Personal health monitors provide users with the ability to monitor their overall health and fitness by enabling the user to monitor heart rate or other physiological information during exercise, athletic training, rest, daily life activities, physical therapy, etc. Such devices are becoming increasingly popular as they become smaller and more portable.
A heart rate monitor represents one example of a personal health monitor. A common type of heart rate monitor uses a chest strap monitor that includes surface electrodes to detect muscle action potentials from the heart. Because such surface electrodes provide a relatively noise free signal, the information produced by monitors that use surface electrodes is highly accurate. However, most users find chest strap monitors uncomfortable and inconvenient.
Another type of heart rate monitor uses PPG sensors disposed in an ear bud. The ear provides an ideal location for a monitor because it is a relatively immobile platform that does not obstruct a person's movement or vision. PPG sensors proximate the ear have, e.g., access to the inner ear canal and tympanic membrane (for measuring core body temperature), muscle tissue (for monitoring muscle tension), the pinna and earlobe (for monitoring blood gas levels), the region behind the ear (for measuring skin temperature and galvanic skin response), and the internal carotid artery (for measuring cardiopulmonary functioning). The ear is also at or near the point of the body's exposure to environmental breathable toxins of interest (volatile organic compounds, pollution, etc.), noise pollution experienced by the ear, lighting conditions for the eye, etc. Further, as the ear canal is naturally designed for transmitting acoustical energy, the ear provides a good location for monitoring internal sounds, such as the heartbeat, breathing rate, mouth motion, etc.
PPG sensors measure the relative blood flow using an infrared or other light source that projects light that is ultimately transmitted through or reflected off tissue, and is subsequently detected by a photodetector and quantified. For example, higher blood flow rates result in more light being scattered by the blood, which ultimately increases the intensity of the light that reaches the photodetector. By processing the signal output by the photodetector, a monitor using PPG sensors may measure the blood volume pulse (the phasic change in blood volume with each heartbeat), the heart rate, heart rate variability, and other physiological information. PPG sensors are generally small and may be packaged such that they do not encounter the comfort and/or convenience issues associated with other conventional health monitors. However, PPG sensors are also more sensitive to motion artifact noise than are many other types of sensors, and thus are more prone to accuracy problems.
The filtering techniques disclosed herein improve the accuracy of a heart rate and/or other physiological metrics provided by a monitor, e.g., one using photoplethysmograph (PPG) sensors. In general, the disclosed filtering technique improves the accuracy by adjusting an estimate of a heart rate as a function of a rate limit associated with the heart rate.
One exemplary method processes data provided by a physiological sensor, e.g., a PPG sensor, to reduce the noise and therefore improve the accuracy of a physiological metric, e.g., a heart rate. The method comprises determining, based on a physiological waveform received from a physiological sensor, an instantaneous estimate of a physiological metric, and comparing the instantaneous estimate to a current filtered estimate of the physiological metric. The method further includes computing a revised filtered estimate of the physiological metric as a function of the current filtered estimate and a rate limit based on the comparison between the instantaneous estimate and the current filtered estimate, and outputting the revised filtered estimate.
One exemplary physiological processor processes data provided by a physiological sensor, e.g., a PPG sensor, to reduce the noise and therefore improve the accuracy of a physiological metric, e.g., a heart rate. The processor comprises a spectral transformer and a filter. The spectral transformer is configured to determine, based on a received waveform, an instantaneous estimate of the physiological metric. The filter is configured to compare the instantaneous estimate to a current filtered estimate of the physiological metric, and output a revised filtered estimate of the physiological metric computed as a function of the current filtered estimate and a rate limit based on the comparison between the instantaneous estimate and the current filtered estimate.
Many of the embodiments disclosed herein are derived from new findings on how vital signs, PPG signals, and acceleration changes within the human body during activity. By understanding the relationship between these changes, a method has been invented to track heart rate and other vital signs in the midst of motion artifact noise and other types of noise that may otherwise lead to erroneous estimations of heart rate and other vital signs.
The filtering technique disclosed herein improves the accuracy of the results achieved when processing data, e.g., heart rate data, provided by a physiological sensor.
In exemplary embodiments, the physiological sensors 20 comprise photoplethysmograph (PPG) sensors that generate an electrical physiological waveform responsive to detected light intensity. PPG sensors comprise light intensity sensors that generally rely on optical coupling of light into the blood vessels. As used herein, the term “optical coupling” refers to the interaction or communication between excitation light entering a region and the region itself. For example, one form of optical coupling may be the interaction between excitation light generated from within a light-guiding ear bud 10 and the blood vessels of the ear. Light guiding ear buds are described in co-pending U.S. Patent Application Publication No. 2010/0217102, which is incorporated herein by reference. In one embodiment, the interaction between the excitation light and the blood vessels may involve excitation light entering the ear region and scattering from a blood vessel in the ear such that the intensity of the scattered light is proportional to blood flow within the blood vessel. Another form of optical coupling may result from the interaction between the excitation light generated by an optical emitter within the ear bud and the light-guiding region of the ear bud.
Processor 100 determines one or more physiological metrics from the physiological waveform and filters the determined metric(s) to produce a revised physiological metric having an improved accuracy. The determined physiological metric may also refer to a physiological assessment computed from one or more physiological metrics. For simplicity, the following describes the processor 100 in terms of determining a heart rate. However, the processor 100 may alternatively or additionally determine other physiological metrics, e.g., a respiration rate, a heart rate variability (HRV), a pulse pressure, a systolic blood pressure, a diastolic blood pressure, a step rate, an oxygen uptake (VO2), an R-R interval (which represents the interval between successive R-peaks in an ECG waveform), a maximal oxygen uptake (VO2 max), calories burned, trauma, cardiac output and/or blood analyte levels including percentage of hemoglobin binding sites occupied by oxygen (SPO2), percentage of methomoglobins, a percentage of carbonyl hemoglobin, and/or a glucose level. Alternatively or additionally, processor 100 may determine and filter one or more physiological assessments, e.g., a ventilatory threshold, lactate threshold, cardiopulmonary status, neurological status, aerobic capacity (VO2 max), and/or overall health or fitness. Though heart rate is used as an example of a specific physiological metric that may be accurately extracted using the embodiments disclosed herein, it should be understood that other physiological metrics may also be derived using these embodiments. Periodically changing vital signs, such as, but not limited to, heart rate, respiration rate, R-R interval, circadian changes, blood-gas level changes, and the like may be particularly suited for signal extraction under the described embodiments.
To illustrate, consider the following example. If the instantaneous heart rate is greater than or equal to the current filtered heart rate, filter 120 may compute the revised filter estimate as a function of a rising/increasing heart rate limit Δr+ and the current filtered heart rate, e.g., according to:
{circumflex over (P)}filt=Pfilt+min(Δr+,Pinst−Pfilt), (1)
where, the rising heart rate limit Δr+ is, e.g., 6 BPM in a 1 second frame period. If, however, the instantaneous heart rate is less than the current filtered heart rate, filter 120 may compute the revised filter estimate as a function of a falling heart rate limit Δr− and the current filtered heart rate, e.g., according to:
{circumflex over (P)}filt=Pfilt+max(Δr−,Pinst−Pfilt), (2)
where, the falling heart rate limit Δr− is, e.g., −4.
t
Δa=min(Δr+,Pinst−Pfilt) (3)
If, however Pinst<Pfilt, function processor 132 may compute the adjustment parameter Δa according to:
Δa=max(Δr−,Pinst−Pfilt). (4)
In some embodiments, adjustment processor 130 selects either the rising or falling rate limit used by function processor 132 based on the comparison between the instantaneous estimate and the current filtered estimate. Alternatively, filter 120 may include a rate processor 124 that selects an initial rate limit Δinit, which may comprise the rising or falling rate limit, based on the comparison between the instantaneous estimate and the current filtered estimate. In still another embodiment, the function processor 132 may comprise different processing paths associated with different comparison results, where adjustment processor 130 selects one of the processing paths based on the comparison between the instantaneous estimate and the current filtered estimate, where each processing path is associated with a different one of Equations (1)/(3) and (2)/(4), and where each processing path includes the corresponding rate limit.
It will also be appreciated that the different values disclosed herein for the rising and falling rate limits are exemplary and non-limiting. In some embodiments, the magnitude of the rising rate limit may equal the magnitude of the falling rate limit. Alternatively or additionally, while the rising and falling rate limits may respectively comprise positive and negative values, such is not required. For example, when the falling rate limit is set to a positive value, Equation (4) may be modified according to:
Δa=−min(Δr−,Pfilt−Pinst) (5)
Similar modifications to Equation (3) may be made when the rising rate limit is set to a negative value.
Adjustment processor 130 may further include a modifier processor 134 configured to compute one or more modifiers based on one or more of the heuristic properties, and further configured to determine the rate limit as a function of the modifier(s) and an initial rate limit Δinit, e.g., as provided by rate processor 124. Accordingly, modifier processor 134 includes a calculator 136 and a modifier applicator 138. Calculator 136 computes one or more modifiers based on the one or more heuristic properties of the physiological waveform provided by the spectral transform. In some embodiments, the modifier(s) represent a reliability of the initial rate limit Δinit. Modifier applicator 138 subsequently applies the computed modifier(s) to the initial rate limit Δinit, e.g., by summing and/or multiplying the initial rate limit Δinit by the computed modifier(s), to determine the rate limit Δr used by function processor 132. It will be appreciated that the modifier(s) may be applied to any initial rate limit Δinit, including the rising rate limit, the falling rate limit, or both, and that when function processor 132 uses different processing paths based on the comparison between Pinst and Pfilt, the modifiers are applied to the rate limits of one or more of the processing paths as needed/desired.
In one exemplary embodiment, calculator 136 computes a spectral modifier α1 based on heuristic properties of the physiological waveform comprising spectral characteristics of the instantaneous estimate of the heart rate. The spectral modifier quantifies the reliability (or confidence) that the spectral transformer 110 associated the instantaneous estimate with the correct spectral peak. Broadly, when there is a large difference in magnitude between the spectral peak having the largest magnitude and the spectral peak having the next largest magnitude, there is a high degree of confidence that the largest spectral peak corresponds to the instantaneous heart rate of interest. More particularly, the spectral transformer 110 may provide the spectral characteristics for some number of the spectral peaks of the spectrally transformed waveform, e.g., the magnitude(s) of two or more spectral peaks. For example, the spectral transformer may provide the magnitude of the largest spectral peak SPM1 and the magnitude of the second largest spectral peak SPM2 to the calculator 136. Based on the provided spectral magnitudes, calculator 136 calculates the spectral modifier. For example, calculator 136 may compute the spectral modifier according to:
Subsequently, modifier applicator 138 applies the spectral modifier according to:
Δr=α1Δinit (7)
It will be appreciated that applicator 138 may apply the spectral modifier to the initial rate limit Δinit using linear means, e.g., multiplication, addition, subtraction, and/or division, or using non-linear means, e.g., norm, RMS, min, or max functions. It should be noted that if the magnitude of the largest peak (SPM1) and the magnitude of the 2nd largest peak (SPM2) are identical, then α1=0, such that the rate limit Δr is zero. With the rate limit at zero, the reported physiological metric {circumflex over (P)}filt (which in this specific case is the reported heart rate) may not change.
In another exemplary embodiment, calculator 136 computes a boundary modifier α2 as a function of boundary values bounding the heart rate based on the comparison between the instantaneous estimate and the current filtered estimate. The boundary modifier also quantifies the reliability (or confidence) that the spectral transformer 110 associated the instantaneous estimate of the heart rate with the correct spectral peak based on the difference between the current filtered estimate and the instantaneous estimate. When there is a large difference between the instantaneous and current filtered estimates, there is a low degree of confidence that the instantaneous estimate is correct. More particularly, when the instantaneous estimate is greater than or equal to the current filtered estimate, the calculator 136 may compute the boundary modifier according to:
where Pmax represents an upper boundary for the heart rate. For example, Pmax may be set equal to 225 BPM. When the instantaneous estimate is less than the current filtered estimate, the calculator 136 may compute the boundary modifier according to:
where Pmin represents a lower boundary for the heart rate. For example, Pmin may be set equal to 40 BPM. Subsequently, modifier applicator 138 applies the boundary modifier according to:
Δr=α2Δinit (10)
It will be appreciated that applicator 138 may apply the boundary modifier to the initial rate limit Δinit using linear means, e.g., multiplication, addition, subtraction, and/or division, or using non-linear means, e.g., norm, RMS, min, or max functions. It will also be appreciated that the upper and lower heart rate boundaries are based on empirical evidence, which indicates that most people, whether at rest or exercising, have a heart rate between 40 and 225 BPM.
In still another embodiment, calculator 136 may compute the spectral and boundary modifiers, as previously described. Subsequently, applicator 138 applies the spectral and boundary modifiers according to:
Δr=α1α2Δinit (11)
It will be appreciated that applicator 138 may apply the spectral and boundary modifiers to the initial rate limit Δinit using linear means, e.g., multiplication, addition, subtraction, and/or division, or using non-linear means, e.g., norm, RMS, min, or max functions. It will further be appreciated that other modifier(s) determined based on one or more heuristic properties of the physiological waveform may be additionally or alternatively applied to the initial rate limit Δinit to determine Δr.
Embodiments disclosed heretofore filter an estimate of the heart rate derived from a spectral transformation of the physiological waveform output by the sensor(s) 20. While such filtering improves the accuracy of the output heart rate, it will be appreciated that the accuracy may further be improved through the use of noise reduction techniques applied to the physiological waveform and/or to the instantaneous estimate before applying the filtering technique. For example, processor 100 may include an optional noise filter 140 (
The embodiments disclosed herein improve the accuracy of heart rates determined based on physiological waveforms provided by physiological sensors, particularly noise sensitive sensors, e.g., PPG sensors. In particular, the embodiments disclosed herein reduce the impact of noise sources not previously addressed by past systems, e.g., motion noise due to a user's jaw movement and/or breathing, shadow/sunlight flicker due to a user's movement into and out of shaded areas, light noise due to ambient light being detected by the photodetector, etc.
While the present invention is described in terms of PPG sensors, it will be appreciated that sensors 20 may comprise any sensor able to generate a physiological waveform, e.g., an electroencephalogram (EEG) waveform, and electrocardiogram (ECG) waveform, a radio frequency (RF) waveform, an electro-optical physiological waveform, a thermoelectric waveform, and electro-photoacoustic waveform including a photoacoustic waveform, an electro-mechanical physiological waveform, and/or an electro-nuclear physiological waveform.
The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
This application is a continuation of prior U.S. patent application Ser. No. 14/370,658, filed 3 Jul. 2014, which was the National Stage of International Application No. PCT/US2012/071593, filed 24 Dec. 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/586,874, filed 16 Jan. 2012, the disclosures of all of which are incorporated by reference herein in their entirety. The embodiments disclosed herein generally relate to photoplethysmograph (PPG) sensors for monitoring heart rate and other physiological metrics, and more particularly relate to noise reduction techniques for PPG sensors.
Number | Name | Date | Kind |
---|---|---|---|
3636617 | Schmidt et al. | Jan 1972 | A |
3704706 | Herczfeld et al. | Dec 1972 | A |
4672976 | Kroll | Jun 1987 | A |
4952928 | Carroll et al. | Aug 1990 | A |
4955379 | Hall | Sep 1990 | A |
5139025 | Lewis et al. | Aug 1992 | A |
5243992 | Eckerle et al. | Sep 1993 | A |
5297548 | Pologe | Mar 1994 | A |
5299570 | Hatschek | Apr 1994 | A |
5448082 | Kim | Sep 1995 | A |
5482036 | Diab et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5503016 | Koen | Mar 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5673692 | Schulze et al. | Oct 1997 | A |
5807267 | Bryars et al. | Nov 1998 | A |
5846190 | Woehrle | Dec 1998 | A |
5853005 | Scanlon | Dec 1998 | A |
5906582 | Kondo et al. | May 1999 | A |
5908396 | Hayakawa et al. | Jun 1999 | A |
5941837 | Amano et al. | Aug 1999 | A |
5954644 | Dettling et al. | Sep 1999 | A |
5964701 | Asada et al. | Oct 1999 | A |
6022748 | Charych et al. | Feb 2000 | A |
6042549 | Amano et al. | Mar 2000 | A |
6067462 | Diab | May 2000 | A |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6241684 | Amano et al. | Jun 2001 | B1 |
6267721 | Welles | Jul 2001 | B1 |
6393311 | Edgar, Jr. et al. | May 2002 | B1 |
6443890 | Schulze et al. | Sep 2002 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6608562 | Kimura et al. | Aug 2003 | B1 |
6656151 | Blatter | Dec 2003 | B1 |
6725072 | Steuer et al. | Apr 2004 | B2 |
6748254 | O'Neil et al. | Jun 2004 | B2 |
6995665 | Appelt et al. | Feb 2006 | B2 |
6997879 | Turcott | Feb 2006 | B1 |
7018338 | Vetter et al. | Mar 2006 | B2 |
7113815 | O'Neil et al. | Sep 2006 | B2 |
7144375 | Kosuda | Dec 2006 | B2 |
7336982 | Yoo | Feb 2008 | B2 |
7378954 | Wendt | May 2008 | B2 |
7438688 | Kobayashi et al. | Oct 2008 | B2 |
7539533 | Tran | May 2009 | B2 |
7962308 | Makino | Jun 2011 | B2 |
8055469 | Kulach et al. | Nov 2011 | B2 |
8109874 | Kong et al. | Feb 2012 | B2 |
8386008 | Yuen et al. | Feb 2013 | B2 |
8923941 | LeBoeuf et al. | Dec 2014 | B2 |
9005129 | Venkatraman et al. | Apr 2015 | B2 |
9044180 | LeBoeuf et al. | Jun 2015 | B2 |
9687162 | Vetter et al. | Jun 2017 | B2 |
9717412 | Roham et al. | Aug 2017 | B2 |
9797920 | Kahn et al. | Oct 2017 | B2 |
10390762 | Romesburg | Aug 2019 | B2 |
10856813 | LeBoeuf et al. | Dec 2020 | B2 |
20020013538 | Teller | Jan 2002 | A1 |
20030065269 | Vetter et al. | Apr 2003 | A1 |
20030109791 | Kondo et al. | Jun 2003 | A1 |
20030176815 | Baba et al. | Sep 2003 | A1 |
20030233051 | Verjus et al. | Dec 2003 | A1 |
20030236647 | Yoon et al. | Dec 2003 | A1 |
20040004547 | Appelt et al. | Jan 2004 | A1 |
20040039254 | Stivoric et al. | Feb 2004 | A1 |
20040054291 | Schulz et al. | Mar 2004 | A1 |
20040059236 | Margulies et al. | Mar 2004 | A1 |
20040186387 | Kosuda et al. | Sep 2004 | A1 |
20040186695 | Aoshima et al. | Sep 2004 | A1 |
20040178913 | Penuela et al. | Nov 2004 | A1 |
20040236233 | Kosuda et al. | Nov 2004 | A1 |
20040242976 | Abreu | Dec 2004 | A1 |
20040254501 | Mault | Dec 2004 | A1 |
20050007582 | Villers et al. | Jan 2005 | A1 |
20050043652 | Lovett et al. | Feb 2005 | A1 |
20050059870 | Aceti | Mar 2005 | A1 |
20050192516 | Takiguchi et al. | Sep 2005 | A1 |
20050209516 | Fraden | Sep 2005 | A1 |
20050228463 | Mac et al. | Oct 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060084879 | Nazarian et al. | Mar 2006 | A1 |
20060178588 | Brody | Aug 2006 | A1 |
20060258927 | Edgar, Jr. et al. | Nov 2006 | A1 |
20070016086 | Inukai et al. | Jan 2007 | A1 |
20070116314 | Grilliot et al. | May 2007 | A1 |
20070135717 | Uenishi et al. | Jun 2007 | A1 |
20080076972 | Dorogusker et al. | Mar 2008 | A1 |
20080081972 | Debreczeny | Apr 2008 | A1 |
20080132798 | Hong et al. | Jun 2008 | A1 |
20080146890 | LeBoeuf et al. | Jun 2008 | A1 |
20080154098 | Morris et al. | Jun 2008 | A1 |
20080177162 | Bae et al. | Jul 2008 | A1 |
20080269625 | Halperin et al. | Oct 2008 | A1 |
20090010461 | Klinghult et al. | Jan 2009 | A1 |
20090023556 | Daly | Jan 2009 | A1 |
20090097689 | Prest et al. | Apr 2009 | A1 |
20090105556 | Fricke et al. | Apr 2009 | A1 |
20090112111 | Shimizu | Apr 2009 | A1 |
20090131761 | Moroney, III et al. | May 2009 | A1 |
20090281435 | Ahmed et al. | Nov 2009 | A1 |
20090306736 | Dobak, III | Dec 2009 | A1 |
20100189209 | O'Rourke | Jul 2010 | A1 |
20100217099 | LeBoeuf et al. | Aug 2010 | A1 |
20100274109 | Hu et al. | Oct 2010 | A1 |
20110022352 | Fujita et al. | Jan 2011 | A1 |
20110178759 | Uchida | Jul 2011 | A1 |
20120197093 | LeBoeuf et al. | Aug 2012 | A1 |
20120303319 | Kirkeby | Nov 2012 | A1 |
20130006583 | Weast et al. | Jan 2013 | A1 |
20130178958 | Kulach | Jul 2013 | A1 |
20170112447 | Aumer et al. | Apr 2017 | A1 |
Number | Date | Country |
---|---|---|
1545979 | Nov 2004 | CN |
101317188 | Dec 2008 | CN |
101910846 | Dec 2010 | CN |
101980659 | Feb 2011 | CN |
102168986 | Aug 2011 | CN |
102297701 | Dec 2011 | CN |
102435203 | May 2012 | CN |
0729726 | Sep 1996 | EP |
1354553 | Oct 2003 | EP |
2229880 | Sep 2010 | EP |
2182839 | Oct 2011 | EP |
H10258039 | Sep 1998 | JP |
2004283228 | Oct 2004 | JP |
2004358271 | Dec 2004 | JP |
0021435 | Apr 2000 | WO |
2005010568 | Feb 2005 | WO |
2007013054 | Feb 2007 | WO |
2007122375 | Nov 2007 | WO |
2011026669 | Mar 2011 | WO |
2011105914 | Sep 2011 | WO |
2013038296 | Mar 2013 | WO |
2013109390 | Jul 2013 | WO |
2014109982 | Jul 2014 | WO |
Entry |
---|
Coote 2009 Exp. Physiol. 95.3:431-440 (Year: 2009). |
Pierpont et al. 2004 Am. J. Cardiol. 94:64-68 (Year: 2004). |
Buchanan, T., et al., “Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command,” J Appl Biomech, vol. 20, No. 4, Nov. 1, 2004, pp. 1-34. |
Stolwijk, J., “Mathematical Models of Thermal Regulation,” Annals of the New York Academy of Sciences, vol. 335, No. 1, Jan. 1, 1980, pp. 98-106. |
Wiggs, L, et al., “Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy,” Developmental Medicine and Child Neurology 2004, vol. 46, No. 6, Jan. 1, 2004, pp. 372-380. |
Hastings, P.C., “Symptom burden of sleep-disordered breathing in mild-to-moderate congestive heart failure patients,” European Respiratory Journal, vol. 27, No. 4, Jan. 1, 2006, pp. 748-755. |
Carskadon, M., et al., “Chapter 2—Normal Human Sleep: an Overview,” Monitoring and staging human sleep, from Principles and practice of sleep medicine, 5th edition, St Louis: Elsevier Saunders, Jan. 1, 2011, pp. 1-21. |
Critchley, H, “Electrodermal Responses: What Happens in the Brain,” The Neuroscientist, vol. 8, No. 2, Jan. 1, 2002, pp. 132-142. |
Lang, P., et al., “Looking at pictures: Affective, facial, visceral, and behavioral reactions,” Psychophysiology, vol. 30, No. 3, Apr. 22, 1992, pp. 261-273. |
Soleymani, M., et al., “Affective Ranking of Movie Scenes Using Physiological Signals and Content Analysis,” Proc. 2nd ACM Work. Multimed. Semant., Jan. 1, 2008, pp. 1-8. |
Appelhans, B., et al., “Heart Rate Variability as an Index of Regulated Emotional Responding,” Review of General Psychology, vol. 10, No. 3, Sep. 15, 2005, pp. 229-240. |
Postma, D.S., et al., “The natural history of chronic obstructive pulmonary disease,” European Respiratory Monograph, vol. 38, Jan. 1, 2006, pp. 71-83. |
Bidargaddi, N., et al., “Ambulatory monitor derived clinical measures for continuous assessment of cardiac rehabilitation patients in a community care model,” Pervasive Computing Technologies for Healthcare, 2008 Second International Conference on Pervasive Computing Technolovies for Healthcare, Jan. 30, 2008, pp. 1-5. |
Hertzman, A., “The Blood Supply of Various Areas as Estimated by the Photoelectric Plethysmograph,” Am J. Physiol, vol. 124, Issue 2, Jul. 18, 1938, pp. 328-340. |
Hayes, M., et al., “Artifact reduction in photoplethysmography,” Applied Optics, vol. 37, No. 31, Nov. 1, 1998, pp. 7437-7446. |
Page, E., et al., “Physiological approach to monitor patients in congestive heart failure: application of a new implantable device-based system to monitor daily life activity and ventilation,” Eurospace, vol. 9, May 3, 2007, pp. 687-693. |
Moy, M., et al., “Free-living physical activity in COPD: Assessment with accelerometer and activity checklist,” Journal of Rehabilitation Research & Development, vol. 46, No. 2, Nov. 2, 2009, pp. 277-286. |
Bennett, T., et al., “Development of Implantable Devices for Continuous Ambulatory Monitoring of Central Hemodynamic Values in Heart Failure Patients,” Pacing Clin Electrophysiol. Jun. 2005; vol. 28, No. 6, Jun. 1, 2005, pp. 573-584. |
Allen, J., “Photoplethysmography and its application in clinical physiological measurement,” Physiological Measurement, vol. 28, Feb. 20, 2007, pp. 1-39. |
Webster, J.G. (ed.), “Design of Pulse Oximeters,” Institute of Physics Publishing, Philadelphia, PA, Jan. 1, 1997, pp. 1-134. |
Webster, J.G. (ed.), “Design of Pulse Oximeters,” Institute of Physics Publishing, Philadelphia, PA, Jan. 1, 1997, pp. 135-267. |
Shevchenko, Y, et al., “90th Anniversary of the Development by Nikolai S. Korotkoff of the Ascultatory Method of Measuring Blood Pressure,” Circulation, vol. 94, No. 2, Jul. 15, 1996, pp. 116-118. |
Han, H., et al., “Development of a wearable monitoring device with motion artifact reduced algorithm,” International Conference on Control, Automation and Systems 2007, Oct. 17, 2007, Seoul, Korea, pp. 1581-1584. |
Petition for Inter Partes Review of U.S. Pat. No. 8,157,730; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01701, filed Jun. 30, 2017, pp. 1-89. |
Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01702, filed Jun. 30, 2017, pp. 1-70. |
Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01703, filed Jun. 30, 2017, pp. 1-79. |
Petition for Inter Partes Review of U.S. Pat. No. 8,888,701; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01704, filed Jun. 30, 2017, pp. 1-84. |
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,888,701; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01704, filed Jun. 30, 2017, pp. 1-109. |
Declaration of Brian W. Anthony, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 8,157,730, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,157,730 Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01701, filed Jun. 30, 2017, pp. 1-138. |
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01703, filed Jun. 30, 2017, pp. 1-87. |
Declaration of Dr. Majid Sarrafzadeh, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 8,652,040; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01702, filed Jun. 30, 2017, pp. 1-92. |
Declaration of Brian W. Anthony, Ph.D. in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,044,180, Exhibit 1003, Petition for Inter Partes Review of U.S. Pat. No. 9,044,180 Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01947, filed Aug. 2-17, 15, pp. 1-153. |
Mendelson, J., et al., “Measurement Site and Photodetector Size Considerations iin Optimizing Power Consumption of a Wearable Reflectance Pulse Oximeter”, Proceedings of the 25th Annual International Conference of the IEEE EMBS, Engineering in Medicine and Biology Society, Cancun, Mexico, Sep. 17, 2003, pp. 1-4. |
Palder, et al., “Vascular Access for Hemodialysis, Patency rates and Results of Revision”, Annals of Surgery, vol. 202, No. 2, Aug. 1, 1985, pp. 1-5. |
Spigulis, J., et al., “Wearable wireless photoplethysmography sensors,” Biophotonics: Photonic Solutions for Better Health Care, Proceedings of SPIE, vol. 6991, May 1, 2008, pp. 1-7. |
Sandberg, M., et al., “Non-invasive monitoring of muscle blood perfusion by photoplethysmography: evaluation of a new application,” Acta Physiol Scand., vol. 183, No. 4, Dec. 7, 2004, pp. 335-343. |
Sum, K.W., et al. “Vital Sign Monitoring for Elderly at Home: Development of a Compound Sensor for Pulse Rate and Motion,” Studies in Health Technology and Informatics, Personalised Health Management Systems, IOS Press, Jan. 1, 2005, pp. 43-50. |
Mendelson, Y., et al., “A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring,” Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug. 30, 2006, pp. 912-915. |
Jung, W., “Chapter H: OP Amp History,” Op Amp Applications Handbook, published by Newnes/Elsevier, Jan. 1, 2005, ISBN-0-7506-7844-5, pp. H.1-H.72. |
Texas Instruments, “General Purpose Operational Amplifiers”, SLOSS094B, Nov. 1, 1970, pp. 1-19. |
Schmitt, O., “A simple differential amplifier,” Review of Scientific Instruments vol. 8, No. 126, Apr. 1, 1937, American Institute of Physics, pp. 1-3, available at: http://dx.doi.org/10.1063/1.1752256. |
Gray, p, et al., “Recent Advances in Monolithic Operational Amplifier Design,” IEEE Transactions on Circuits and Systems, vol. CAS-21, No. 3, May 1, 1974, pp. 317-327. |
Horowitz, P., et al., “The Art of Electronics,” Second Edition, Cambridge University Press, Jan. 1, 1989, pp. 98-102. |
Petition for Inter Partes Review of U.S. Pat. No. 9,044,180; Apple, Inc. (Petitioner) v. Valencell, Inc. (Patent Owner), IPR 2017-01947, filed Aug. 15, 2017, pp. 1-86. |
Asada, H., et al., “Mobile Monitoring with Wearable Photoplethysmographic Biosensors,” IEEE Engineering in Medicine and Biology Magazine, May/Jun. 2003 Issue, May 1, 2003, pp. 28-40. |
Wang, L et al. “Multichannel Reflective PPG Earpiece Sensor with Passive Motion Cancellation,” IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 4, Dec. 1, 2007, pp. 235-241. |
Bumgardner, W., “Top 8 Walking Speedometers and Odometers”, retrieved on Jun. 18, 2014, retrieved from internet: http://walking.about.com/od/measure/tp/speedometer.htm. |
Garmin, “Running Watches Heart Rate Monitor”, Swim Watch, Heart Rate Monitors Reviews, Oct. 12, 2010, retrieved from internet: http://web.archive.org/web/*/http://heartratemonitors-reviews.com/category/swim-watch/. |
Han et al. “Artifacts in wearable photoplethysmographs during daily life motions and their reduction with least mean square based active noise cancellation method,” Computers in Biology and Medicine 42 (2012), Published Dec. 27, 2011, Elsevier Ltd., pp. 387-393. |
Poh, Ming-Zher et al., “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation.” Optics Express, vol. 18, No. 10, May 7, 2010, pp. 1-13. |
Wise, K., “Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage,” Sensors and Actuators A, vol. 136, Feb. 5, 2007, pp. 39-50. |
Gigoi, B.P., et al., “Integration Technology for MEMS Automotive Sensors,” 28th Annual Conference of the IEEE, Jan. 1, 2002, pp. 2712-2717. |
Ko, W., “Trends and frontiers of MEMS,” Sensors and Actuators A, vol. 136, Feb. 1, 2007, pp. 62-67. |
Barbour, N., “Inertial Sensor Technology Trends,” IEEE Sensors Journal, vol. 1, No. 4, Dec. 1, 2001, pp. 332-339. |
Vigario, R., “Independent Component Approach to the Analysis of EEG and MEG Recordings,” IEEE Transactions on Biomedical Engineering, vol. 47, No. 5, May 1, 2000, pp. 589-593. |
Mayer-Kress, G., “Localized Measures for Nonstationary Time-Series of Physiological Data,” Integr. Physiol. Behav. Sci, vol. 29, No. 3, Jul. 1, 1994, pp. 205-210. |
Shaw, G.A., et al., “Warfighter Physiological and Environmental Monitoring: A Study for the U.S. Army Research Institute in Environmental Medicine and the Soldier Systems Center,” Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA., Nov. 1, 2004, pp. 1-128. |
Laguna, P., et al., “Power Spectral Density of Unevenly Sampled Data by Least-Square Analysis: Performance and Application to Heart Rate Signals,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 6, Jun. 1, 1998, pp. 698-715. |
Richardson, J.E., “Physiological Responses of Firefighters Wearing Level 3 Chemical Protective Suits While Working in Controlled Hot Environments,” J. Occup. Environ. Med., vol. 43, No. 12, Dec. 1, 2001, pp. 1064-1072. |
Scanlon, M., “Acoustic Sensors in the Helmet Detect Voice and Physiology,” Proceedings of SPIE, vol. 5071, Jan. 1, 2003, pp. 41-51. |
Arnold, M., et al., “Adaptive AR Modeling of Nonstationary Time Series by Means of Kalman Filtering,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 5, May 1, 1998, pp. 553-562. |
Yan, Y., et al., “Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner-Ville distribution,” Journal of NeuroEngineering and Rehabilitation, vol. 2, No. 3, Mar. 1, 2005, pp. 1-9. |
Lee, C.M., et al., “Reduction of Motion Artifacts from Photoplethysmographic Recordings Using a Wavelet Denoising Approach,” IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, Jan. 1, 2003, pp. 194-195. |
Foo, J.Y.A., “Comparison of wavelet transformation and adaptive filtering in restoring artefact-induced time-related measurement,” Biomedical Signal Processing and Control vol. 1, No. 1 (2006), Mar. 24, 2006, pp. 93-98. |
Wood, L., et al., “Active Motion Artifact Reduction for Wearable Sensors Using Laguerre Expansion and Signal Separation,” Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, Sep. 1, 2005, pp. 3571-3574. |
Cacioppo, J., “Inferring Psychological Significance From Physiological Signals,” American Psychologist, vol. 45, No. 1, American Psychological Association, Jan. 1, 1990, pp. 16-28. |
Rhee, S., et al., “Artifact-Resistant Power-Efficient Design of Finger-Ring Plethysmographic Sensors,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 7, Jul. 1, 2001, pp. 795-805. |
Wagner, J., et al., “From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification,” IEEE Int. Conf. Multimedia and Expo, Jan. 1, 2005, pp. 1-4. |
Parkka, J., et al., “Activity Classification Using Realistic Data From Wearable Sensors,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 1, Jan. 1, 2006, pp. 119-128. |
Georgoulas, G., et al., “Predicting the Risk of Metabolic Acidosis for Newborns Based on Fetal Heart Rate Signal Classification Using Support Vector Machines,” IEEE Transactions on Biomedical Engineering, vol. 53, No. 5, May 1, 2006, pp. 875-884. |
Liao, W., et al., “A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network,” Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jan. 1, 2005, pp. 1-8. |
Moy, M., et al., “Accuracy of uniaxial accelerometer in chronic obstructive pulmonary disease,” Journal of Rehabilitation Research and Development, vol. 45, No. 4, Nov. 4, 2008, pp. 611-618. |
Moy, M., et al., “Ambulatory Monitoring of Cumulative Free-Living Activity,” IEEE Engineering in Medicine and Biology Magazine May/Jun. 2003, May 1, 2003, pp. 89-95. |
Ricke, AD, et al. “Automatic Segmentation of Heart Sound Signals Using Hidden Markov Models,” IEEE Computers in Cardiology 2005; vol. 32, Jan. 1, 2005, pp. 953-956. |
Acharya, R., et al., “Classification of cardiac abnormalities using heart rate signals,” Medical and Biological Engineering and Computing 2004, vol. 42, No. 3, Jan. 1, 2004, pp. 288-293. |
Allen, F., et al., “Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models,” Institute of Physics Publishing Physiological Measurement, vol. 27, No. 10, Jul. 25, 2006, pp. 935-951. |
Lee, J., et al., “Design of filter to reject motion artifact of pulse oximetry,” Computer Standards & Interfaces, vol. 26 (2004), Jul. 4, 2003, pp. 241-249. |
Rezek, I.A., et al., “Stochastic Complexity Measures for Physiological Signal Analysis,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 9, Sep. 1, 1998, pp. 1186-1191. |
Gibbs, P., et al., “Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS accelerometers,” Smart Struct Mater., International Society for Optics and Photonics, Jan. 1, 2005, pp. 1-9. |
Merletti, R., et al., “Advances in processing of surface myoelectric signals: Part 1,” Medical and Biological Engineering and Computing, vol. 33, No. 3, May 1, 1995, pp. 362-372. |
Asada, H., et al., “Active Noise Cancellation Using MEMS Accelerometers for Motion-Tolerant Wearable Bio-Sensors,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, Sep. 1, 2004, pp. 2157-2160. |
Newman, A., et al., “Sleep Disturbance, Psychosocial Correlates, and Cardiovascular Disease in 5201 Older Adults: The Cardiovascular Health Study,” Journal of American Geriatric Society, vol. 45, No. 1, Jan. 1, 1997, pp. 1-7. |
Chan, K.W., et al., “Adaptive Reduction of Motion Artifact from Photoplethysmographic Recordings using a Variable Step-Size LMS Filter,” IEEE, Sensors, Jun. 1, 2002, pp. 1342-1346. |
Dew, M.A., et al., “Healthy Older Adults' Sleep Predicts All-Cause Mortality at 4 to 19 Years of Follow-Up,” Psychosomatic Medicine, vol. 65, Jan. 1, 2003, pp. 63-73. |
Gibbs, P., et al., “Reducing Motion Artifact in Wearable Bio-Sensors Using MEMS Accelerometers for Active Noise Cancellation,” IEEE American Control Conference, Jun. 1, 2005, pp. 1581-1586. |
Yang, B-H, et al., “Development of the ring sensor for healthcare automation,” Robotics and Autonomous Systems, vol. 30. Jan. 1, 2000, pp. 273-281. |
Healey, J., et al., “Detecting Stress During Real-World Driving Tasks Using Physiological Sensors,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, No. 2, Jun. 1, 2005, pp. 156-166. |
Hayes, M.J., et al., “A New Method for Pulse Oximetry Possessing Inherent Insensitivity to Artifact,” IEEE Transactions on Biomedical Engineering, vol. 48, No. 4, Apr. 1, 2001, pp. 452-461. |
Wilson, G., et al., “An Analysis of Mental Workload in Pilots During Flight Using Multiple Psychophysiological Measures,” The International Journal of Aviation Psychology, vol. 12, No. 1, May 1, 2001, pp. 3-18. |
Baddeley, A.D., “Selective Attention and Performance in Dangerous Environments,” HPEE, vol. 5, No. 1, Oct. 1, 2000, pp. 86-91. |
Wilson, G.F., et al., “Performance Enhancement with Real-time Physiologically Controlled Adapative Aiding,” Proceedings of the IEA 2000 / HFES 2000 Congress, vol. 44, Jul. 30, 2000, pp. 61-64. |
Skinner, M.J., et al., “Workload Issues in Military Tactical Airlift,” The International Journal of Aviation Psychology, vol. 12, No. 1, May 1, 2001, pp. 79-93. |
Helander, M., “Applicability of Drivers' Electrodermal Response to the Design of the Traffic Environment,” Journal of Applied Psychology, vol. 63, No. 4, Jan. 18, 1978, pp. 481-488. |
Perala, C.H., “Galvanic Skin Response as a Measure of Soldier Stress,” Army Research Laboratory, ARL-TR-4114, May 1, 2007, pp. 1-35. |
Zhai, J., et al., “Stress Detection in Computer Users Based on Digital Signal Processing of Noninvasive Physiological Variables,” Conf Proc IEEE Eng Med Biol Soc., New York, NY, Aug. 31, 2006; pp. 1355-1358. |
Zhai, J., et al., “Stress Recognition Using Non-invasive Technology,” FLAIRS Conference, Melbourne Beach, Florida, May 11, 2006, AAAI Press, pp. 395-401. |
Endler, J., “Signals, Signal Conditions, and the Direction of Evolution,” The American Naturalist, vol. 139, Supplement, Mar. 1, 1992, pp. S125-S153. |
Sadeh, A., “The role of actigraphy in sleep medicine,” Sleep Medicine Reviews, vol. 6, No. 2, Jan. 1, 2002, pp. 113-124. |
Number | Date | Country | |
---|---|---|---|
20170332974 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
61586874 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14370658 | US | |
Child | 15661220 | US |