Aspects pertain to wireless communications. Some aspects relate to wireless networks including 3GPP (Third Generation Partnership Project) networks, 3GPP LTE (Long Term Evolution) networks, 3GPP LTE-A (LTE Advanced) networks, and fifth-generation (5G) networks including 5G new radio (NR) (or 5G-NR) networks and 5G-LTE networks such as 5G NR unlicensed spectrum (NR-U) networks. Other aspects are directed to systems and methods for the physical structure of physical sidelink control channel (PSCCH) transmission in two stages.
Mobile communications have evolved significantly from early voice systems to today's highly sophisticated integrated communication platform. With the increase in different types of devices communicating with various network devices, usage of 3GPP LTE systems has increased. The penetration of mobile devices (user equipment or UEs) in modern society has continued to drive demand for a wide variety of networked devices in many disparate environments. Fifth-generation (5G) wireless systems are forthcoming and are expected to enable even greater speed, connectivity, and usability. Next generation 5G networks (or NR networks) are expected to increase throughput, coverage, and robustness and reduce latency and operational and capital expenditures. 5G-NR networks will continue to evolve based on 3GPP LTE-Advanced with additional potential new radio access technologies (RATs) to enrich people's lives with seamless wireless connectivity solutions delivering fast, rich content and services. As current cellular network frequency is saturated, higher frequencies, such as millimeter wave (mmWave) frequency, can be beneficial due to their high bandwidth.
Potential LTE operation in the unlicensed spectrum includes (and is not limited to) the LTE operation in the unlicensed spectrum via dual connectivity (DC), or DC-based LAA, and the standalone LTE system in the unlicensed spectrum, according to which LTE-based technology solely operates in the unlicensed spectrum without requiring an “anchor” in the licensed spectrum, called MulteFire. MulteFire combines the performance benefits of LTE technology with the simplicity of Wi-Fi-like deployments.
Further enhanced operation of LTE systems in the licensed as well as unlicensed spectrum is expected in future releases and 5G systems. Such enhanced operations can include techniques for PSCCH transmission in two stages including sub-channel structure for NR-V2X 2-stage SCI design.
In the figures, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The figures illustrate generally, by way of example, but not by way of limitation, various aspects discussed in the present document.
The following description and the drawings sufficiently illustrate aspects to enable those skilled in the art to practice them. Other aspects may incorporate structural, logical, electrical, process, and other changes. Portions and features of some aspects may be included in or substituted for, those of other aspects. Aspects outlined in the claims encompass all available equivalents of those claims.
Any of the radio links described herein (e.g., as used in the network 140A or any other illustrated network) may operate according to any exemplary radio communication technology and/or standard.
LTE and LTE-Advanced are standards for wireless communications of high-speed data for UE such as mobile telephones. In LTE-Advanced and various wireless systems, carrier aggregation is a technology according to which multiple carrier signals operating on different frequencies may be used to carry communications for a single UE, thus increasing the bandwidth available to a single device. In some aspects, carrier aggregation may be used where one or more component carriers operate on unlicensed frequencies.
Aspects described herein can be used in the context of any spectrum management scheme including, for example, dedicated licensed spectrum, unlicensed spectrum, (licensed) shared spectrum (such as Licensed Shared Access (LSA) in 2.3-2.4 GHz, 3.4-3.6 GHz, 3.6-3.8 GHz, and further frequencies and Spectrum Access System (SAS) in 3.55-3.7 GHz and further frequencies).
Aspects described herein can also be applied to different Single Carrier or OFDM flavors (CP-OFDM, SC-FDMA, SC-OFDM, filter bank-based multicarrier (FBMC), OFDMA, etc.) and in particular 3GPP NR (New Radio) by allocating the OFDM carrier data bit vectors to the corresponding symbol resources.
In some aspects, any of the UEs 101 and 102 can comprise an Internet-of-Things (IoT) UE or a Cellular IoT (CIoT) UE, which can comprise a network access layer designed for low-power IoT applications utilizing short-lived UE connections. In some aspects, any of the UEs 101 and 102 can include a narrowband (NB) IoT UE (e.g., such as an enhanced NB-IoT (eNB-IoT) UE and Further Enhanced (FeNB-IoT) UE). An IoT UE can utilize technologies such as machine-to-machine (M2M) or machine-type communications (MTC) for exchanging data with an MTC server or device via a public land mobile network (PLMN), Proximity-Based Service (ProSe) or device-to-device (D2D) communication, sensor networks, or IoT networks. The M2M or MTC exchange of data may be a machine-initiated exchange of data. An IoT network includes interconnecting IoT UEs, which may include uniquely identifiable embedded computing devices (within the Internet infrastructure), with short-lived connections. The IoT UEs may execute background applications (e.g., keep-alive messages, status updates, etc.) to facilitate the connections of the IoT network.
In some aspects, any of the UEs 101 and 102 can include enhanced MTC (eMTC) UEs or further enhanced MTC (FeMTC) UEs.
The UEs 101 and 102 may be configured to connect, e.g., communicatively couple, with a radio access network (RAN) 110. The RAN 110 may be, for example, an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN), a NextGen RAN (NG RAN), or some other type of RAN. The UEs 101 and 102 utilize connections 103 and 104, respectively, each of which comprises a physical communications interface or layer (discussed in further detail below); in this example, the connections 103 and 104 are illustrated as an air interface to enable communicative coupling and can be consistent with cellular communications protocols, such as a Global System for Mobile Communications (GSM) protocol, a code-division multiple access (CDMA) network protocol, a Push-to-Talk (PTT) protocol, a PTT over Cellular (POC) protocol, a Universal Mobile Telecommunications System (UMTS) protocol, a 3GPP Long Term Evolution (LTE) protocol, a fifth-generation (5G) protocol, a New Radio (NR) protocol, and the like.
In an aspect, the UEs 101 and 102 may further directly exchange communication data via a ProSe interface 105. The ProSe interface 105 may alternatively be referred to as a sidelink interface comprising one or more logical channels, including but not limited to a Physical Sidelink Control Channel (PSCCH), a Physical Sidelink Shared Channel (PSSCH), a Physical Sidelink Discovery Channel (PSDCH), and a Physical Sidelink Broadcast Channel (PSBCH).
The UE 102 is shown to be configured to access an access point (AP) 106 via connection 107. The connection 107 can comprise a local wireless connection, such as, for example, a connection consistent with any IEEE 802.11 protocol, according to which the AP 106 can comprise a wireless fidelity (WiFi®) router. In this example, the AP 106 is shown to be connected to the Internet without connecting to the core network of the wireless system (described in further detail below).
The RAN 110 can include one or more access nodes that enable the connections 103 and 104. These access nodes (ANs) can be referred to as base stations (BSs), NodeBs, evolved NodeBs (eNBs), Next Generation NodeBs (gNBs), RAN nodes, and the like, and can comprise ground stations (e.g., terrestrial access points) or satellite stations providing coverage within a geographic area (e.g., a cell). In some aspects, the communication nodes 111 and 112 can be transmission/reception points (TRPs). In instances when the communication nodes 111 and 112 are NodeBs (e.g., eNBs or gNBs), one or more TRPs can function within the communication cell of the NodeBs. The RAN 110 may include one or more RAN nodes for providing macrocells, e.g., macro RAN node 111, and one or more RAN nodes for providing femtocells or picocells (e.g., cells having smaller coverage areas, smaller user capacity, or higher bandwidth compared to macrocells), e.g., low power (LP) RAN node 112.
Any of the RAN nodes 111 and 112 can terminate the air interface protocol and can be the first point of contact for the UEs 101 and 102. In some aspects, any of the RAN nodes 111 and 112 can fulfill various logical functions for the RAN 110 including, but not limited to, radio network controller (RNC) functions such as radio bearer management, uplink and downlink dynamic radio resource management and data packet scheduling, and mobility management. In an example, any of the nodes 111 and/or 112 can be a new generation Node-B (gNB), an evolved node-B (eNB), or another type of RAN node.
The RAN 110 is shown to be communicatively coupled to a core network (CN) 120 via an S1 interface 113. In aspects, the CN 120 may be an evolved packet core (EPC) network, a NextGen Packet Core (NPC) network, or some other type of CN (e.g., as illustrated in reference to
In this aspect, the CN 120 comprises the MMEs 121, the S-GW 122, the Packet Data Network (PDN) Gateway (P-GW) 123, and a home subscriber server (HSS) 124. The MMEs 121 may be similar in function to the control plane of legacy Serving General Packet Radio Service (GPRS) Support Nodes (SGSN). The MMEs 121 may manage mobility aspects in access such as gateway selection and tracking area list management. The HSS 124 may comprise a database for network users, including subscription-related information to support the network entities' handling of communication sessions. The CN 120 may comprise one or several HSSs 124, depending on the number of mobile subscribers, on the capacity of the equipment, on the organization of the network, etc. For example, the HSS 124 can provide support for routing/roaming, authentication, authorization, naming/addressing resolution, location dependencies, etc.
The S-GW 122 may terminate the S1 interface 113 towards the RAN 110, and routes data packets between the RAN 110 and the CN 120. In addition, the S-GW 122 may be a local mobility anchor point for inter-RAN node handovers and also may provide an anchor for inter-3GPP mobility. Other responsibilities of the S-GW 122 may include a lawful intercept, charging, and some policy enforcement.
The P-GW 123 may terminate an SGi interface toward a PDN. The P-GW 123 may route data packets between the EPC network 120 and external networks such as a network including the application server 184 (alternatively referred to as application function (AF)) via an Internet Protocol (IP) interface 125. The P-GW 123 can also communicate data to other external networks 131A, which can include the Internet, IP multimedia subsystem (IPS) network, and other networks. Generally, the application server 184 may be an element offering applications that use IP bearer resources with the core network (e.g., UMTS Packet Services (PS) domain, LTE PS data services, etc.). In this aspect, the P-GW 123 is shown to be communicatively coupled to an application server 184 via an IP interface 125. The application server 184 can also be configured to support one or more communication services (e.g., Voice-over-Internet Protocol (VoIP) sessions, PTT sessions, group communication sessions, social networking services, etc.) for the UEs 101 and 102 via the CN 120.
The P-GW 123 may further be a node for policy enforcement and charging data collection. Policy and Charging Rules Function (PCRF) 126 is the policy and charging control element of the CN 120. In a non-roaming scenario, in some aspects, there may be a single PCRF in the Home Public Land Mobile Network (HPLMN) associated with a UE's Internet Protocol Connectivity Access Network (IP-CAN) session. In a roaming scenario with a local breakout of traffic, there may be two PCRFs associated with a UE's IP-CAN session: a Home PCRF (H-PCRF) within an HPLMN and a Visited PCRF (V-PCRF) within a Visited Public Land Mobile Network (VPLMN). The PCRF 126 may be communicatively coupled to the application server 184 via the P-GW 123.
In some aspects, the communication network 140A can be an IoT network or a 5G network, including 5G new radio network using communications in the licensed (5G NR) and the unlicensed (5G NR-U) spectrum. One of the current enablers of IoT is the narrowband-IoT (NB-IoT).
An NG system architecture can include the RAN 110 and a 5G network core (5GC) 120. The NG-RAN 110 can include a plurality of nodes, such as gNBs and NG-eNBs. The core network 120 (e.g., a 5G core network or 5GC) can include an access and mobility function (AMF) and/or a user plane function (UPF). The AMF and the UPF can be communicatively coupled to the gNBs and the NG-eNBs via NG interfaces. More specifically, in some aspects, the gNBs and the NG-eNBs can be connected to the AMF by NG-C interfaces, and to the UPF by NG-U interfaces. The gNBs and the NG-eNBs can be coupled to each other via Xn interfaces.
In some aspects, the NG system architecture can use reference points between various nodes as provided by 3GPP Technical Specification (TS) 23.501 (e.g., V15.4.0, 2018-12). In some aspects, each of the gNBs and the NG-eNBs can be implemented as a base station, a mobile edge server, a small cell, a home eNB, and so forth. In some aspects, a gNB can be a master node (MN) and NG-eNB can be a secondary node (SN) in a 5G architecture.
In some aspects, the 5G system architecture 140B includes an IP multimedia subsystem (IMS) 168B as well as a plurality of IP multimedia core network subsystem entities, such as call session control functions (CSCFs). More specifically, the IMS 168B includes a CSCF, which can act as a proxy CSCF (P-CSCF) 162BE, a serving CSCF (S-CSCF) 164B, an emergency CSCF (E-CSCF) (not illustrated in
In some aspects, the UDM/HSS 146 can be coupled to an application server 160E, which can include a telephony application server (TAS) or another application server (AS). The AS 160B can be coupled to the IMS 168B via the S-CSCF 164B or the I-CSCF 166B.
A reference point representation shows that interaction can exist between corresponding NF services. For example,
In some aspects, as illustrated in
In example embodiments, any of the UEs or base stations discussed in connection with
In some aspects, a 2-stage SCI procedure may be used in 5G-NR communication networks. More specifically, the control channel information (SCI) is split into two separate entities (e.g., 1st-stage SCI and 2nd-stage SCI) with a different purpose and even different coverage. The first stage SCI carries information for the sensing procedure (e.g., time and frequency resources for the PSSCH detection and decoding) and a pointer to the resources of the second stage. The second stage may be communicated via the PSSCH and carries all remaining information required to demodulate the shared channel as well as HARQ and CSI related procedures.
Different Possible Sub-Channel Structures
In some aspects, dependent on the PSSCH demodulation reference signal (DMRS) density and the sub-channel size, different allocations size of the control information may be used. In some aspects, the first SCI stage may be independent of the PSSCH DMRS location, as otherwise blind decoding would be necessary. To have a uniform coverage, it is reasonable to assume that the number of resources allocated to the first stage SCI may be the same regardless of how large the sub-channel size is. For small sub-channel sizes (e.g., 6-9, as illustrated in
Similarly, a sub-channel of size 10 or larger (e.g., as illustrated in
Second Stage Sidelink Control Information (SCI) Allocation
In some aspects, the resource elements (REs) allocated towards the second stage SCI may be dependent on which DMRS they are based on. If the second stage is based on the first stage PSCCH DMRS, then only REs adjacent to the region allocated to the first stage PSCCH region may be used.
In aspects when the symbols transmitting the resources associated with the second stage SCI are transmitted based on the PSSCH DMRS, there are multiple possibilities. In some embodiments, the resources are always transmitted only in the sub-channel containing the first stage SCI. Dependent on the 2nd stage SCI format, the number of REs used for the transmission is reduced.
In some embodiments, for the case of 1 sub-channel allocation, a specific region of the 2nd Stage SCI may be provided within the PSSCH. If more sub-channels are allocated, for the transmission of one OFDM symbol of 2nd stage SCI next to a PSSCH DMRS OFDM symbols may be used over the whole bandwidth. In some aspects, the configuration (definition) of 2nd-stage SCI may be defined relative to the PSSCH DMRS locations (which may be communicated via the 1st-stage SCI). In some aspects, the OFDM symbol before the first OFDM symbols with PSSCH DMRS may be used for the 2nd-stage SCI carried via PSSCH. To limit PSCCH second stage resources in the case of very wideband allocation it might also be necessary to define a maximum number of sub-channels that could contain 2nd Stage SCI REs. This could be part of the resource pool definition.
In some aspects, the RE reduction of the resources used for the 2nd stage SCI can be in the following forms: (a) Less PRBs are used for the transmission; (b) The same region is used and the REs are interleaved with PSSCH REs, where the interleaving is done on a PRB level; and (c) The same region is used, but the REs are time-interleaved with PSSCH resources. The higher the code rate sufficient for the transmission of the 2nd stage SCI, the sparser the allocation of the 2nd Stage SCI REs. Examples are given in
Division of Bandwidth Into Sub-Channels Including Handling of Additional PRBs
In LTE V2X, the bandwidth was divided into sub-channels comprising of x PRBs. As the total number of PRBs is not always an integer multiple of x, some PRBs are remaining. These PRBs initially do not belong to any sub-channel. In LTE V2X, in some aspects, this issue may be resolved by adding these PRBs to the last sub-channel. This means the last sub-channel could have substantially more resources than other sub-channels, thus leading to a largely different performance for the case that the last sub-channel is part of the transmission or not. Therefore, instead of dividing the number of available PRBs into sub-channels of size x PRBs, in some aspects, the PRBs available in the resource pool may be divided into NSUCH sub-channels. The number of available PRBs NPRB may be represented by x·a+(x+1)·b. Consequently, a sub-channels of size x and b sub-channels of size x+1 may be used, where a=NSUCH−NPRB modulo NSUCH, b=NPRB modulo NSUCH, and x=└NPRB/NSUCH┘.
An example of such an allocation is shown in
In portion (a) in
In some aspects, another example would be a resource pool with 106 PRBs, representing the maximum number of available PRBs for a 40 MHz channel with 30 kHz SCS. For the legacy LTE V2X sub-channel division scheme this would result in 9 sub-channels with 10 PRBs and one with 16 PRBs. If assuming that for the current transmission 2 sub-channels are necessary, dependent on which sub-channels are allocated, either 20 or 26 PRBs are used for the transmission. From the largely different resulting number of PRBs being allocated, the resulting performance may be dependent on which sub-channels are allocated for the transmission. In contrast, for the new PRB to sub-channel mapping in portion (b), 4 sub-channels with 10 PRBs and 6 ones with 11 PRBs may be used. Therefore, for the example of a 2-subchannel allocation, 20 to 22 PRBs may be used. Thus, the new scheme in portion (b) offers a performance that is less dependent on which PRBs are allocated for the transmission.
In some embodiments, to offer a uniform technique that is not dependent on the number of allocated sub-channels, the larger sub-channels, and the smaller ones may be uniformly distributed across the whole allocation size. This may be achieved with the following allocation method: If a≥b every ┌a/(a+b)┐ sub-channel has size as x and the rest have size x+1; and if b>a, every ┌b/(a+b)┐ sub-channel has size as x+1 and the rest have size x.
In some embodiments, a first stage SCI structure where the first stage is located in one sub-channel may be used. In some embodiments, the resource for the first stage SCI has a narrowband allocation. In some embodiments, the resource for the first stage SCI has an allocation spanning the whole sub-channel. In some aspects, only a sub-set of PRBs contain a resource of the first stage SCI. In some embodiments, the allocation of the resource for the first stage SCI is different and dependent on whether other channels are present or not. In some aspects, the allocation of the resource for the first stage SCI is independent of the presence of other channels.
In some embodiments, resource allocation of the 2nd stage SCI may be used. In some embodiments, the 2nd-stage SCI is communicated via the PSSCH. In some embodiments, the 2nd-stage SCI is communicated based on DMRS distribution communicated via the 1st-stage SCI. In some aspects, all 2nd-stage SCI resources are contained within a single sub-channel. In some aspects, the 2nd-stage SCI resources are spread across all resources allocated for the current transmission. In some aspects, the 2nd-stage SCI resources are allocated differently, dependent on how many sub-channels are allocated. In some aspects, the 2nd-stage SCI resources are allocated on all allocated sub-channels up to a maximum of x sub-channels. In some aspects, the number of allocated resources for a higher target SNR is reduced by reducing the number of used sub-channels. In some aspects, the number of allocated resources for a higher target SNR is reduced by reducing the number of used PRBs. In some aspects, the number of allocated resources for a higher target SNR is reduced by reducing the number of used OFDM symbols. In some aspects, the number of allocated resources for a higher target SNR is reduced by reducing interleaving with shared channel resources.
In some aspects, a sub-channel determination scheme may be used where the bandwidth is split into a predefined number of sub-channels. In some aspects, only two different sizes of sub-channels may be used. In some aspects, the sub-channels of different sizes are allocated uniformly.
An apparatus to be used in a user equipment (UE) may include processing circuitry coupled to a memory. To configure the UE for 5G-New Radio (NR) sidelink communications, the processing circuitry is to decode a 1st-stage sidelink control information (SCI) received from a second UE via a physical sidelink control channel (PSCCH). The 1st-stage SCI indicates sidelink resources for transmission of a transport block during multiple transmission time intervals. A frequency resource assignment and a time resource assignment for the multiple transmission time intervals are determined based on the sidelink resources. A physical sidelink shared channel (PSSCH) is decoded to obtain the transport block and a 2nd-stage SCI. The 2nd-stage SCI includes hybrid automatic repeat request (HARQ) acknowledgment (ACK) or non-acknowledgment (NACK) for a prior PSSCH transmission by the UE. The PSSCH is received in one of the multiple transmission time intervals using the frequency resource assignment and the time resource assignment. The memory is coupled to the processing circuitry and is configured to store the 1st-stage SCI and the 2nd-stage SCI. In some embodiments, the 2nd-stage SCI includes channel decoding information, and the processing circuitry is to decode the PSSCH using the channel decoding information. In some embodiments, the channel decoding information is a redundancy version indicator. In some embodiments, the 1st-stage SCI includes a PSSCH demodulation reference signal (DMRS) pattern of PSSCH DMRS locations. In some embodiments, the 2nd-stage SCI is mapped to resource blocks of the PSSCH based on the PSSCH DMRS locations. In some embodiments, the 2nd-stage SCI is mapped to resource blocks that are adjacent to resource blocks associated with the PSSCH DMRS locations. In some embodiments, the 1st-stage SCI occupies resource blocks within a single sub-channel of the PSCCH. In some embodiments, the 2nd-stage SCI further includes a channel state information (CSI) request to trigger a CSI reference signal (CSI-RS) transmission procedure by the UE. In some embodiments, time and frequency resources for transmission of the 2nd-stage SCI are spread across time and frequency resources associated with the sidelink resources indicated by the 1st-stage SCI. In some embodiments, the UE further includes transceiver circuitry coupled to the processing circuitry and one or more antennas coupled to the transceiver circuitry.
Circuitry (e.g., processing circuitry) is a collection of circuits implemented in tangible entities of the device 500 that include hardware (e.g., simple circuits, gates, logic, etc.). Circuitry membership may be flexible over time. Circuitries include members that may, alone or in combination, perform specified operations when operating. In an example, the hardware of the circuitry may be immutably designed to carry out a specific operation (e.g., hardwired). In an example, the hardware of the circuitry may include variably connected physical components (e.g., execution units, transistors, simple circuits, etc.) including a machine-readable medium physically modified (e.g., magnetically, electrically, moveable placement of invariant massed particles, etc.) to encode instructions of the specific operation.
In connecting the physical components, the underlying electrical properties of a hardware constituent are changed, for example, from an insulator to a conductor or vice versa. The instructions enable embedded hardware (e.g., the execution units or a loading mechanism) to create members of the circuitry in hardware via the variable connections to carry out portions of the specific operation when in operation. Accordingly, in an example, the machine-readable medium elements are part of the circuitry or are communicatively coupled to the other components of the circuitry when the device is operating. In an example, any of the physical components may be used in more than one member of more than one circuitry. For example, under operation, execution units may be used in a first circuit of a first circuitry at one point in time and reused by a second circuit in the first circuitry, or by a third circuit in a second circuitry at a different time. Additional examples of these components with respect to the device 500 follow.
In some aspects, the device 500 may operate as a standalone device or may be connected (e.g., networked) to other devices. In a networked deployment, the communication device 500 may operate in the capacity of a server communication device, a client communication device, or both in server-client network environments. In an example, the communication device 500 may act as a peer communication device in peer-to-peer (P2P) (or other distributed) network environment. The communication device 500 may be a UE, eNB, PC, a tablet PC, an STB, a PDA, a mobile telephone, a smartphone, a web appliance, a network router, switch or bridge, or any communication device capable of executing instructions (sequential or otherwise) that specify actions to be taken by that communication device. Further, while only a single communication device is illustrated, the term “communication device” shall also be taken to include any collection of communication devices that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the methodologies discussed herein, such as cloud computing, software as a service (SaaS), and other computer cluster configurations.
Examples, as described herein, may include, or may operate on, logic or a number of components, modules, or mechanisms. Modules are tangible entities (e.g., hardware) capable of performing specified operations and may be configured or arranged in a certain manner. In an example, circuits may be arranged (e.g., internally or with respect to external entities such as other circuits) in a specified manner as a module. In an example, the whole or part of one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware processors may be configured by firmware or software (e.g., instructions, an application portion, or an application) as a module that operates to perform specified operations. In an example, the software may reside on a communication device-readable medium. In an example, the software, when executed by the underlying hardware of the module, causes the hardware to perform the specified operations.
Accordingly, the term “module” is understood to encompass a tangible entity, be that an entity that is physically constructed, specifically configured (e.g., hardwired), or temporarily (e.g., transitorily) configured (e.g., programmed) to operate in a specified manner or to perform part or all of any operation described herein. Considering examples in which modules are temporarily configured, each of the modules need not be instantiated at any one moment in time. For example, where the modules comprise a general-purpose hardware processor configured using the software, the general-purpose hardware processor may be configured as respective different modules at different times. The software may accordingly configure a hardware processor, for example, to constitute a particular module at one instance of time and to constitute a different module at a different instance of time.
The communication device (e.g., UE) 500 may include a hardware processor 502 (e.g., a central processing unit (CPU), a graphics processing unit (GPU), a hardware processor core, or any combination thereof), a main memory 504, a static memory 506, and mass storage 507 (e.g., hard drive, tape drive, flash storage, or other block or storage devices), some or all of which may communicate with each other via an interlink (e.g., bus) 508.
The communication device 500 may further include a display device 510, an alphanumeric input device 512 (e.g., a keyboard), and a user interface (UI) navigation device 514 (e.g., a mouse). In an example, the display device 510, input device 512, and UI navigation device 514 may be a touchscreen display. The communication device 500 may additionally include a signal generation device 518 (e.g., a speaker), a network interface device 520, and one or more sensors 521, such as a global positioning system (GPS) sensor, compass, accelerometer, or another sensor. The communication device 500 may include an output controller 528, such as a serial (e.g., universal serial bus (USB), parallel, or other wired or wireless (e.g., infrared (IR), near field communication (NFC), etc.) connection to communicate or control one or more peripheral devices (e.g., a printer, card reader, etc.).
The storage device 507 may include a communication device-readable medium 522, on which is stored one or more sets of data structures or instructions 524 (e.g., software) embodying or utilized by any one or more of the techniques or functions described herein. In some aspects, registers of the processor 502, the main memory 504, the static memory 506, and/or the mass storage 507 may be, or include (completely or at least partially), the device-readable medium 522, on which is stored the one or more sets of data structures or instructions 524, embodying or utilized by any one or more of the techniques or functions described herein. In an example, one or any combination of the hardware processor 502, the main memory 504, the static memory 506, or the mass storage 516 may constitute the device-readable medium 522.
As used herein, the term “device-readable medium” is interchangeable with “computer-readable medium” or “machine-readable medium”. While the communication device-readable medium 522 is illustrated as a single medium, the term “communication device-readable medium” may include a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) configured to store the one or more instructions 524. The term “communication device-readable medium” is inclusive of the terms “machine-readable medium” or “computer-readable medium”, and may include any medium that is capable of storing, encoding, or carrying instructions (e.g., instructions 524) for execution by the communication device 500 and that cause the communication device 500 to perform any one or more of the techniques of the present disclosure, or that is capable of storing, encoding or carrying data structures used by or associated with such instructions. Non-limiting communication device-readable medium examples may include solid-state memories and optical and magnetic media. Specific examples of communication device-readable media may include non-volatile memory, such as semiconductor memory devices (e.g., Electrically Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM)) and flash memory devices; magnetic disks, such as internal hard disks and removable disks; magneto-optical disks; Random Access Memory (RAM); and CD-ROM and DVD-ROM disks. In some examples, communication device-readable media may include non-transitory communication device-readable media. In some examples, communication device-readable media may include communication device-readable media that is not a transitory propagating signal.
The instructions 524 may further be transmitted or received over a communications network 526 using a transmission medium via the network interface device 520 utilizing any one of a number of transfer protocols. In an example, the network interface device 520 may include one or more physical jacks (e.g., Ethernet, coaxial, or phone jacks) or one or more antennas to connect to the communications network 526. In an example, the network interface device 520 may include a plurality of antennas to wirelessly communicate using at least one of single-input-multiple-output (SIMO), MIMO, or multiple-input-single-output (MISO) techniques. In some examples, the network interface device 520 may wirelessly communicate using Multiple User MIMO techniques.
The term “transmission medium” shall be taken to include any intangible medium that is capable of storing, encoding or carrying instructions for execution by the communication device 500, and includes digital or analog communications signals or another intangible medium to facilitate communication of such software. In this regard, a transmission medium in the context of this disclosure is a device-readable medium.
Although an aspect has been described with reference to specific exemplary aspects, it will be evident that various modifications and changes may be made to these aspects without departing from the broader scope of the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various aspects is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
This application claims the benefit of priority to the following provisional applications: U.S. Provisional Patent Application Ser. No. 62/888,286, filed Aug. 16, 2019, and entitled “PHYSICAL STRUCTURE FOR SIDELINK CONTROL CHANNEL TRANSMISSION IN TWO STAGE”; and U.S. Provisional Patent Application Ser. No. 62/911,931, filed Oct. 7, 2019, and entitled “SUB-CHANNEL STRUCTURE FOR NR-V2X 2-STAGE SCI DESIGN.” Each of the provisional patent application identified above is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62888286 | Aug 2019 | US | |
62911931 | Oct 2019 | US |