Physiological monitoring system

Information

  • Patent Grant
  • 11504002
  • Patent Number
    11,504,002
  • Date Filed
    Thursday, April 23, 2020
    3 years ago
  • Date Issued
    Tuesday, November 22, 2022
    a year ago
Abstract
Systems and method for monitoring patient physiological data are presented herein. In one embodiment, a physiological sensor and a mobile computing device can be connected via a cable or cables, and a processing board can be connected between the sensor and the mobile computing device to conduct advanced signal processing on the data received from the sensor before the data is transmitted for display on the mobile computing device.
Description
BACKGROUND
Field of the Disclosure

The present disclosure relates in general to noninvasive patient monitoring systems, including oximeters and co-oximeters, and their accessories such as sensors or cables. In particular, this disclosure relates to patient monitors capable of connectivity to a mobile computing device.


Description of the Related Art

Oximetry utilizes a noninvasive optical sensor to measure physiological parameters of a patient. In general, the sensor has light emitting diodes (LEDs) that transmit optical radiation into a tissue site and a detector that responds to the intensity of the optical radiation after absorption (e.g., by transmission or transreflectance) by, for example, pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for oxygen saturation (SpO2), pulse rate, plethysmograph waveforms, perfusion quality index (e.g., an index that quantifies perfusion), assessments of other blood constituents, parameters or analytes, including for example, a percent value for arterial carbon monoxide saturation (HbCO), a percent value for methemoglobin saturation (a brownish-red form of hemoglobin that cannot function as an oxygen carrier) (HbMet), total hemoglobin (HbT), fractional SpO2 (SpaO2) or the like. Additionally, caregivers often desire knowledge of HbO2, Hb, blood glucose (HbGu), water, the presence or absence of therapeutic drugs (aspirin, Dapson, nitrates, or the like) or abusive/recreational drugs (methamphetamine, alcohol, steroids, or the like), concentrations of carbon dioxide (CO2), oxygen (O2), oxygen concentration, pH levels, bilirubin, perfusion quality, albumin, cyanmethemoglobin, and sulfhemoglobin (HbSulf), signal quality or the like. It is noted that “oximetry” as used herein encompasses its broad ordinary meaning known to one of skill in the art, which includes at least those noninvasive procedures for measuring parameters of circulating blood through spectroscopy. Moreover, “plethysmograph” as used herein (commonly referred to as “photoplethysmograph”), encompasses its broad ordinary meaning known to one of skill in the art, which includes at least data representative of a change in the absorption of particular wavelengths of light as a function of the changes in body tissue resulting from pulsing blood.


Oximeters capable of reading many of the foregoing parameters during noise due to patient movement, electromagnetic interference, and ambient light are available from Masimo Corporation (Masimo) of Irvine, Calif. Moreover, portable and other oximeters are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952, and 5,769,785, incorporated by reference herein, and others patent publications such as those listed at http://www.masimo.com/patents.htm. Such noise filtering oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. Some blood parameter monitors including oximeters are the standard of care in certain critical environments like surgery and neonatal care.


SUMMARY

Mobility and ease of use are key factors in the health care industry because they correlate to efficient, rapid patient care as well as enable patients to participate in their own care. Therefore, the present disclosure provides physiological monitoring devices which are compatible with handheld monitors such as common mobile computing devices for ease of use and portability.


This disclosure describes embodiments of a mobile physiological sensor that can be conveniently used in conjunction with existing mobile devices of users in a variety of contexts. In certain embodiments, a physiological monitoring system can be designed to include a sensor and cable assembly with a processing board or card, and the system can be connectable to a mobile computing device, such as a smartphone, such that display of the monitored physiological data can occur on the computing device. The board or card can communicate the data for display with the mobile computing device wirelessly or through a physical and electrical connection with the cable assembly. In some embodiments, the board or card can include one or more signal processors and associated memory, I/O, and the like to provide monitored physiological data to applications executing on traditional smartphone processing environments, such that board or card handles advanced signal processing and the smartphone displays parameter data. In an embodiment, the board is housed in a portion of the cable such that it is not directly coupled to the sensor or the smartphone connector. This configuration has the advantage of mechanically isolating the board so that it does not encumber the sensor or the smart phone connection. As a result, the physiological monitoring system can be more portable than existing monitoring systems, thereby facilitating enhanced patient care for more patients.


For example, such a system can be sent home with a patient to gather physiological measurement data outside the hospital setting. In addition, portable physiological monitoring equipment as disclosed herein can facilitate the gathering of physiological measurement data in a variety of other contexts, such as sports or extreme sports, military training and combat, aviation, health awareness, high-altitude activities, monitoring of professionals in dangerous conditions, screening for medical conditions such as congenital heart defects, field hospitals, and mobile medical clinics, to name a few.


Physiological monitoring systems such as those that are described herein enable oximeter use outside of the traditional hospital setting. This is beneficial for more comprehensive patient care. For instance, prior to a surgical procedure during which a patient will be sedated, such as by general anesthesia, a physician can be concerned about the patient's proclivity toward apnea. A portable oximetry sensor compatible with the patient's smartphone can be sent home with the patient prior to the procedure, and the sensor can be worn overnight. Data collected from the sensor can be passed to the smartphone and made available to the doctor, such as by uploading to the internet or being downloadable from the device, to identify a risk of hypoxemia. This example illustrates one of the many benefits of a portable oximetry system compatible with a common mobile computing device.


For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the inventions disclosed herein. Thus, the inventions disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Throughout the drawings, reference numbers can be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate embodiments of the inventions described herein and not to limit the scope thereof.



FIG. 1A illustrates an embodiment of a physiological monitoring system.



FIG. 1B illustrates another embodiment of a physiological monitoring system.



FIG. 1C illustrates an exploded view of one embodiment of the cable components of FIG. 1A.



FIG. 2 illustrates a block diagram of an embodiment of a mobile physiological monitoring system.



FIG. 3 illustrates an embodiment of a computing environment in which a mobile patient monitoring device can communicate with various computing devices and services over a network.



FIGS. 4A-4D illustrate various embodiments of software applications for display and management of physiological monitoring data.



FIGS. 5A-5C illustrate various embodiments of mobile physiological sensors assemblies.



FIG. 6 illustrates an embodiment of a pre-anesthesia monitoring process.



FIG. 7 illustrates an embodiment of a continuum of care process.



FIG. 8 illustrates an embodiment of a mobile physiological data monitoring process.



FIG. 9 illustrates an embodiment of a user-guided monitoring process.



FIG. 10 illustrates an embodiment of a data-logging process.





DETAILED DESCRIPTION
I. Example Mobile Physiological Monitoring Systems


FIGS. 1A, 1B, and 1C illustrate embodiments of a physiological monitoring system 100. The physiological monitoring system 100 shown in FIG. 1A includes a sensor 110, first cable 120, processing module 130, second cable 140, connection port 150, and a mobile computing device, illustrated here as smartphone 160. Although specific reference can be made to smartphones in this disclosure, any mobile computing device compatible with the physiological sensor system can be used. A compatible mobile computing device can be one of a wide range of mobile devices such as a mobile communications device (such as a smartphone), laptop, tablet computer, netbook, PDA, media player, mobile game console, wristwatch, wearable computing device, or other microprocessor based device configured to interface with a physiological sensor. Some embodiments of the mobile computing device can be used with the system for display of data and/or storage of data. Cables 120, 140 used with the device can be flex cables or other cables, including cables having triboelectric properties.


As illustrated, the sensor 110 can be a pulse oximeter capable of being secured to a digit such as a finger, for example the Masimo Rainbow® pulse oximeter. However, this is for illustrative purposes only, and the sensor 110 can be any physiological sensor. In some embodiments, other varieties of pulse oximeters can be used, for example adhesive sensors, combination reusable/disposable sensors, soft and/or flexible wrap sensors, infant or pediatric sensors, multisite sensors, or sensors shaped for measurement at a tissue site such as an ear. In other embodiments, the sensor 110 can be any of a variety of sensors, such as a pulse oximeter, a brain function monitor such as an electroencephalograph (“EEG”), a gas monitor such as a capnometer or capnograph, an acoustic respiratory sensor, a heart function monitor such as an electrocardiograph (“ECG”), blood alcohol level sensors, temperature sensors, respiratory inductive plethysmography bands, bioelectric sensors, electronic fetal monitors, or the like. The sensor 110 can be reusable in some embodiments, can be disposable in some embodiments, and in other embodiments the sensor 110 can have both reusable and disposable components. In some embodiments, the sensor can be available in different sizes.


As illustrated in FIG. 1B, in an embodiment, cable 120 can include a port 170 at the sensor-facing end of the cable 120, and a disposable, connectable sensor 180 may be attached to the cable 120. In some embodiments, the connectable sensor 180 can be reusable, or can be partially reusable and partially disposable. A sensor connection mechanism 172 can be configured to receive, or otherwise connect to, connectable sensors of different types, such as any of the physiological sensors discussed above. Although connection port 150 is illustrated as being configured for physical and electrical connection to a mobile device, in some embodiments, the connection port may be a wireless connection port configured to wirelessly transmit filtered physiological parameter data to the mobile device or another computing device.


In various oximeter embodiments, the sensor 110 provides data in the form of an output signal indicative of an amount of attenuation of predetermined wavelengths (ranges of wavelengths) of light by body tissues, such as, for example, a digit, portions of the nose or ear, a foot, or the like. The predetermined wavelengths often correspond to specific physiological parameter data desired, including for example, blood oxygen information such as oxygen content (“SpOC”), oxygen saturation (“SpO2”), blood glucose, total hemoglobin (“SbHb”), methemoglobin (SbMet”), carboxyhemoglobin (“SpCO”), bulk tissue property measurements, water content, pH, blood pressure, respiration related information, cardiac information, indications of perfusion (“PI”), pleth variability indices (“PVI”), or the like. In some embodiments, sensor data can provide information regarding physiological parameters such as EEG, ECG, acoustic respiration rate (“RRa”), end-tidal carbon dioxide (“EtCO2”), return of spontaneous circulation (“ROSC”), or the like.


The sensor data can be corrupted by noise due to patient movement, electromagnetic interference, or ambient light. Therefore, the sensor data is transmitted from sensor 110 along the first cable 120 to the processing module 130, which can apply noise filtering and signal processing techniques described below to provide output data for display on the smartphone 160. Such complex processing techniques can exceed the processing capabilities of the smartphone 160, and therefore the processing module 130 drives operation of the sensor 110 and handles signal processing and transmits the processed sensor parameter data as output measurement data. Smartphone 160 can be coupled to the processing module 130 by a second cable 140 and connection port 150, in some embodiments, and in other embodiments can be configured to wirelessly transmit the parameter data to the smartphone 160 or another computing device.


Smartphone 160 can include a display screen such as an LED or LCD screen, and can include touch sensitive technologies in combination with the display screen. Smartphone 160 can include software configured to display some or all of the output measurement data on the display screen. The data display can include numerical or graphical representations of blood oxygen saturation, heart rate, and/or a plethysmographic waveform, and some embodiments can simultaneously display numerical and graphical data representations.


The smartphone 160 can include software such as an application configured to manage output measurement data from the processing module 130. The application functionality can include trend analysis, current measurement information, alarms associated with above/below threshold readings, reminders to take measurement data at certain times or cycles, display customization, iconic data such as hearts beating, color coordination, bar graphs, gas bars, charts, graphs, or the like, all usable by a caregiver or smartphone user to enable helpful and directed medical monitoring of specified physiological parameters. The smartphone 160 can also include network connection capabilities such as one or more of a cellular network, satellite network, Bluetooth, ZigBee, wireless network connection such as Wi-Fi, and a wired network connection.


In some embodiments, software capable of analyzing the output measurement data received from the processing module 130 and making the data available in an appropriate manner for health management is installed on the smartphone 160. In some embodiments, the smartphone 160 includes software which allows a user to view the data in a multitude of ways. For example, in some embodiments a user can be able to view the raw data received from the sensor 110. In other embodiments, a user can be able to select from a plurality of graphical representations of the data (e.g., bar graphs, charts, etc). In other embodiments, the user can be able to manipulate the data to visualize trends in the data. The smartphone 160 can also be able to alert the user and/or a physician or other care provider to an abnormal data reading. For example, an abnormally low or high blood oxygen saturation reading can cause the smartphone 160 to buzz, vibrate or otherwise notify the user of an abnormal reading, or to transmit a notification to a physician via a network.


The smartphone 160 can have the capability of sending physiological data to a computer (e.g., a home computer) on which the user manages his health data. The data can also be sent to a physician or pharmacist for their expertise and feedback. The smartphone 160 and the computing device to which data is being sent can be connected directly or via a network such as a LAN, WAN or the Internet. The connection can be wired or wireless. Other connection configurations are also possible.


The system 100 as illustrated in FIG. 1C shows an exploded view of the processing module 130 and the connection port 150 to reveal the components thereof. The processing module 130 drives operation of the sensor 110 and receives raw detected signals from the sensor 110. The processing module 130 processes the raw detected signals to determine a physiological measurement. The processing module 130, in some embodiments, employs advanced signal processing techniques, including parallel engines and adaptive filters, to allow accurate monitoring of arterial oxygen saturation and pulse rate even during the most challenging conditions. In some embodiments, the processing module 130 can employ Signal Extraction Technology, or Masimo SET®, using parallel signal processing engines to separate the arterial signal from sources of noise (including the venous signal) to measure SpO2 and pulse rate accurately, even during motion. The processing module 130 can filter raw physiological sensor data input from the sensor 110, and the processing module 130 can provide filtered physiological parameter data to the mobile computing device for display or storage.


One drawback of implementing physiological measurement technology on mobile computing devices is the processing overhead typically required for recognizing parameters from data input by the sensor by filtering such raw physiological measurement data. Processing overhead measures the total amount of work the central processing unit (CPU) of the device can perform and the percentage of that total capacity which is used by individual computing tasks, such as filtering raw physiological measurement data. In total, these tasks must require less than the processor's overall capacity. Moreover, complicated software required to process raw signals and determine physiological measurements can be stored in the processing module 130 in a separate memory unit separate from the mobile device. This frees up memory available to the mobile device.


The current generation of mobile processors is not well adapted to deal with the complexity and corresponding processing overhead of filtering raw physiological measurement data, especially in conjunction with the many other common high performance uses of mobile devices. As an example, the mobile device processor may be used to run a mobile physiological monitoring application concurrently with receiving sensor data, among other applications selected by the user. Many common mobile applications such as maps, games, email clients, web browsers, etc., are typically open on a user's smartphone. During physiological monitoring, a substantially constant stream of data can be sent from the sensor to the mobile device. Accordingly, if the mobile CPU is required to filter the raw data, device performance can be impaired and the user can experience significant latency in the use of other applications. If the data filtering overhead exceeds the overall processing capacity of the CPU then the mobile device would be incapable of processing the data, and the user can experience serious technical problems as a result.


Overload of the CPU can significantly increase system power consumption. To mitigate the possibility of CPU overload, a larger processor can be provided. However, increasing the size of the mobile processor core or cache would deliver performance increases only up to a certain level, beyond which heat dissipation issues would make any further increase in core and cache size impractical. Additionally, overall processing capacity is further limited by the smaller size of many mobile devices, which limits the number of processors that can be included in the device. Because mobile computing devices are generally battery-powered, high performance uses also shortens battery life.


By providing a separate processing module 130 to mediate the data flow from the sensor 110 to the mobile device 160, the complex signal processing required for generating recognizable physiological parameters from raw sensor data can be handled by the processing module 130 and not the mobile CPU. Moving the signal processing calculations away from the mobile CPU frees it up for important core tasks as well as processing of mobile applications. Further, optimizing the mobile CPU can directly correlate with increased battery life, even considering the power draw of the processing module 130 on the mobile device battery. Accordingly, incorporation of a processing module 130 into a mobile sensor cable can be beneficial for conserving processing of the mobile CPU and for reducing battery demands across the system 100.


Coupled to cable 120 is an information element 133. The information element 133 could be provided through an active circuit such as a transistor network, memory chip, EEPROM (electronically erasable programmable read-only memory), EPROM (erasable programmable read-only memory), or other identification device, such as multi-contact single wire memory devices or other devices, or the like.


The processing module 130 includes a lower shell 131, an enclosure with bend relief 132, processing board 134, and an upper shell 135. The enclosure 132, upper shell 135, and lower shell 131 surround the processing board 134 and can protect the sensitive circuitry of the board 134 from damage. In such an embodiment, processing board 134 is the portion of the module 130 that communicates with the first cable 120 and sensor 110, as well as with the second cable 140 and mobile computing device. In an embodiment, the board 134 can access information stored on the information element 133 of the first cable 120.


In an embodiment, the processing module 130 is located in a middle portion of the cable, away from either the sensor 110 or the connection port 150. The processing module 130 can be located a first distance from, and mechanically isolated from, the sensor, so as not to interfere with the placement of the sensor on a measurement site of a user's body. This placement prevents the sensor from being encumbered by the processing module 130 and interfering with placement and use of the sensor. Thus, the sensor is also kept relatively lightweight for ease of use. The processing module 130 can be located a first distance from, and mechanically isolated from, the connection port 150, so as not to interfere with the ability of the connection port 150 to secure to a user's mobile device. This allows the connection port 150 to be unencumbered by the bulk and weight of the processing module 130 which could interfere with the connection to the user's mobile device. In some embodiments, the second distance can be smaller than the first distance, placing the processing module 130 closer to the connection port 150 than to the sensor 110. This prevents the weight of the processing module 130 from interfering with or pulling on the sensor 110. In an embodiment, the components of the processing module 130 are constructed from lightweight materials in order to avoid pulling the sensor 110 off of a user or disconnecting the connection port 150 from a mobile device.


The processing module 130 and sensor 110 draw power for operation from the mobile computing device for operation. This frees the processing module 130 from needing a separate power source. Also, although a display screen can be included on the processing module 130, no separate display screen is necessary as the measurements are displayed on the user's mobile device.


The enclosure 132 can have a bend relief portion 138 on either side. The bend relief portions 138 may enhance the electrical and mechanical integrity and overall performance of the cable assembly by providing a gradual transition from the flexible cables to substantially rigid connection points with the processing board 134 contained within the enclosure. The bend relief portions 138 can prevent mechanical force, such as an axial load or flexing, that is applied to the exterior of either cable 120,140 from being transferred to the electrical terminations with the processing board 134. The bend relief portions 138 can be premolded and formed with the body of the enclosure, and in some embodiments a crimp ring may be secured around the cable within each bend relief.


The enclosure 132 can be formed, in some embodiments, by a flexible plastic or rubber material. Suitable materials can include thermoplastic rubbers such as Santoprene®. The upper and lower shells 135, 131 can be formed from a hard plastic material. Suitable materials can include thermoplastic polymers. For example, in an embodiment the upper and lower shells 135, 131 can be formed from a blend of two or more of polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), or another polyester, such as Bayer Makroblend® UT5207. In another embodiment, the upper and lower shells 135, 131 can be formed from a resin, for example a blend of semi-crystalline polyester (typically PET or PBT) and PC, such as XENOY™ Resin 6620U. The material for the upper and lower shells 135, 131 can be selected for having desirable impact resistance, toughness, and heat resistance. The upper and lower shells 135, 131 can be formed from the same or different materials.


The body portion of the enclosure 132 can be formed as a gasket which can seal between the upper shell 135 and lower shell 131 and form a substantially water-tight seal, in order to protect the processing board 134 from moisture. In some embodiments, the upper and lower shells 135, 131 can be formed to fit together with the enclosure 132 in a substantially water-tight manner. In an embodiment, the upper and lower shells 135, 131 can be sealed to the enclosure 132 using epoxy around the perimeter of each shell, and/or on mounting posts located on the shell or the enclosure. In some embodiments, the cable entry areas of each bend relief portion 138 of the enclosure 132 can also be filled with epoxy to form a substantially sealed enclosure for the processing board 134.


The cables 120, 140 can be constructed with a Kevlar fiber core for strength and durability, in some embodiments. The Kevlar fiber core can be bundled in the center of a plurality of signal lines, for example five signal lines. The signal lines can be tinned copper jacketed with polyprolylene (PP). The bundle of signal lines can be encased in a braided outer shield, for example a tinned copper outer shield with approximately 95% minimum coverage of the bundled signal lines. The outer shield may be encased, in turn, by a multi-layer Teflon film or wrap, in some embodiments, to form a low-friction separator and barrier from an outer jacket. The cables 120, 140 can be further protected by a medical grade PVC outer jacket, or an outer jacket constructed from another biocompatible, flexible plastic or rubber material. Other configurations for the cables 120, 140 are possible. The cables can be designed to have a minimum pull strength of 75 kg, or approximately 75 kg, in some embodiments.


As illustrated, some embodiments can optionally include a second processing board 136. For example, the first processing board 134 can be a digital processing board and the second processing board 136 can be an analog processing board. The analog and digital processing boards may perform separate processing functions. In some embodiments, wires from the first cable 120 can be connected to the analog processing board 136, and wires from the second cable 140 can be connected to the digital processing board 136. In some embodiments, the digital processing board can be in communication with the first information element 133. The first information element 133 can be an EPROM or EEPROM device. The analog processing board can be in communication with a second information element 137 coupled to cable 120. The second information element 127 can be a resistor, in some embodiments, for example an ArCal or ProCal resistor. A resistance value of the resistor can be indicative of a wavelength of light used in an oximetry sensor 110 coupled to the cable 120, and the resistor can be coupled in parallel with the sensor.


In one embodiment, the processing board or boards can include one of many OEM boards commercially available from Masimo which process incoming intensity signals responsive to an amount of attenuation of light in pulsing patient blood and which determine output measurements for a wide variety of physiological parameters from the processing. The processing board 134 can include the MS-2040 OEM board available from Masimo, which can measure Masimo optical SET measurements such as oxygen saturation (SpO2), pulse rate, perfusion index (PI), signal quality (SIQ), optionally pleth variability index (PVI), and the like. The physiological monitoring system 100 can also include, in addition to or instead of the MS-2040 OEM board, other processing boards available from Masimo. For example, the physiological monitoring system 100 can include the MX-5 board available from Masimo, which has variable power consumption based on which parameters are being acquired and displayed. The MX-5 board can measure the Masimo SET parameters described above plus optional Rainbow® parameters including: hemoglobin (SpHb), oxygen content (SpOC), carboxyhemoglobin (SpCO), methemoglobin (SpMet), and acoustic respiration rate (RRa) (among possibly others). The addition of the acoustic respiration rate can result in the display of the physiological monitoring system 100 outputting a second waveform (e.g., an acoustic respiration waveform).


The board 134 can include a signal processing system. Embodiments of the signal processing system can employ a noise filtering system configured to filter the data obtained during pulse oximetry measurements using red and infrared light, as such data is often contaminated due to motion. Identification and removal of these motion artifacts is often a prerequisite to any signal processing used to obtain blood oxygen saturation, pulse rate, or other physiological data. The signal processing system can provide the desired parameters as outputs for a display. Outputs for display are, for example, blood oxygen saturation, heart rate, and a clean plethysmographic waveform. Complex operations such as noise filtering and signal processing can require specialized processing or significant computational overhead, such that a typical user mobile device can not have sufficient processing power. Accordingly, the processing module 130 can perform signal processing on raw data received from the sensor and can provide physiological parameters as an output to a display and/or storage device.


The connection port 150 includes shell 151, bend relief 152, connector 153, and cap 154. Bend relief 152 is an important feature of a medical cable assembly for both the electrical and mechanical integrity and performance of the second cable 140. The connection port 150 is typically rigid, and the bend relief 152 provides a transition from the stiffness of the connection port 150 to the flexibility of the second cable 140. Preferably, bend relief 152 will prevent mechanical force applied to the exterior of the cable from being transferred to the electrical terminations within the connector, which could lead to failure.


Shell 151 generally encloses connector 153 and can be matable with cap 154 to provide added protection for the connector 153. Connector 153 can be shaped to physically and electrically connect with a specific device. Connection port 150 can be one of many different types of ports. For example, connection port 150 can be a device-specific port such as an iPhone port or another smartphone port, a USB port, an Ethernet port for connection to a wired network, a serial port (e.g., RS232), a video out port which allows projection of the device screen on a larger display, combinations of the same, or the like. Further, the connection port 150 can be equipped with one or more wireless interfaces (such as WiFi, Bluetooth, Zigbee, or the like).



FIG. 2 illustrates a block diagram of an example physiological monitoring system 200. As illustrated, the system 200 includes a cable 230 and a mobile device 220. The cable 230 includes a sensor 202, which can be any of the physiological sensors described above with respect to FIGS. 1A, 1B, and 1C, and a signal processing module 210. The mobile device 220 can provide power 206 to the signal processing module 210 and the sensor 202. The sensor 210 can transmit raw data 204 to the signal processing module 210, and the signal processing module can convert the raw data 204 into data representing physiological parameters 226 for transmission to the mobile device 220.


The mobile device 220 can be any of the portable computing devices discussed above, such as a smartphone, laptop, tablet, or the like. The mobile device 220 can include a display 222 for display of the parameters, for example in a user interface and/or software application, as discussed in more detail below. The display 222 can include a display screen such as an LED or LCD screen, and can include touch sensitive technologies in combination with the display screen. The mobile device 220 can also include storage 224, which can be configured for storage of parameters 226 and parameter history data and/or software applications for managing the data and sensor 110. In some embodiments, the storage 224 can be physical storage of the device 220, and in some embodiments the storage 224 can be remote storage, such as on a server or servers of a data hosting service. The mobile device 220 can also include a network connectivity feature 228 such as Bluetooth, satellite network capability, mobile communications capability, Wi-Fi, or the like. In some embodiments the mobile device 220 can also include a data transfer port.


The signal processing module 210 can be configured to receive raw sensor data 204 from the sensor 202, and to process the raw data 204 into identifiable parameters 226 for display and/or storage by the mobile device 220. In some embodiments, the mobile device 220 can not have sufficient processing power to handle the conversion of raw data 204 to identifiable parameters 226. For example, in the context of pulse oximetry, the signal processing module 210 can use adaptive filter technology to separate an arterial signal, detected by a pulse oximeter sensor, from the non-arterial noise (e.g. venous blood movement during motion). During routine patient motions (shivering, waving, tapping, etc.), the resulting noise can be quite substantial and can easily overwhelm a conventional ratio based oximetry system. This can provide accurate blood oxygenation measurements even during patient motion, low perfusion, intense ambient light, and electrocautery interference. Accordingly, false alarms can be substantially eliminated without sacrificing true alarms.


The signal processing module 210 can include a noise filter engine 212. In some embodiments, the noise filter engine 212 can perform a discrete saturation transform process to substantially remove noise from the raw sensor data 204. The discrete saturation transform process outputs a maximum power as an SpO2 percentage. For example, the discrete saturation transform process can build a noise reference signal from incoming red and infrared signals of a pulse oximeter sensor, in some embodiments, for each percent SpO2, from 1 to 100 percent. The noise reference signal can be passed through an adaptive filter which can cancel correlated frequencies between the reference signal and the incoming infrared signal. If the frequencies between the two inputs are all similar, the entire signal can be canceled, and a low energy output occurs. If the frequencies between the two inputs are dissimilar, a minimal amount of signal cancels and a high-energy output can be obtained. The energy output from the adaptive filter can be measured and plotted for all possible saturations from 1 to 100 percent, for example in 0.5 percent increments every 0.4 seconds, in some embodiments. During measurements in which the user exhibits no motion, a discrete cosine transfer algorithm can generate one energy output peak, and several output peaks can be generated during motion. Because arterial blood has the highest oxygen saturation, a peak picker process can select the highest saturation peak as the percent SpO2.


In some embodiments, the noise filter engine 212 can employ a plurality of adaptive filter processes in parallel to separate the physiological signal from the noise, and can leverage the unique strengths of each adaptive filter processes to obtain accurate readings through various patient conditions. For example, in one embodiment of pulse oximetry measurements, parallel adaptive filters can include a discrete saturation transform, sinusoidal saturation transform, and fast saturation transform, as well as possibly others. A sinusoidal saturation transform can be a time domain transform that defines a window around a derived pulse rate estimate, subtracts a preselected set of frequencies to find a minima, and can use the minima to determine the location of the maximum power and thus the true pulse rate. A fast saturation transform may include, in some embodiments, a spectral or Fourier transform, a spectral analysis, and identification of physiological parameters through frequency, magnitude, or other aspects of the spectral analysis. In one embodiment, demodulation and decimation of the raw sensor data 204 may occur prior to the fast saturation transform.


The noise filter engine 212 can optionally include an arbitration module 214 in embodiments where multiple calculation engines are used. In some embodiments, the arbitration module 214 may be a confidence-based arbitrator. The arbitration module 214 can include instructions to compare the output of each adaptive filter process in order to generate a final determination of the denoised physiological signal. The arbitration module 214 can also arbitrate physiological measurements based on any number of parameters, for example a highest confidence level or whether a threshold confidence level was reached. Furthermore, the arbitration module 214 can arbitrate based on expected values, previous values, averages or the like. Post processor 216 can apply additional signal conditioning techniques to the output of the arbitration module 214 in order to output parameter data 226 to the mobile device 220.


II. Example Computing Environment


FIG. 3 illustrates an embodiment of a computing environment 300 in which a mobile patient monitoring device 330 can communicate with various computing devices and services over a network 305. Although various devices and services are illustrated, in some embodiments the mobile patient monitoring device 330 can be configured to communicate with a subset of the illustrated devices and services, and in some embodiments can be configured to communicate with only one of the illustrated devices and services.


In an embodiment, the mobile patient monitoring device 330 can communicate over a network 305 with calibration service 310 over the network 305. The example network 305 shown can be a local area network (LAN), wide area network (WAN), the Internet, an intranet, cellular communications network, satellite communications network, or combinations of the same or the like. The calibration service 310 can accumulate and aggregate received physiological measurement data as calibration data 314 to generate more accurate parameter values. Calibration data for physiological sensors such as pulse oximeters is typically calculated over a patient sample from a clinical study. The clinically generated calibration data can be supplemented, in some embodiments, by the calibration data 314 gathered from physiological sensors 330. Advantageously, gathering measurement data from a number of mobile physiological sensors 330 can expand such a data set significantly and lead to higher accuracies and/or new discoveries regarding parameter measurement. The calibration data 314 can be stored anonymously or in other manners which are compliant with privacy laws regarding medical data. In some embodiments, non-identifying demographic information can advantageously be associated with the calibration data 314.


The calibration service 310 can include a calibration module 312 configured with instructions to calculate a best fit function for the population data 316 within the calibration data 314. The best fit function can be used to generate a calibration curve associating sensor reading values with parameter values. The best fit function can be transmitted to connected patient devices 330 in order to associate sensor readings with more accurate parameter values. Specifically, false positives can be reduced, variances in SpO2 can be detected and filtered, and/or measurement confidence can be evaluated, among other advantages. Calibration data 314 can also include individual data 318, for example individual variations from the expected sensor reading to parameter value relationship defined by the best fit function. Methods of using a single sensor to improve calibration data which can be implemented by the disclosed systems are disclosed in U.S. patent application Ser. No. 13/733,782, titled “AUTOMATED CCHD SCREENING AND DETECTION,” filed Jan. 3, 2013, the entirety of which is hereby incorporated by reference.


In an embodiment, the mobile patient monitoring devices 330 can communicate with home/mobile clinician devices 320 over the network 305. Any type of clinician computing device 330 can communicate with mobile patient monitoring device 330 including, for example, laptops, desktops, servers, work stations, tablets, wireless handheld devices such as cell phones, smart phones, personal digital assistants and wireless pagers, combinations of the same or the like. Alternatively or additionally, the mobile patient monitoring devices 330 can communicate with patient databases of hospitals and other care facilities 225 over the network 305. The mobile patient monitoring device 330 can output parameter data, trend data and/or alarms to the home/mobile clinician devices 320 and/or hospitals and other care facilities 225.


III. Example Software Applications


FIGS. 4A-4D illustrate various embodiments of applications for display and management of physiological monitoring data. Such applications can be available for download or installation on a user device from a provider of the physiological sensors described herein, for example from the provider's web site, or through a mobile store application. In an embodiment, a mobile physiological monitoring software application can be initialized when a user connects a sensor cable to their mobile device. The user interface examples illustrated in FIGS. 4A-4D are provided to illustrate and not to limit the capabilities of such applications.


Some embodiments of the software application can be used with the smartphone 160 of FIGS. 1A, 1B, and 1C, though any mobile user device can be used in other embodiments. As illustrated in FIG. 4A, smartphone 160 includes a display 410, which can be used to generate a user interface for the software application. The application can include a plurality of display portions in which a plurality of physiological parameters can be displayed, such as SpO2 display 420, heart rate display 430, perfusion index display 450, or plethysmographic waveform display 450. Any combination of the physiological parameters disclosed herein can be displayed on the smartphone 160. The configuration of these various display portions is meant for illustrative purposes, and one skilled in the art would appreciate that the parameter displays could be rearranged relative to one another, displayed alone, or the user interface could be modified to include other parameter display portions. Another example of a variety of display portions is illustrated in FIG. 4B. Further, although some of the parameter display portions employ numerical representations of the physiological data, some embodiments can employ graphical representations, for example a beating heart can indicate heart rate.


The user interface can also include an options display portion 460 which allows the user to interact with his physiological monitoring data in a variety of ways. For example, the user can choose to view trends in the data, as illustrated in FIG. 4C, or to change the manner in which the data is represented such as by viewing a histogram or other graph. The user can be also able to view the history of his physiological measurement data. In some embodiments, history or trend data can be displayed with a start date and/or time and an end date and/or time, and the user can be able to adjust the window of data displayed. For example, on a touch sensitive interface the user can narrow or expand a window of trend data using a pinch gesture with two fingers. The user can also be able to export a selected amount of trend or history data, such as by electronic mail, through a medical service, or as a spreadsheet, to name a few examples. A settings option can be displayed which would allow the user to modify other aspects of the program, and can also enable the user to set alarms or reminders to take future measurements.


Turning to FIG. 4D, an example instruction user interface is shown which can be presented to a user upon initialization of the application. The instruction interface can include graphical and numbered steps to guide the user through set up of the sensor, and can include a user selectable option to start tracking physiological parameter measurements.


In certain embodiments, the application can be downloadable from a computer network at a cost, by subscription, pay-per-use, or the like. Other embodiments can advantageously incorporated caregiver-specific applications which include reminders for timed measurements or protocols. For example, a caregiver for a pre-surgical patient can desire measurement data for a certain minimum time per minimum period (20 min per every hour) or the like to have sufficient data to make diagnosis or decisions for treatment. A caregiver-specific application can be advantageously programmed to accomplish such a protocol. Moreover, signal quality or confidence indicators such as perfusion index (“PI”) or signal IQ (“SIQ”) can be used to ensure data meets certain minimum confidence and/or signal-to-noise limitations. Thus, the application can implement the protocol and extend or add measurement intervals to ensure minimum signal quality standards are met. Other caregiver-specific applications can provide animated or textual instructions, links to online information regarding certain monitoring situations, ailments, or other useful patient research.


In an embodiment, data acquired through the application can be uploaded to caregiver or device provider systems to increase the population data and used to improve signal processing. In a preferred embodiment, issues of privacy and compliance with governmental regulations are strictly enforced through the application logic. In some embodiments, non-identifying demographic information can advantageously be associated with such data. Moreover, password and/or additional authentication requirements can be required to access stored data in the application, such as, for example, fingerprint technologies, facial recognition technologies employing the smartphone's camera, voice recognition technologies employing the smartphone's audio transducer, or the like can further assist in meeting privacy concerns.


IV. Overview of Compatible Sensor Embodiments

As illustrated in FIG. 5A, a physiological sensor 520 can be an electroencephalograph (“EEG”) configured for measurement of electrical activity along the scalp. Such mobile EEG systems can be used, for example, in detecting and monitoring epileptic activity. EEG systems can also be used for diagnosis and management of sleep disorders or for studies of sleep. Electroencephalography is used extensively in neuroscience, cognitive science, cognitive psychology, neurolinguistics and psychophysiological research. In many of these contexts, a sensor 520 compatible with a common mobile computing device of a user would provide advantages such as convenience and affordability. In some embodiments, the sensor 520 can be SEDLine®, available from Masimo. SEDLine® brain function monitoring can use four channels of information, in some embodiments, to monitor both sides of the brain's electrical activity.


Turning to FIG. 5B, a capnometer or capnograph 530 can be configured for mobile physiological parameter measurement. Such sensors 530 can be designed for the measurement of CO2, N2O, and anesthetic agents, among others. Capnography can be useful for metabolic measurements and nutritional assessment, and accordingly a mobile sensor 530 can provide increased accessibility for such uses.


An acoustic respiratory monitor 540, as shown in FIG. 5C, can also be configured for mobile physiological parameter measurement. An acoustic respiratory monitor 540 can measure respiration rate using an adhesive sensor with an integrated acoustic transducer that can be comfortably applied to the patient's neck. Continuous monitoring of respiration rate can be important for post-surgical patients receiving patient-controlled analgesia for pain management, as the sedation can induce respiratory depression and place patients at considerable risk of serious injury or death. Accordingly, a mobile respiratory monitor 540 can be desirable for convenient and continuous monitoring of such patients, among other reasons.


V. Overview of Example Mobile Physiological Monitoring Processes


FIG. 6 illustrates an embodiment of a pre-anesthesia monitoring process 600. The process can be implemented by the physiological monitoring system 100 of FIGS. 1A, 1B, and 1C, in some embodiments.


The process 600 can begin at block 605 in which a care provider recommends a medical procedure requiring anesthesia for a patient. Certain medical conditions can present safety concerns for the patient during anesthesia, so at block 610 the patient can be provided with a portable monitoring system including a sensor connectable to one of the patient's personal mobile computing devices. In some embodiments the patient can be provided with multiple sensors and/or a software application for collection and management of physiological data.


At block 615, the portable monitoring system can collect and store physiological data from the patient. Optionally, at block 620, the collected data is analyzed for risk factors indicating a medical condition with implications for anesthesia, such as obstructive sleep apnea. At block 625, the collected data and/or analysis of the data is provided to the patient's physician or another care provider. In some embodiments, a physician can conduct the analysis after receiving the patient's data.


At decision block 630, a determination is made regarding whether the data analysis indicates that sleep apnea or another medical condition impacting the safety of anesthesia is present. If such a condition is present in the data, then the process 600 moves to block 645 in which the anesthesiologist is alerted. At step 650, a patient treatment strategy is developed that addresses the possible complications of the patient undergoing anesthesia with the detected condition. If no safety-impairing medical condition is present in the data, then the process 600 moves to block 640 in which the patient's physician can elect to proceed with the recommended medical procedure and anesthesia.



FIG. 7 illustrates an embodiment of a continuum of care process 700. The process 700 can be implemented, in some embodiments, by the computing environment 300 of FIG. 3. In an embodiment, the process 600 can be implemented at least in part by the network 305 to facilitate continued patient monitoring when a patient leaves a hospital or other facility.


At block 705, monitoring data of a patient is received at a clinical facility, for example by a networked medical service which can receive and store patient monitoring data, among other features. Once the patient is discharged, at block 710 the patient can be outfitted with a portable monitoring system. The portable monitoring system can monitor the same parameters as a device used to monitor the patient in the clinical facility. In addition, the portable monitoring system may, for instance, be any of the sensors and processing cable components, or variations thereof, described herein.


When a patient is discharged, there is a typically a period of time where the patient is not being monitored once the patient leaves the facility. However, the continuum of care process 700 employing mobile physiological sensors can facilitate continued monitoring of the patient, for example during travel between the facility and the patient's residence or when the patient arrives at home, by receiving monitoring data from the patient via a cellular or satellite network at block 715. An activity level of the patient, for example resting or walking, can be monitored at block 620 in order to set the appropriate thresholds for determining when physiological parameters indicating an alarm condition are occurring at block 725. The patient's activity level can be monitored by the device, in some embodiments, or can be input by the patient or a care giver.


Periodically, the mobile physiological sensor system can recheck the patient's activity level at block 730 to determine whether the activity level has changed. If the patient's activity level has changed, then the process 700 loops back to block 725 to adjust alarm settings for the patient's physiological data based on the activity level. If the patient's activity level has not changed, then the process 700 can move to block 735 in which it is determined whether an alarm condition is occurring based on the patient's physiological parameters and the alarm settings. A software application installed on the patient's mobile device can be configured to detect the alarm condition. If an alarm condition is not occurring, then the process 700 loops back to block 715 in which the mobile physiological sensor continues to perform physiological measurements and transmit the measurements to the mobile device through a signal conditioning processor. If an alarm condition is detected at block 735, then the patient's mobile device can pass a notification to a care provider via a network connection. Accordingly, the mobile physiological sensor system can facilitate a continuum of care for a patient and continuous monitoring even when a patient has left a clinical facility.



FIG. 8 illustrates an embodiment of a mobile physiological data monitoring process 800. The process can be implemented, in some embodiments, by the physiological monitoring system 100 of FIGS. 1A, 1B, and 1C, or the physiological monitoring system 200 of FIG. 2.


At block 805, a portable user monitoring system is provided including physiological sensor, processing module, and device connection port. The physiological sensor can be any of the sensor examples discussed herein. The processing module can be the processing module 130 described in FIGS. 1A, 1B, and 1C or the signal processing module 210 of FIG. 2. The processing module can implement Masimo SET technology, in some embodiments. The device connection port can be configured for use with a standard personal computing device, such as a smartphone, and can be connected to the processing module physically via a cable or wirelessly.


At block 810, the user's mobile computing device, while connected to the portable patient monitoring system, provides power to the sensor and processing module. Accordingly, the sensor and processing module can be configured in some embodiments so as to draw only minimal power from the mobile computing device, as such devices are typically powered by batteries.


At block 815, the processing module receives raw physiological sensor data from the sensor. The processing module performs signal conditioning on the raw data at block 820, for example any of the signal conditioning techniques described herein, to remove noise from the raw data and obtain physiological parameter data. At block 825, the processing module outputs the physiological parameter data to the user's mobile computing device for display and/or storage on the device. Accordingly, a user can conveniently conduct physiological measurements and be presented with physiological data on their mobile device in a wide variety of contexts.



FIG. 9 illustrates an embodiment of a user-guided monitoring process 900, which can be carried out by a user on their personal computing device without the need for physician or caregiver aid. The process 900 can be carried out by a mobile physiological monitoring application, as discussed above, in conjunction with a mobile physiological sensor. The physiological sensor can be any of the sensor examples discussed herein.


At block 905, the user is instructed to insert the connection port of a cable including a physiological sensor and a processor into a corresponding port on their mobile computing device, and at block 910 the user is instructed to place the sensor at a measurement site. In some embodiments, these blocks can be implemented by an instruction user interface such as is depicted in FIG. 4D and discussed above.


At block 915, the mobile device receives measurement data, which can be raw sensor data that has been processed by a processing module prior to being sent to the mobile device. At block 920, the mobile physiological monitoring application can determine based on the measurement data whether an error is occurring. If it is determined that an error is not occurring, then the mobile device can continue to receive measurement data at block 915. If it is determined that an error is occurring, then the mobile physiological monitoring application can determine a potential or likely error source at block 925.


Based on the determined error source, the mobile physiological monitoring application may, at block 930, display a message to aid the user to aid in resolution of the error. Example messages include “Ensure cable is connected,” “Sensor not working.” “Place sensor on properly,” “Searching for pulse,” “Interference detected, see manual,” “Low perfusion, see manual,” “Too much surrounding light,” “Low signal quality, see manual,” and “Connecting, please wait,” among others. In some embodiments an audible or visual indication can also be provided to alert the user to the presence of the error. At block 935, the mobile physiological monitoring application can determine whether the user has resolved the error. The mobile physiological monitoring application can repeat this action at predetermined intervals until the error is resolved or the application is terminated by the user, in some embodiments. In other embodiments, the mobile physiological monitoring application can determine whether the error has been resolved based on a change in received measurement data values. If, after a predetermined threshold of time, the error is not resolved, then the process 900 ends. If the error is resolved, the process 900 loops back to block 915, and the mobile device can continue to receive measurement data.



FIG. 10 illustrates an embodiment of a data-logging process 1000. The data-logging process 1000 can run continuously or periodically during operation of a mobile physiological monitoring application, as discussed above.


At block 1005, the mobile physiological monitoring application can receive measurement data, which can be raw sensor data that has been processed by a processing module prior to being sent to a mobile device. This data is stored, at block 101, in a user history, for example in storage of the mobile device or in a networked data storage service. At block 1015, the mobile physiological monitoring application determines that a user has requested to be presented with history data, and accordingly outputs at least some of the stored data for display to the user at block 1020. In some embodiments, the user can specify a desired range of stored history data when making the request. In other embodiments, the device can output a predetermined range of the history data, for example based on a recent time window of the data or patterns in the data.


At block 1025, the mobile physiological monitoring application can dynamically adjust the amount of displayed data based on user input. This step can be optional based on whether a user provides input regarding adjusting the data. In some embodiments, the user can be able to specify particular physiological parameters to add or remove from the display. In an embodiment implemented on a touch-sensitive display, a user can use a two-finger pinching gesture to change the range of the time window of the data, or can use a swiping motion to move forwards or backwards through the data. Such adjustments can be implemented using other user interface elements on non-touch sensitive displays. A user can also be able to select from a variety of possible representations of the data, such as a chart, graph, plot, or other graphical representation as well as numerical representations such as spreadsheets, in some embodiments.


At block 1030, the mobile physiological monitoring application can receive a user request to export the stored history data. If no such request is received, then the mobile physiological monitoring application can loop back to block 1005 and continue to receive physiological measurement data. If the user requests to export the data, then at block 1035 the mobile physiological monitoring application can export a subset of the stored history data according to user format specification. For example, the user can specify a time and/or date range of data to export, can select a format (such as a spreadsheet or a graph), and can select an exporting means such as email or direct transmission to a physician or networked medical service.


At block 1040, the user can be presented with an option to delete the stored history data. In some embodiments, the user can be asked whether to delete data that has been exported. If the user does not want to delete the data, then the mobile physiological monitoring application can loop back to block 1005 and continue to receive physiological measurement data. If the user requests to delete the data, then the mobile physiological monitoring application can clear stored history data according to user instructions, and can then loop back to block 1005 and continue to receive physiological measurement data.


VI. Terminology

Although many of the examples discussed herein are in the context of pulse oximetry, this is for illustrative purposes only. The sensors, signal conditioning techniques, and mobile applications discussed herein can be adapted for other physiological parameters or for multiple physiological parameters.


Many other variations than those described herein will be apparent from this disclosure. For example, depending on the embodiment, certain acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out all together (e.g., not all described acts or events are necessary for the practice of the algorithms). Moreover, in certain embodiments, acts or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially. In addition, different tasks or processes can be performed by different machines and/or computing systems that can function together.


The various illustrative logical blocks, modules, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


The various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor can be a microprocessor, but in the alternative, the processor can be a controller, microcontroller, or state machine, combinations of the same, or the like. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor can also include primarily analog components. For example, any of the signal processing algorithms described herein can be implemented in analog circuitry. A computing environment can include any type of computer system, including, but not limited to, a computer system based on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a personal organizer, a device controller, and a computational engine within an appliance, to name a few.


The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of non-transitory computer-readable storage medium, media, or physical computer storage known in the art. An exemplary storage medium can be coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor. The processor and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor and the storage medium can reside as discrete components in a user terminal.


Conditional language used herein, such as, among others, “can,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the inventions described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others.

Claims
  • 1. A portable physiological monitoring system comprising: an optical sensor configured to output one or more signals responsive to light from a light source attenuated by tissue of a user at a measurement site, said one or more signals indicative of an oxygen saturation (“SpO2”) of said tissue; anda processing board in data communication with the optical sensor and a mobile computing device including a display and cellular communication, wherein the processing board is configured to: receive said one or more signals from the optical sensor;process said one or more signals to generate one or more SpO2 measurement values; andtransmit the one or more SpO2 measurement values to the mobile computing device;wherein, one or more hardware processors of the mobile computing device are configured to execute an application, the application configured to execute commands to: generate a graphical user interface having a plurality of display portions;display, in at least one of the plurality of display portions, a representation based on the one or more SpO2 measurement values generated by the processing board; anddisplay, in a different one of the plurality of display portions, a plurality of user inputs configured to allow the user to interact with at least one of the plurality of display portions or the application; andwherein the processing of said one or more signals to generate said one or more SpO2 measurement values is performed only on the processing board, thereby freeing up memory available to the mobile computing device.
  • 2. The portable physiological monitoring system of claim 1, further comprising a first cable configured to couple the optical sensor to the processing board.
  • 3. The portable physiological monitoring system of claim 2, further comprising a second cable configured to couple the processing board to the mobile computing device.
  • 4. The portable physiological monitoring system of claim 3, wherein the processing board is configured to draw power for operation from the mobile computing device.
  • 5. The portable physiological monitoring system of claim 1, wherein the optical sensor is configured to secure to a finger of the user.
  • 6. The portable physiological monitoring system of claim 1, wherein at least a portion of the portable physiological monitoring system is disposable.
  • 7. The portable physiological monitoring system of claim 6, wherein the optical sensor is disposable.
  • 8. The portable physiological monitoring system of claim 1, wherein the portable physiological monitoring system is configured to wirelessly transmit the one or more SpO2 measurement values to the mobile computing device.
  • 9. The portable physiological monitoring system of claim 1, wherein the mobile computing device comprises a smartphone.
  • 10. A method of monitoring one or more physiological parameters of a user, the method comprising: emitting, from an optical sensor of a physiological monitoring system, light of one or more wavelengths toward tissue of the user at a measurement site;detecting, with the optical sensor, at least a portion of the emitted light after the at least the portion of the emitted light passes through the tissue of the user at the measurement site;outputting, with the optical sensor, one or more signals responsive to the detected light; andreceiving, with a processing board of the physiological measurement system, said one or more signals responsive to said detected light from the optical sensor;processing, with the processing board, said one or more signals to determine one or more physiological parameters of the user; andtransmitting the one or more physiological parameters to a mobile computing device, the mobile computing device including an application configured to generate a graphical user interface having a plurality of display portions, at least one of the plurality of display portions comprising a representation of the one or more physiological parameters and at least another one of the plurality of display portions comprising a plurality of user inputs configured to allow the user to interact with at least one of the plurality of display portions or the application.
  • 11. The method of claim 10, wherein said transmitting the one or more physiological parameters to the mobile computing device comprises wirelessly transmitting said one or more physiological parameters to the mobile computing device.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/880,071, filed Jan. 25, 2018, entitled “PHYSIOLOGICAL MONITOR WITH MOBILE COMPUTING DEVICE CONNECTIVITY,” which is a continuation of U.S. application Ser. No. 14/033,315, filed Sep. 20, 2013, now U.S. Pat. No. 9,877,650, entitled “PHYSIOLOGICAL MONITOR WITH MOBILE COMPUTING DEVICE CONNECTIVITY,” which claims the benefit of U.S. Provisional Application No. 61/703,729 filed Sep. 20, 2012, entitled “PATIENT MONITOR WITH MOBILE COMPUTING DEVICE CONNECTIVITY.” All of the above-listed applications are hereby incorporated by reference in their entirety.

US Referenced Citations (574)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5692505 Fouts Dec 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5890929 Mills et al. Apr 1999 A
5919134 Diab Jul 1999 A
5987343 Kinast Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6040578 Malin et al. Mar 2000 A
6066204 Haven May 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6232609 Snyder et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Al-Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
RE38492 Diab et al. Apr 2004 E
6738652 Mattu et al. May 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6788965 Ruchti et al. Sep 2004 B2
6816241 Grubisic Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6934570 Kiani et al. Aug 2005 B2
6943348 Coffin, IV Sep 2005 B1
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7027849 Al-Ali Apr 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7225006 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7356365 Schurman et al. Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7500950 Al-Ali et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
RE41912 Parker Nov 2010 E
7880626 Al-Ali et al. Feb 2011 B2
7909772 Popov et al. Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7941199 Kiani May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7990382 Kiani Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8028701 Al-Ali et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8182443 Kiani May 2012 B1
8190223 Al-Ali et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8229532 Davis Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8255026 Al-Ali Aug 2012 B1
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8401602 Kiani Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457707 Kiani Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8630691 Lamego et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8666468 Al-Ali Mar 2014 B1
8670811 O'Reilly Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8755535 Telfort et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8840549 Al-Ali et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8897847 Al-Ali Nov 2014 B2
8911377 Al-Ali Dec 2014 B2
8989831 Al-Ali et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9131881 Diab et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9153112 Kiani et al. Oct 2015 B1
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9245668 Vo et al. Jan 2016 B1
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9392945 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9474474 Lamego et al. Oct 2016 B2
9480435 Olsen Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9622692 Lamego et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20060224059 Swedlow et al. Oct 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080071153 Al-Ali et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080211657 Otto Sep 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100160798 Banet et al. Jun 2010 A1
20100198094 Turicchia et al. Aug 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110071370 Al-Ali Mar 2011 A1
20110077473 Lisogurski Mar 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110209915 Telfort et al. Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120317167 Rahman et al. Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140166076 Kiani et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20160196388 Lamego Jul 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287470 Lewis et al. Oct 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20180103874 Lee et al. Apr 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20190015023 Monfre Jan 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
Foreign Referenced Citations (8)
Number Date Country
2 994 172 Feb 2017 CA
2002-535026 Oct 2002 JP
2012-519547 Apr 2013 JP
2014-533997 Dec 2014 JP
2016-532467 Oct 2016 JP
WO 2011069122 Jun 2011 WO
WO 2014051563 Apr 2014 WO
WO 2018156804 Aug 2018 WO
Non-Patent Literature Citations (5)
Entry
Physiological Monitor With Mobile Computing Device Connectivity, U.S. Appl. No. 14/033,315, U.S. Pat. No. 9,877,650.
Physiological Monitor With Mobile Computing Device Connectivity, U.S. Appl. No. 15/880,071, U.S. Pat. No. 10,736,507.
Invitation to Pay Additional Fees in corresponding International Patent Application No. PCT/US2018/019283, dated Jun. 4, 2018, in 11 pages.
International Search Report and Written Opinion in corresponding International Patent Application No. PCT/US2018/019283, dated Jul. 27, 2018, in 15 pages.
International Preliminary Report on Patentability and Written Opinion in corresponding International Patent Application No. PCT/US2018/019283, dated Sep. 6, 2019, in 9 pages.
Related Publications (1)
Number Date Country
20200268249 A1 Aug 2020 US
Provisional Applications (1)
Number Date Country
61703729 Sep 2012 US
Continuations (2)
Number Date Country
Parent 15880071 Jan 2018 US
Child 16856497 US
Parent 14033315 Sep 2013 US
Child 15880071 US