The invention relates generally to medical diagnostic systems. More specifically, the invention is directed to a physiological data collection system.
Physiological data collection systems are used to collect and process data concerning the physiological parameters of patients in many types of diagnostic procedures. These systems use electronic recorders to collect, store and produce information concerning patterns such as respiration, motion, electrophysiological parameters and similar data. Many types of data can be recorded by these systems. For example, information regarding body movement, body physiology, and external events can be gathered.
The invention relates to a physiological data collection system. In an embodiment of the invention, the physiological data collection system includes memory devices, a plurality of internal and external sensors, and a controller for controlling the operation of a recorder box. The operation of the recorder box is further augmented by features and devices which improve performance, patient compliance, and data reliability and coherence; along with increased utility.
Referring now to the drawings, a physiological data collection system according to the invention is indicated generally by the reference number 10. Referring to
Referring to
The pressure sensor 30 measures breathing pressure and/or breathing flow rate transmitted by the nasal cannula 28 through a pressure connection port 40. In an embodiment, the pressure connection port 40 is in fluid communication with the pressure sensor 30. The pressure sensor 30 may also monitor pressure output of a continuous positive airway pressure (CPAP) device. The pressure connection port 40 may be configured as a female port or luer, for example a 0.107 inch luer connector, for fluid coupling of the cannula 28 to the recorder box 12. The cannula 28 may include a mating male luer (not shown) and an in-line, disposable hydrophobic filter 42, as shown in
The microphone 32 is defined herein as a voice recording module that includes a voice recording circuit, a supporting software or algorithm that includes a mode selection portion, and a microphone element. The microphone element may be provided as, for example, an electret microphone, though any other device suitable to convert acoustical waves into an electrical signal may be used. The microphone 32 may be operated in two operational modes, a first recording mode and a second recording mode. The first recording mode is a patient-activated mode that allows the patient to record messages related to spurious events such as, for example, bathroom use. The second recording mode is a continuous monitoring mode for collecting ambient noise during the physiological study session including, for example, patient snoring.
When the microphone 32 is operated in the first recording mode, the patient may initiate the recording of a voice message during an event for a predetermined period of time such as five seconds, or until the patient stops talking for a predetermined period such as two seconds. The message is recorded on the memory media together with a real-time stamp and can be correlated in time with the physiological data traces. This correlated information provides an indication and supporting information to an interpreter of the study results that the physiological information recorded in the temporal vicinity of the recorded event message had an anomaly or special characteristic based on the event. The microphone and related supporting software may be fitted in an ECG Holter recorder, allowing the patient to record messages such as “I just had to run after a bus.” The message allows the interpreter to explain why a sudden increase in heart rate is apparent a few seconds after the message. The microphone 32 of the physiological data recorder box 12 can also be used, for example, during use of the recorder in a sleep study to alert the technician reviewing the study that the patient needed to go to the bathroom, or was awakened by a dog barking in the street.
In the second recording mode, the microphone 32, may operate in a continuous recording mode. The continuous recording mode may record ambient noise, interrupted by the patient-activated mode.
The microphone 32 of the physiological data recorder box 12 may also be used at the beginning of the study for identification purposes. Coordinated identification of the patient to the recorded data helps ensure that a recording extracted from the memory of a specific recorder or memory device is the physiological data of a specific patient. This identification capability minimizes concerns of recorders being mixed-up at the dispensing or the downloading stations. The microphone 32 may therefore be used to have the patient record his name and I.D. number, in his own voice onto the physiological data file and linked to the physiological data, allowing assured identification of each file.
The photo detector 34 senses ambient light levels during the physiological study. The photo detector 34 may be physically integrated into the recorder box 12 such that the sensed light level is recorded for later playback and data manipulation. In an embodiment of the invention, the photo detector 34 may be a singular sensor or a plurality of various sensors that sense a variety of associated ambient conditions, or other information, which may not be physiological in nature. These sensors may be integrated in the physiological data recording system 10. Such ambient sensors may include an ambient light or light spectral distribution sensor, a relative humidity sensor, a temperature sensor, a noise level sensor, an air pollution level sensor, a barometric pressure sensor, a radiation sensor (either in the visible range, infrared or UV range, microwaves, or any other type of radiation), acceleration and inclination, wind speed or any other sensor that responds to parameters outside of the patient. The signals received from these sensors, such as the photo detector 34, may also be correlated in time with the physiological sensor data traces to provide an indication, to an interpreter of the study results, that the trace patterns may have been affected by these external conditions to which the patient was exposed during the study.
The body position sensor 36 may be integrated inside the recorder box 12 to detect a patient's body position in all three spatial axes. Alternatively, the body position sensor 36 may be a software function that derives body position in three spatial axes from two channel inputs of the body movement sensor 38. The body movement sensor 38 utilizes two channels of the gravity-referenced, accelerometer measurements to derive the body position in all three axes. In an embodiment, the body movement sensor 38 is an internally mounted DC response accelerometer. The two channel accelerometer is oriented and mounted in the recorder box 12 such that a signal output in one channel is proportional to the vector of gravity superimposed on the front to back (Sagital) axis, and on the left to right (Frontal) axis in the other channel. The accelerometer orientation may be associated with an orientation of the recorder relative to the patient as provided by the user instructions. The general orientation of the body may be calculated from trigonometric relationships using these two values. The software analyzing these channels may derive full three axis orientation data by utilizing an algorithm to assess and rule out body positions which are physically impossible or improbable to achieve such as, for example, bending backwards when standing, or head and torso raising from the bed when lying in a prone position.
In an embodiment of the physiological data collection system 10, such as that used in sleep studies, the recorder box 12 may be applied on the patient's body, as shown in
The chest effort belt 14 includes a plurality of chest belt attachment points 46a, 46b, 46c, and 46d. Though shown as four attachment points, however, there may be more or less in number. At least two of the attachment points such as points 46a and 46b may also serve as electrical contacts that are in electrical communication with the conductive element 44. The attachment points 46a and 46b provide both electrical connectivity and mechanical attachment between the chest belt 14 and the recorder box 12. Further, the belt 14 and attachment points 46a, 46b, 46c, and 46d secure the recorder box 12 to the patient sufficiently so that the internal sensors may provide accurate data, for example, data collected by the body position sensor 36 pertaining to patient movement and sleeping position. The attachment points 46a-46d are illustrated as fabric snap-type fastener connections in which the attachment points 46a and 46b are also electrically conductive.
As shown in
The physiological data collection system 10 may also include an additional signal self-test function intended to increase its applicability, usefulness, and signal reliability. Embedded in the recorder software there may be a routine or algorithm that can perform signal quality checks on the signals from all externally applied sensors and accessories. These checks may be performed using one or more of three possible strategies. The system 10 may either perform periodic checks, for example, every fifteen minutes, and stop the recording to analyze a short data section already recorded in the system memory. This analysis provides a decision, if any is needed, as to whether the recorded signals show signs of a defective or misplaced sensor. The algorithm may also analyze signal quality by comparing values derived from different channels. The different channels provide an alternative perspective of the same physiological parameter by way of different physiological routes—such as heart rate that is derived from an optical plethysmographic signal and ECG signals.
Alternatively, the software may stop recording, but continue to collect and analyze the signals to arrive at the same decision. Thus, an error will be indicated only if it is present at the time of the test. A third possibility is that the software performs all signal quality tests at the same time as recording them in memory. This strategy provides real time indication of errors for an increase in computational resources.
The abdominal effort belt 16 as shown in
Referring now to
In an embodiment, the first connector 60a and the third connector 64a are female RJ45-type, eight pin/eight coupler connectors commonly used in telephony and computer communications and also commonly associated with Category-5 type twisted-pair wiring. The connector 60a connects the EEG sensor 20, the EOG sensors 22a and 22b, and the chin EMG sensor 24 to the recorder box 12 by way of a mating male RJ45-type connector 60b, as shown in
The single connector for multiple sensors functions as an easy-to-use, “poka yoke” device to ensure proper connection. The sensors may be grouped by various sensor characteristics such as similar functions, similar data post processing requirements, or similar sensor types. For example, the EEG sensor 20, EOG sensors 22a and 22b, and the chin EMG sensor 24 may be grouped together as facially applied sensors. The sensors, whether singular or grouped, are provided with corresponding, mating male or female connectors to couple to the recorder box 12. The external sensor connections may also be color coded to the external connection points of the recorder box 12 to further simplify proper identification and patient connection.
In an embodiment, as shown in
Still referring to
A second speaker output mode may be one, or any combination, of a verbal alert, a tonal alert, and a vibratory alert. The second output mode is provided for signaling a condition, either an error condition or a use-ready condition, associated with the recorder box 12 or the various sensors. This second output mode may operate in conjunction with a sensor verification mode. As the patient initiates the physiological data collection system 10 and applies the sensors as required, the recorder box 12 performs an operational check of each sensor. If the sensors are not verified to be properly applied or in working order, an error condition is signaled. The recorder box 12 may be programmed to require sensor adjustment or replacement, or the recorder box 12 may continue on and bypass the malfunctioning sensor.
When operating in the second output mode, the system 12 responds to inputs from the sensor inspections conducted during the study. The system 12 may be programmed to wake the patient, stop recording, or continue recording if a sensor anomaly is detected. In the event a wake-mode is selected, the voice alert feature may output a wake-up alert, either verbal, tonal, vibratory, or any combination thereof to alert the patient that sensor attention is required. If a stop recording option is selected, the system will cease recording either the affected channel or the entire study depending on the programmed response. The system may also be programmed to ignore the error message and continue recording all sensor channels.
The system 10 may be programmed in an error correction instruction mode to issue a verbal warning to the patient that there is a problem with one or more of the sensors. The system 12 may further identify the problem and suggest a resolution. The system 12 may then check the sensor signal to confirm that the problem has been resolved and that the study can continue, or provide further instructions on how to correct the problem or any other measures that must be taken. In an embodiment of the physiological data collection system 10 configured as a sleep disorder recording system, the system may be programmed to awaken the patient when needed.
A third speaker output mode, or a special test condition instruction mode, of the voice alert feature allows the physician ordering the physiological recording to gather data in some specific situations of special interest to him. In this third mode the physician may program the system to instruct the patient to perform certain tasks at predetermined times in the study, or if certain conditions measured from the various sensors are met. As an example, in an embodiment as a sleep recording system, the voice messaging function may be used to ask the patient to move, for example, from a prone position to a supine position to allow for data collection in various positions.
As shown in
Referring now to
Information collected by the various sensors selected for the sleep study is gathered by the controller 86 and recorded onto the smartcard 80. The smartcard 80 also contains prerecorded information such as, for example, patient identification information, sensor channel activation selections, clock setup information, and sound files associated with verbal prompts and alerts. These sound files may be generic or customized for the specific patient needs.
Referring to
As represented by arrow 96 in
The sensor data processing such as, for example, pulse oximetry data processing can be separated into two phases: (1) collection and storage of information without manipulation and (2) analyzing the information at a later time. Accordingly, the analyzed information is not reviewed in real time. Instead, the raw information is reviewed by the computer 98 that may be, for example, a remote, off-line computer, which results in the above-described advantages.
It should be understood that the invention is not limited to sleep applications. For example, the invention can be used in Holter devices that monitor ECG, or measure pulse transit time, which store the ECG and optical pulse wave signal without any filtering and perform all calculations in post processing. Another example is use with peripheral arterial tone (PAT) signals.
Referring to
As represented by arrow 106 in
In an embodiment, real time analysis of the input signals from one or more sensors placed on the patient will be conducted electronically on a regular interval or continuously in the recorder box 12. When sensor signal quality deteriorates, a signal can be transmitted to the alarm receiver 104 through the data analyzer and alarm transmitter 102. Upon receipt of the signal, the alarm receiver 104 can provide a visual and/or an audio alert to the attendant concerning the status of the sensor.
The advantages of the recorder box 12 with data analyzer and alarm transmitter 102 and the alarm receiver 104 include efficiency because the attendant has the ability to monitor more than one patient at the same time, lower cost due to automation of the determination of signal failure, and minimization of patient interference as a result of the positioning of the alarm receiver 104 in a location remote from the patient or patients.
Referring to
While the invention has been described with reference to particular embodiments, it should be understood that various changes may be made and equivalents may be substituted for elements thereof without departing from the essential scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments, but that the invention shall include all embodiments falling within the scope of the claims.
This application claims the benefit of U.S. Provisional Application No. 60/959,745, filed Jul. 16, 2007; U.S. Provisional Application No. 60/959,746, filed Jul. 16, 2007; U.S. Provisional Application No. 60/959,747, filed Jul. 16, 2007; and U.S. Provisional Application No. 60/959,748, filed Jul. 16, 2007, the disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/070153 | 7/16/2008 | WO | 00 | 1/31/2011 |
Number | Date | Country | |
---|---|---|---|
60959745 | Jul 2007 | US | |
60959746 | Jul 2007 | US | |
60959747 | Jul 2007 | US | |
60959748 | Jul 2007 | US |