenging aspects of implementation can be addressed.
Since the exemplary filter uses sampled data, aliased pass bands are responded to at the input, and alias pass band images are generated at the output. Therefore, as noted and as illustrated in
The exemplary filter is implemented as a discrete-time, continuous-amplitude filter, so that ADCs and DACs are not used. Feasibility of an exemplary discrete time filter in accordance with various exemplary embodiments can preferably be evaluated separately for each of the filter stages to be described hereinafter. It will be appreciated that simplified, but still useful filter configurations can be obtained by using some, but not all, of the stages. It may further be possible to reduce the number of taps in some stages, so that the tap counts shown should be taken as starting points, for example for illustrative purposes.
In order to properly evaluate feasibility of the exemplary discrete time filter in accordance with a particular application, the following issues merit consideration and can include for example, sampling rate, number of taps, filter coefficient ratio tolerance, maximum feasible tap attenuation, parasitic leakage paths (especially reactive), voltage droop noting that tap coefficients could be adjusted to partially compensate for predictable droop, clock jitter, aperture jitter, phase noise, signal integrity, including linearity, harmonic distortion, intermodulation, thermal noise, switching noise, dynamic range, stage-to-stage isolation, crosstalk, filter-to-filter isolation where 2 or more filters reside on the same chip. In addition to the above noted issues, specific issues related to the use of ASIC technology should be considered including fabrication process such as RF CMOS, SiGe BiCMOS, and the like, and fabrication geometry such as die size, power consumption.
In accordance with various exemplary embodiments, the filter design can include five stages, as shown in
Input and output sampling rates for each stage are shown in Table 2, both for the 600 MHz IF used in the sample design, and for the general case. With these sampling rates, the lowest-frequency alias is centered at 2143 MHz. Thus, the anti-alias and reconstruction filters must have sufficient attenuation at 2143 MHz to achieve the desired distortion level.
An exemplary group delay for each stage in the discrete time analog bandpass filter is shown in Table 3. The total group delay is close to 500 ns.
A diagram for exemplary components associated with the Stage 1201 of discrete-time analog bandpass filter element 103 is shown in
It should be noted that the continuous-time analog input signal can be sampled at 2743 MHz using for example, a fast sample-and-hold circuit or the like as will be appreciated by one of ordinary skill in the art. Two half-frequency clock phases at 1371.5 MHz and 180 degrees out of phase from each other, such as the 1371.5 MHz Phase 1 clock 305 and the 1371.5 MHz Phase 2 clock 306, are generated from the 2743 MHz clock. The 1371.5 MHz Phase 1 clock 305 and the 1371.5 MHz Phase 2 clock 306 can be used to clock the “odd” beat samples into the 42 tap FIR filter 303 and the “even” beat samples into the 21 clock cycle delay line 304. The outputs of the 42 tap FIR filter 303 and the 21 clock cycle delay line 304 are summed as noted above in summer 307 and re-sampled in inversion sampler 308 at an output sampling rate associated with the 1371.5 MHz Phase 1 clock 305.
The inversion sampler 308, which, as noted, uses the 1371.5 MHz Phase 1 clock 305, inverts the polarity of every other sample. The alternate sample polarity inversion effectively multiplies the output signal by a 685.75 MHz sampled sine wave yielding a single mixing product at 85.75 MHz, which serves as an internal “second IF.” It will be appreciated that the Stage 3203 bandpass filter element can be centered at 85.75 MHz. The output of the inversion sampler 308 can be input to Stage 2 at 309. Tap coefficients for the 42 tap FIR filter 303 are symmetrically equal. Accordingly coefficients 1 and 42 are equal, coefficients 2 and 41 are equal, coefficients 3 and 40 are equal, and so on. Tap coefficients may either be positive, such as non-inverting or negative such as inverting. The taps with the smallest ratios such as taps located at the filter's ends can have the value of, for example, 0.000270 which corresponds to an attenuation of 71.4 dB.
The Stage 1201 filter element frequency response 410 and 420 and a group delay curve 430 are shown in
In accordance with various exemplary embodiments, a diagram for Stage 2202, which can be used to implement a decimate-by-4 polyphase filter, is shown in
It will be appreciated that the frequency response and group delay for the Stage 2202 is shown in
The Stage 3203 filter element can be a long FIR filter 622 operating at a sampling rate of 342.875 MHz 630. It will be appreciated that by using the term “long” in connection with the FIR filter 622, an approximation of an Infinite Impulse Response filter is intended. Such filters can use a large number of taps or can be designed in a manner to approximate an IIR response as will be appreciated. The response of the FIR filter 622 is symmetric with respect to an 85.71875 MHz center frequency, which is exactly one quarter of the sampling rate. Note that the filter's center frequency (85.71875 MHz) is slightly different from the “second IF” (85.875 MHz). The difference occurs because the input sampling rate is rounded to 2743 MHz, from its target design value of 2742.857 MHz=(32/7)*600 MHz. The resulting difference is not significant for the application described herein. The specific choice of center frequency yields a stage 3 design in which around half of the coefficients are zero. The FIR filter 622 has an order of 294, such as 0 to 294 coefficients or 295 total coefficients. Of the 295 coefficients, only 147 have non-zero values. The smallest coefficient has the value of, for example, 0.000108775 relative to the value of the center tap, which requires an attenuation of 79.3 dB. It will further be appreciated that samples generated from a sampler 620 can be output to the Stage 4204 at 621.
The frequency response and group delay for the Stage 3203 is shown in
The Stage 4204 is a 1:4 polyphase interpolator using three 12-tap FIR filters 902, 903, and 904 having three different coefficient sets respectively and a 6 tap delay line 905 in the manner described, for example, in connection with
It will be appreciated that the frequency response and group delay for the Stage 4204, for example, as referenced to the output sampling rate, is the same as that for Stage 2 as show, for example, in
The Stage 5205 is a 1:2 polyphase interpolator using components such as a 42 tap Finite Impulse Response (FIR) filter 1002 and a 21 clock cycle delay line 1003 as described above, for example, in connection with the Stage 1201. At 1001, the output from the Stage 4, 204 can be input to the 42 tap Finite Impulse Response (FIR) filter 1002 and the 21 clock cycle delay line 1003 for processing in accordance with a 1371.5 MHz clock 1008. The output of the 42 tap Finite Impulse Response (FIR) filter 1002 and the 21 clock cycle delay line 1003 can be sampled by the equivalent of a rotary switch 1004 which can be input to sampler 1005. The output at 1006 is the IF signal output which can be gain controlled or the like as noted above.
It will be appreciated that in accordance with various exemplary embodiments, the present invention can be used to replace components which may be expensive or redundant in certain wireless repeaters. For example, a more common approach to performing repeating in accordance with various exemplary embodiments, is shown for example in
At this point, one skilled in the art will readily recognize that the antenna 1100, the LNA 1110 and the RF splitter 1115 are the primary components forming a receiver in an exemplary repeater. Further, one skilled in the art will readily recognize that the antenna 1100, the power amplifier 1125, the amplifier 1130, the filter 1135, the switch 1145 and the mixer 1150 are the primary components forming a transmitter in an exemplary repeater. In an alternative embodiment, the antenna 1100 and isolator 1105 could be replaced with dual antennas isolated by directivity or polarization, or other techniques known to those skilled in the art. Such dual antennas could be connected to the LNA 1110 and the power amplifier 1125.
The output of the splitter 1115 can be input to an exemplary discrete-time bandpass filter unit 1116 as described herein wherein mixers 1120, 1121 can act as frequency conversion devices that mix signals passed from the splitter 1115 with signals output from the local oscillators 1140, 1141 at respective frequencies designated as LO1, LO2 to produce intermediate frequency (IF) or typically lower frequency signals. It will be appreciated that the local oscillators 1140, 1141 are tuned to the different frequencies LO1, LO2 such that two different signals at two different frequencies fed from the splitter 1115 can be converted to a common IF frequency. It will be appreciated that the mixers 1120 and 1121 can be integrated into the discrete-time bandpass filter 1116 or can be used externally to feed splitters 1123 and 1123 which are integrated into the discrete-time bandpass filter 1116.
The splitters 1123, 1124, which operate the same as the splitter 1115 described above, separate the IF signals output from the respective mixers 1120, 1121 into two different paths. One path from each of the splitters 1123, 1124 goes to delay lines or delay line filters 1160, 1161, respectively, while the other path from each of the splitters 1123, 1124 goes to detection filters 1165, 1166, respectively. In accordance with various exemplary embodiments delay line filters 1160, 1161 and detection filters 1165, 1166 can be integrated into the discrete time bandpass filter unit 1116.
The delay line filters 1160, 1161, or the equivalent functions carried out using the discrete-time bandpass filter unit 1116, which are preferably band pass filters with delays, remove all outputs from the mixing operation except the desired frequency components. Preferably, the delay line filters 1160, 1161 have a sufficient time delay such that the detection and control unit 1162 can detect which of the two RF frequencies is present and perform control functions described below prior to the signals being available at the output of the delay line filters 1160, 1161, as detectors 1170, 1171 are in parallel with the delay line filters 1160, 1161 within the discrete-time bandpass filter unit 1116. It should be noted that if it is acceptable to truncate a portion of the first part of the RF signal, then the delay line filters 1160, 1161 would not need specified delays.
One skilled in the art will readily recognize that the mixers 1120, 1121, the splitters 1123, 1124 and the delay line filters 1160, 1161 are the primary components forming a frequency converter in the exemplary repeater. The detection filters 1165, 1166 in the detection and control unit 1162 also perform the same type of band pass filtering as the delay line filters 1160, 1161, and thus can be integrated into the discrete-time bandpass filter unit 1116. The main difference is that the detection filters 1165, 1166 are preferably fast filters without specified long time delays. Additionally, the detection filters 1165, 1166 preferably do not require the same level of filtering performance as the delay line filters 1160, 1161, although one skilled in the art would recognize that varying filter performance within the confines of performing the filtering objective can be a design choice notwithstanding the challenges of incorporating the respective functions into the discrete-time bandpass filter element 1116 in accordance with various exemplary embodiments. One skilled in the art would also recognize that filters or devices other than band pass filters might be used to perform the above discussed band pass functions.
Power detectors 1170, 1171 are simple power detection devices that detect if a signal is present on either of the respective frequencies F1, F2 and provide a proportional voltage output if the signal is present. Many types of analog detectors that perform this function may be used and can either be integrated or can be external devices. For example, such detectors could include, but are not limited to, diode detectors. Such diode detection could be performed at RF, IF or base band. Detectors providing higher performance than simple power detectors may also be used. These detectors may be implemented as matched filters at RF or IF using SAW devices, and matched filtering or correlation at base band after analog to digital conversion. The power detectors 1170, 1171 are used to determine the presence of a wireless transmission on one of the two IF channels by comparing signals on the two IF channels with a threshold. Such a threshold could be predetermined or calculated using for example, a portion of the discrete-time bandpass filter element 1116 based on monitoring the channels over time to establish a noise floor.
Further, the power detectors 1170, 1171 may be used to determine start and stop times of a detected transmission. The proportional voltage output by one of the power detectors 1170, 1171 in response to signal detection will be used by the microprocessor 1185 to control the retransmission of the signal. One of ordinary skill in the art will recognize that the power detection can be placed earlier or later in the signal processing path, as it is possible to detect signals so that the retransmission process may be switched on or off. Further, one of ordinary skill in the art will recognize that techniques for determining or limiting transmission time can be employed, including but not limited to placing a time limit on retransmission using a timer.
The filters 1175, 1176 are low pass filters and preferably have narrower bandwidths than the detection filters 1165, 1166. The filters 1175, 1176 are required to remove the high frequency components that remain after signal detection in the power detectors 1170, 1171 and to provide an increase in signal to noise ratio by providing processing gain by reducing the detection signal bandwidth. The signals output from low pass filters 1175, 1176 are input to conventional analog to digital converters 1180, 1181. It will further be appreciated that while analog to digital converters 1180 and 1181 are shown as being outside the discrete-time bandpass filter unit 1116. In a digital implementation it will be appreciated that digital to analog converters may be used in place of analog to digital converters 1180 and 1181 and a set of analog to digital converters can be used, for example, at the output of the splitters 1123 and 1124, inside the discrete-time bandpass filter unit 1116, although, as noted, such a configuration can lead to additional expense.
After the analog to digital converters 1180, 1181 convert the analog signal representing the detected power of the radio frequency RF signals power envelopes to digital signals in a manner well known to those skilled in the art, the resulting digital signals are sent to the microprocessor 1185. The microprocessor 1185, which can also be described as a logic state machine, digital signal processor, or other digital processing and control device, can be programmed to implement all necessary control algorithms to, with a high probability of certainty, detect the presence of either F1 or F2 and initiate appropriate control functions.
Alternatively, it should be noted that comparator detectors (not shown) with adjustable threshold controls may be used in place of the analog to digital converters 1180, 1181 and the microprocessor 1185 particularly in an analog implementation of the discrete-time bandpass filter unit 1116. Further, the control outputs of the microprocessor 1185 could be alternatively connected directly to digital gates to control the switching where input to these gates is taken directly from the comparator detector outputs. Further input to the digital logic may come from the microprocessor 1185 to allow for override control to the settings provided from the comparator detector's output. In this case the microprocessor 1185 would continue to control the detection and display functions, but; however, it is likely the control of the variable gain amplifier 1130 would be controlled directly from the power detectors 1170, 1171 using analog signals. Logarithmic amplifiers (not shown) can work off the envelope of the low pass filters can control the functions of an exemplary automatic gain control.
Feedback to a user can be controlled by the microprocessor 1185 via an indicator 1190 which could be, but is not limited to, a series of light emitting diodes. Feedback to the user could be an indication that the wireless repeater 200 is in an acceptable location such that either or both frequencies from the wireless access point 100 and the client device 105 can be detected, or that power is supplied to the wireless repeater 200.
Once either of the frequencies F1, F2 is detected, the microprocessor 1185 controls switches 1145, 1155. The switch 1155 is switched to allow the detected signal, either on F1 or F2, which is at an IF frequency, to be routed to the input of a frequency converter 1150, which is another frequency translation device similar to the mixers 1120, 1121. Additionally, the microprocessor 1185 will set the switch 1145 to allow a signal from the appropriate one of the local oscillators 1140, 1141 to be routed to the mixer 1150 so that the IF frequency at the input to the frequency converter 1150 is translated to the proper frequency at the output thereof.
With reference to
In order to perform additional baseband digital processing of the received signals, the outputs of the ADC 1218 and the ADC 1219 are coupled to dedicated signal processing blocks such as a signal processing block A (SPBA) 1220 and a signal processing block B (SPBB) 1221. The SPBA 1220 and the SPBB 1221 are coupled with a signal processing bus 1222. Optionally, a state machine 1240 can be used to help control the operation of the repeater by generating an output state or state vector Si+1 1242 based on a previous state or state vector Si 1241 as will be appreciated by one of ordinary skill in the art.
When a packet is ready to be retransmitted, the SPBA 1220 and the SPBB 1221 output the baseband data to the multiplexer 1228 which selects the appropriate one of the SPBA 1220 and the SPBB 1221 for output based on which channel the signal was detected and subsequently processed on. The output of the multiplexer 1228, which is typically a 14 to 16 bit digital value is coupled to a digital-to-analog converter (DAC) 1229 which outputs an analog signal. The analog output of the DAC 1229 is coupled to a low pass filter (LPF) element 1230 to remove any quantizing noise and the output of the LPF element 1230 is coupled as a modulating input to a vector modulator (VM) 1231 a digital IF frequency signal at for example, 528 MHz to begin up-conversion. The output of the VM 1231 is input to an amplifier 1232 the output of which is coupled to a bandpass filter (BPF) element 1233. The output of BPF element 1233 is coupled to an RF switch 1234 and depending on which channel the information is to be repeated on, the RF switch 1234 will direct the signal to an output mixer 1235 or an output mixer 1236, where the modulated IF signal will be mixed with a 3006-3078 MHz signal from LO 11201 or an 1960-2022 MHz signal each with a 5.8 MHz offset. It will further be appreciated that under certain circumstances, signal samples from the SPBA 1220 and the SPBB 1221 can be stored in a memory such as a memory 1250.
As will be appreciated by one of ordinary skill in the art, an exemplary physical layer repeater is capable of receiving two different frequencies simultaneously, determining which channel is carrying a signal associated with, for example, the transmission of a packet, translating from the original frequency channel to an alternative frequency channel and retransmitting the frequency translated version of the received signal on the alternative channel. Details of basic internal repeater operation in accordance with various embodiments may be found, for example, in co-pending PCT Application No. PCT/US03/16208.
The physical layer repeater can receive and transmit packets at the same time on different frequency channels thereby extending the coverage and performance of the connection between an AP and a client, and between peer-to-peer connections such as from one client unit to another client unit. When many units are isolated from one another, the repeater further acts as a wireless bridge allowing two different groups of units to communicate where optimum RF propagation and coverage or, in many cases, any RF propagation and coverage was not previously possible.
In order to facilitate the operation of the repeater, and to replace certain expensive components such as surface acoustic wave (SAW) filters, a series of digital signal processing functions can be used to perform, for example, detection and delay. As shown in
The digital signal 1301 can also be forwarded to a digital delay pipeline 1310, where it can be delayed until certain processing has been conducted as will be appreciated. A 20 MHz digital filter 1312 can be used to process a signal transmitted on a 20 MHz channel or a 40 MHz digital filter 1313 can be used to process a signal transmitted on a 40 MHz channel. An additional digital filter 1314 can be used to conduct additional filtering. The digital filters can be coupled to each other and to additional signal processing blocks such as the signal processing blocks A 1220 and B 1221 as shown in
One of ordinary skill in the art will recognize that as noted above, slightly different techniques can be used to implement various portions of the discrete time analog bandpass filter including filters, switches, delay lines, and the like in the present invention. Additionally, various components, could be combined into a single integrated device such as a mixed signal integrated circuit or the like. Other changes and alterations to specific components, and the interconnections thereof, can be made by one of ordinary skill in the art without deviating from the scope and spirit of the present invention.
This application claims priority to U.S. provisional application Ser. No. 60/647,385, filed on Jan. 28, 2005 and entitled DISCRETE-TIME BANDPASS FILTER, the contents of which are incorporated herein by reference. This application is also a continuation-in-part of U.S. application Ser. No. 10/531,078, filed on Apr. 12, 2005 and entitled WIRELESS LOCAL AREA NETWORK REPEATER WITH AUTOMATIC GAIN CONTROL FOR EXTENDING NETWORK COVERAGE, which in turn claims priority from international application PCT/US03/29130, filed on Oct. 15, 2003 and entitled WIRELESS LOCAL AREA NETWORK REPEATER WITH AUTOMATIC GAIN CONTROL FOR EXTENDING NETWORK COVERAGE, which in turn claims priority from U.S. provisional application Ser. No. 60/418,288, filed on Oct. 15, 2002 and entitled AGC TECHNIQUES FOR WLAN REPEATER, the contents of these applications being incorporated herein by reference. In addition, this application is also a continuation-in-part of U.S. application Ser. No. 10/533,589, filed on May 3, 2005 and entitled WIRELESS LOCAL AREA NETWORK REPEATER WITH DETECTION, which in turn claims priority from international application PCT/US03/35050, filed on Nov. 17, 2003 and entitled WIRELESS LOCAL AREA NETWORK REPEATER WITH DETECTION, which in turn claims priority from U.S. provisional application Ser. No. 60/426,541, filed on Nov. 15, 2002 and entitled DETECTION TECHNIQUES FOR A WLAN REPEATER, the contents of these applications being incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3363250 | Jacobson | Jan 1968 | A |
4000467 | Lentz | Dec 1976 | A |
4001691 | Gruenberg | Jan 1977 | A |
4061970 | Magneron | Dec 1977 | A |
4081752 | Sumi | Mar 1978 | A |
4124825 | Webb et al. | Nov 1978 | A |
4204016 | Chavannes | May 1980 | A |
4334323 | Moore | Jun 1982 | A |
4368541 | Evans | Jan 1983 | A |
4509206 | Carpe et al. | Apr 1985 | A |
4679243 | McGeehan et al. | Jul 1987 | A |
4701935 | Namiki et al. | Oct 1987 | A |
4723302 | Fulmer et al. | Feb 1988 | A |
4777653 | Bonnerot et al. | Oct 1988 | A |
4783843 | Leff et al. | Nov 1988 | A |
4820568 | Harpell et al. | Apr 1989 | A |
4922259 | Hall et al. | May 1990 | A |
5023930 | Leslie | Jun 1991 | A |
5095528 | Leslie et al. | Mar 1992 | A |
5214788 | Delaperriere et al. | May 1993 | A |
5220562 | Takada et al. | Jun 1993 | A |
5280480 | Pitt et al. | Jan 1994 | A |
5333175 | Ariyavisitakul et al. | Jul 1994 | A |
5341364 | Marra et al. | Aug 1994 | A |
5349463 | Hirohashi et al. | Sep 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5371734 | Fischer et al. | Dec 1994 | A |
5373503 | Chen et al. | Dec 1994 | A |
5383144 | Kato | Jan 1995 | A |
5408197 | Miyake | Apr 1995 | A |
5408618 | Aho et al. | Apr 1995 | A |
5430726 | Moorwood et al. | Jul 1995 | A |
5446770 | Urabe et al. | Aug 1995 | A |
5465251 | Judd et al. | Nov 1995 | A |
5471642 | Palmer | Nov 1995 | A |
5485486 | Gilhousen et al. | Jan 1996 | A |
5509028 | Marque-Pucheu et al. | Apr 1996 | A |
5515376 | Murthy et al. | May 1996 | A |
5519619 | Seda | May 1996 | A |
5608755 | Rakib | Mar 1997 | A |
5610916 | Kostreski et al. | Mar 1997 | A |
5648984 | Kroninger et al. | Jul 1997 | A |
5654979 | Levin et al. | Aug 1997 | A |
5659879 | Dupuy | Aug 1997 | A |
5676198 | Schneider et al. | Oct 1997 | A |
5678177 | Beasley | Oct 1997 | A |
5684801 | Amitay et al. | Nov 1997 | A |
5697052 | Treatch et al. | Dec 1997 | A |
5726980 | Rickard | Mar 1998 | A |
5732334 | Miyake | Mar 1998 | A |
5745846 | Myer et al. | Apr 1998 | A |
5754540 | Liu et al. | May 1998 | A |
5764636 | Edsall et al. | Jun 1998 | A |
5767788 | Ness | Jun 1998 | A |
5771174 | Spinner et al. | Jun 1998 | A |
5784683 | Sistanizadeh et al. | Jul 1998 | A |
5794145 | Milam et al. | Aug 1998 | A |
5812933 | Niki | Sep 1998 | A |
5815795 | Iwai | Sep 1998 | A |
5825809 | Sim | Oct 1998 | A |
5852629 | Iwamatsu et al. | Dec 1998 | A |
5857144 | Mangum et al. | Jan 1999 | A |
5862207 | Aoshima | Jan 1999 | A |
5875179 | Tikalsky et al. | Feb 1999 | A |
5883884 | Atkinson | Mar 1999 | A |
5884181 | Arnold et al. | Mar 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5903553 | Sakamoto et al. | May 1999 | A |
5907794 | Lehmusto et al. | May 1999 | A |
5963846 | Kurby et al. | Oct 1999 | A |
5963847 | Ito et al. | Oct 1999 | A |
5987304 | Latt | Nov 1999 | A |
6005855 | Zehavi et al. | Dec 1999 | A |
6005884 | Cook et al. | Dec 1999 | A |
6014380 | Hendel et al. | Jan 2000 | A |
6032194 | Gai et al. | Feb 2000 | A |
6061548 | Reudink et al. | May 2000 | A |
6088570 | Komara et al. | Jul 2000 | A |
6101400 | Ogaz et al. | Aug 2000 | A |
6108364 | Weaver et al. | Aug 2000 | A |
6128512 | Trompower et al. | Oct 2000 | A |
6128729 | Kimball et al. | Oct 2000 | A |
6163276 | Irving et al. | Dec 2000 | A |
6188694 | Fine et al. | Feb 2001 | B1 |
6188719 | Collomby | Feb 2001 | B1 |
6195051 | McCoy et al. | Feb 2001 | B1 |
6202114 | Dutt et al. | Mar 2001 | B1 |
6215982 | Trompower et al. | Apr 2001 | B1 |
6219739 | Dutt et al. | Apr 2001 | B1 |
6222503 | Gietema et al. | Apr 2001 | B1 |
6272351 | Langston et al. | Aug 2001 | B1 |
6285863 | Zhang | Sep 2001 | B1 |
6298061 | Chin et al. | Oct 2001 | B1 |
6304563 | Blessent et al. | Oct 2001 | B1 |
6304575 | Carroll et al. | Oct 2001 | B1 |
6331792 | Tonietto et al. | Dec 2001 | B1 |
6339694 | Komara et al. | Jan 2002 | B1 |
6342777 | Takahashi et al. | Jan 2002 | B1 |
6363068 | Kinoshita et al. | Mar 2002 | B1 |
6370185 | Schmutz et al. | Apr 2002 | B1 |
6370369 | Kraiem et al. | Apr 2002 | B1 |
6377612 | Baker et al. | Apr 2002 | B1 |
6377640 | Trans et al. | Apr 2002 | B2 |
6384765 | Sjostrand et al. | May 2002 | B1 |
6385181 | Tsutsui et al. | May 2002 | B1 |
6388995 | Gai et al. | May 2002 | B1 |
6393299 | Mizumoto et al. | May 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6441781 | Rog et al. | Aug 2002 | B1 |
6473131 | Neugebauer et al. | Oct 2002 | B1 |
6480481 | Park et al. | Nov 2002 | B1 |
6501955 | Durrant et al. | Dec 2002 | B1 |
6535732 | McIntosh et al. | Mar 2003 | B1 |
6539028 | Soh et al. | Mar 2003 | B1 |
6539204 | Marsh et al. | Mar 2003 | B1 |
6549542 | Dong et al. | Apr 2003 | B1 |
6549567 | Fullerton et al. | Apr 2003 | B1 |
6563468 | Hill et al. | May 2003 | B2 |
6574198 | Petersson | Jun 2003 | B1 |
6628624 | Mahajan et al. | Sep 2003 | B1 |
6664932 | Sabet et al. | Dec 2003 | B2 |
6671502 | Ogawa | Dec 2003 | B1 |
6684058 | Karacaoglu et al. | Jan 2004 | B1 |
6690657 | Lau et al. | Feb 2004 | B1 |
6694125 | White et al. | Feb 2004 | B2 |
6718160 | Schmutz et al. | Apr 2004 | B2 |
6728541 | Ohkura et al. | Apr 2004 | B2 |
6766113 | Al-Salameh et al. | Jul 2004 | B1 |
6781544 | Saliga et al. | Aug 2004 | B2 |
6788256 | Hollister | Sep 2004 | B2 |
6880103 | Kim et al. | Apr 2005 | B2 |
6888881 | Nagano | May 2005 | B1 |
6904266 | Jin et al. | Jun 2005 | B1 |
6906669 | Sabet et al. | Jun 2005 | B2 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934555 | Silva et al. | Aug 2005 | B2 |
6944139 | Campanella et al. | Sep 2005 | B1 |
6957042 | Williams et al. | Oct 2005 | B2 |
6983162 | Garani et al. | Jan 2006 | B2 |
6985516 | Easton et al. | Jan 2006 | B1 |
6990313 | Yarkosky et al. | Jan 2006 | B1 |
7027418 | Gan et al. | Apr 2006 | B2 |
7027770 | Judd et al. | Apr 2006 | B2 |
7043203 | Miquel et al. | May 2006 | B2 |
7050442 | Proctor et al. | May 2006 | B1 |
7050452 | Sugar et al. | May 2006 | B2 |
7058071 | Myles et al. | Jun 2006 | B1 |
7058368 | Nicholls et al. | Jun 2006 | B2 |
7088734 | Newberg et al. | Aug 2006 | B2 |
7103344 | Menard et al. | Sep 2006 | B2 |
7120930 | Maufer et al. | Oct 2006 | B2 |
7123670 | Gilbert et al. | Oct 2006 | B2 |
7123676 | Gebara et al. | Oct 2006 | B2 |
7132988 | Yegin et al. | Nov 2006 | B2 |
7133391 | Belcea et al. | Nov 2006 | B2 |
7133460 | Bae et al. | Nov 2006 | B2 |
7139527 | Tamaki et al. | Nov 2006 | B2 |
7167526 | Liang et al. | Jan 2007 | B2 |
7187904 | Gainey et al. | Mar 2007 | B2 |
7193975 | Tsutsumi et al. | Mar 2007 | B2 |
7194275 | Bolin et al. | Mar 2007 | B2 |
7200134 | Proctor, Jr. et al. | Apr 2007 | B2 |
7215964 | Miyake et al. | May 2007 | B2 |
7233771 | Proctor, Jr. et al. | Jun 2007 | B2 |
7248645 | Vialle et al. | Jul 2007 | B2 |
7254132 | Takao et al. | Aug 2007 | B2 |
7299005 | Yarkosky et al. | Nov 2007 | B1 |
7315573 | Lusky et al. | Jan 2008 | B2 |
7319714 | Sakata et al. | Jan 2008 | B2 |
7321787 | Kim et al. | Jan 2008 | B2 |
7339926 | Stanwood et al. | Mar 2008 | B2 |
7352696 | Stephens et al. | Apr 2008 | B2 |
7406060 | Periyalwar et al. | Jul 2008 | B2 |
7409186 | Van Buren et al. | Aug 2008 | B2 |
7430397 | Suda et al. | Sep 2008 | B2 |
7450936 | Kim et al. | Nov 2008 | B2 |
7457587 | Chung | Nov 2008 | B2 |
7486929 | Van Buren et al. | Feb 2009 | B2 |
7577398 | Judd et al. | Aug 2009 | B2 |
7590145 | Futch et al. | Sep 2009 | B2 |
7623826 | Pergal et al. | Nov 2009 | B2 |
7676194 | Rappaport et al. | Mar 2010 | B2 |
7729669 | Van Buren et al. | Jun 2010 | B2 |
20010018328 | Ohkura et al. | Aug 2001 | A1 |
20010031646 | Williams | Oct 2001 | A1 |
20010040699 | Osawa et al. | Nov 2001 | A1 |
20010050580 | O'Toole et al. | Dec 2001 | A1 |
20010050906 | Odenwalder et al. | Dec 2001 | A1 |
20010054060 | Fillebrown et al. | Dec 2001 | A1 |
20020004924 | Kim et al. | Jan 2002 | A1 |
20020018487 | Chen et al. | Feb 2002 | A1 |
20020034958 | Oberschmidt et al. | Mar 2002 | A1 |
20020045461 | Bongfeldt | Apr 2002 | A1 |
20020061031 | Sugar et al. | May 2002 | A1 |
20020089945 | Belcea et al. | Jul 2002 | A1 |
20020101843 | Sheng et al. | Aug 2002 | A1 |
20020102948 | Stanwood et al. | Aug 2002 | A1 |
20020109585 | Sanderson | Aug 2002 | A1 |
20020115409 | Khayrallah et al. | Aug 2002 | A1 |
20020119783 | Bourlas et al. | Aug 2002 | A1 |
20020136268 | Gan et al. | Sep 2002 | A1 |
20020141435 | Newberg et al. | Oct 2002 | A1 |
20020146026 | Unitt et al. | Oct 2002 | A1 |
20020155838 | Durrant et al. | Oct 2002 | A1 |
20020159506 | Alamouti et al. | Oct 2002 | A1 |
20020163902 | Takao et al. | Nov 2002 | A1 |
20020177401 | Judd et al. | Nov 2002 | A1 |
20030026363 | Stoter et al. | Feb 2003 | A1 |
20030063583 | Padovani et al. | Apr 2003 | A1 |
20030139175 | Kim et al. | Jul 2003 | A1 |
20030179734 | Tsutsumi et al. | Sep 2003 | A1 |
20030185163 | Bertonis et al. | Oct 2003 | A1 |
20030211828 | Dalgleish et al. | Nov 2003 | A1 |
20030235170 | Trainin et al. | Dec 2003 | A1 |
20030236069 | Sakata et al. | Dec 2003 | A1 |
20040029537 | Pugel et al. | Feb 2004 | A1 |
20040038707 | Kim et al. | Feb 2004 | A1 |
20040047333 | Han et al. | Mar 2004 | A1 |
20040047335 | Proctor, Jr. et al. | Mar 2004 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040121648 | Voros | Jun 2004 | A1 |
20040131025 | Dohler et al. | Jul 2004 | A1 |
20040146013 | Song et al. | Jul 2004 | A1 |
20040157551 | Gainey et al. | Aug 2004 | A1 |
20040166802 | McKay, Sr. et al. | Aug 2004 | A1 |
20040176050 | Steer et al. | Sep 2004 | A1 |
20040198295 | Nicholls et al. | Oct 2004 | A1 |
20040208258 | Lozano et al. | Oct 2004 | A1 |
20040218683 | Batra et al. | Nov 2004 | A1 |
20040229563 | Fitton et al. | Nov 2004 | A1 |
20040235417 | Dean | Nov 2004 | A1 |
20040248581 | Seki et al. | Dec 2004 | A1 |
20040264511 | Futch et al. | Dec 2004 | A1 |
20050014464 | Larsson et al. | Jan 2005 | A1 |
20050030891 | Stephens et al. | Feb 2005 | A1 |
20050042999 | Rappaport et al. | Feb 2005 | A1 |
20050130587 | Suda et al. | Jun 2005 | A1 |
20050190822 | Fujii et al. | Sep 2005 | A1 |
20050201315 | Lakkis et al. | Sep 2005 | A1 |
20050254442 | Proctor, Jr. et al. | Nov 2005 | A1 |
20050256963 | Proctor, Jr. et al. | Nov 2005 | A1 |
20050286448 | Proctor et al. | Dec 2005 | A1 |
20060028388 | Schantz | Feb 2006 | A1 |
20060035643 | Vook et al. | Feb 2006 | A1 |
20060041680 | Proctor, Jr. et al. | Feb 2006 | A1 |
20060045193 | Stolpman et al. | Mar 2006 | A1 |
20060052066 | Cleveland et al. | Mar 2006 | A1 |
20060052099 | Parker et al. | Mar 2006 | A1 |
20060056352 | Proctor, Jr. et al. | Mar 2006 | A1 |
20060063484 | Proctor et al. | Mar 2006 | A1 |
20060063485 | Gainey et al. | Mar 2006 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060183421 | Proctor et al. | Aug 2006 | A1 |
20060203757 | Young et al. | Sep 2006 | A1 |
20060262026 | Gainey et al. | Nov 2006 | A1 |
20070025349 | Bajic | Feb 2007 | A1 |
20070025486 | Gainey et al. | Feb 2007 | A1 |
20070032192 | Gainey et al. | Feb 2007 | A1 |
20070121546 | Zuckerman et al. | May 2007 | A1 |
20070286110 | Proctor et al. | Dec 2007 | A1 |
20080057862 | Smith et al. | Mar 2008 | A1 |
20080233942 | Kim et al. | Sep 2008 | A9 |
Number | Date | Country |
---|---|---|
1186401 | Jul 1998 | CN |
0523687 | Jan 1993 | EP |
0709973 | May 1996 | EP |
0715423 | Jun 1996 | EP |
0847146 | Jun 1998 | EP |
0853393 | Jul 1998 | EP |
0860953 | Aug 1998 | EP |
2272599 | May 1994 | GB |
2351420 | Dec 2000 | GB |
62040895 | Feb 1987 | JP |
63160442 | Jul 1988 | JP |
64011428 | Jan 1989 | JP |
02100358 | Apr 1990 | JP |
03021884 | Jan 1991 | JP |
05063623 | Mar 1993 | JP |
05102907 | Apr 1993 | JP |
06013947 | Jan 1994 | JP |
06334577 | Dec 1994 | JP |
07030473 | Jan 1995 | JP |
7079187 | Mar 1995 | JP |
07079205 | Mar 1995 | JP |
07131401 | May 1995 | JP |
8097762 | Apr 1996 | JP |
08274706 | Oct 1996 | JP |
09018484 | Jan 1997 | JP |
09130322 | May 1997 | JP |
09162801 | Jun 1997 | JP |
9162903 | Jun 1997 | JP |
09182155 | Jul 1997 | JP |
09214418 | Aug 1997 | JP |
10032557 | Feb 1998 | JP |
10107727 | Apr 1998 | JP |
10135892 | May 1998 | JP |
10242932 | Sep 1998 | JP |
11055713 | Feb 1999 | JP |
11127104 | May 1999 | JP |
11298421 | Oct 1999 | JP |
2000031877 | Jan 2000 | JP |
2000502218 | Feb 2000 | JP |
2000082983 | Mar 2000 | JP |
2000236290 | Aug 2000 | JP |
2000269873 | Sep 2000 | JP |
2001016152 | Jan 2001 | JP |
2001111575 | Apr 2001 | JP |
2001136115 | May 2001 | JP |
2001244864 | Sep 2001 | JP |
2002033691 | Jan 2002 | JP |
2002111571 | Apr 2002 | JP |
2002271255 | Sep 2002 | JP |
2003174394 | Jun 2003 | JP |
2003198442 | Jul 2003 | JP |
2003244050 | Aug 2003 | JP |
2004056210 | Feb 2004 | JP |
2004328666 | Nov 2004 | JP |
2004538682 | Dec 2004 | JP |
2005072646 | Mar 2005 | JP |
2005110150 | Apr 2005 | JP |
2005236626 | Sep 2005 | JP |
2005531202 | Oct 2005 | JP |
2005531265 | Oct 2005 | JP |
2006503481 | Jan 2006 | JP |
2006505146 | Feb 2006 | JP |
2006197488 | Jul 2006 | JP |
20040004261 | Jan 2004 | KR |
100610929 | Aug 2006 | KR |
2120702 | Oct 1998 | RU |
WO9214339 | Aug 1992 | WO |
WO9715991 | May 1997 | WO |
WO9734434 | Sep 1997 | WO |
WO9858461 | Dec 1998 | WO |
WO9959264 | Nov 1999 | WO |
WO0050971 | Aug 2000 | WO |
WO0152447 | Jul 2001 | WO |
WO0182512 | Nov 2001 | WO |
WO0199308 | Dec 2001 | WO |
WO0208857 | Jan 2002 | WO |
WO0217572 | Feb 2002 | WO |
WO03013005 | Feb 2003 | WO |
2004002014 | Dec 2003 | WO |
WO2004001892 | Dec 2003 | WO |
WO2004001986 | Dec 2003 | WO |
WO2004002014 | Dec 2003 | WO |
WO2004004365 | Jan 2004 | WO |
WO2004032362 | Apr 2004 | WO |
WO2004036789 | Apr 2004 | WO |
WO2004038958 | May 2004 | WO |
WO2004062305 | Jul 2004 | WO |
WO2005115022 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20060195883 A1 | Aug 2006 | US |
Number | Date | Country | |
---|---|---|---|
60647385 | Jan 2005 | US | |
60426541 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10533589 | US | |
Child | 11340860 | US | |
Parent | 10531078 | US | |
Child | 10533589 | US |