The subject matter described herein relates to medical vital signs monitors and particularly to a modular monitor having a module which is wearable by a subject (e.g. a medical patient) and a detachable module which is detachable from the wearable module. When the patient participates in activities which might be harmful to components of the detachable module, the detachable module can be detached from the wearable module while the wearable module remains in place on the patient. The detachable module can be subsequently reattached to the wearable module.
Wearable monitors for monitoring medical vital signs and other physiological parameters are advantageous because they can provide continuous monitoring of the vital signs of a subject, such as a hospital patient. Wearable monitors include an adhesive layer for securing the monitor to the patient. A caregiver presses the adhesive layer of the monitor against the patient's skin to secure the monitor to the patient's body.
One drawback of wearable monitors is the need to remove the monitor from the patient when the patient participates in activities that could cause damage to components of the monitor. Such activities include bathing, showering, and radiological procedures. At the conclusion of the activity it is desirable to resecure the wearable monitor to the patient. However the previous act of removing the monitor may have compromised the strength of the adhesive so that the monitor will no longer adhere reliably to the patient. Even if the monitor can be successfully reapplied to the patient, it is difficult to position the monitor exactly as it had been before removal. As a result the quality and/or consistency of the monitored signals may suffer. The monitor described herein overcomes at least these shortcomings of conventional vital signs monitors.
A physiological monitor comprises a cleat adapted to be securable to a subject, the cleat having an A electrode which includes an A electrode connector portion and a B electrode which includes a B electrode connector portion. The A and B connector portions are radially spaced from each other. The monitor also includes an equipment module removably attached or removably attachable to the cleat in a transverse direction. The module has an A module connector portion and a B module connector portion arranged such that the A and B module connector portions connect with the A and B electrode connector portions respectively when the equipment module is connected to the cleat.
The foregoing and other features of the various embodiments of the physiological monitor described herein will become more apparent from the following detailed description and the accompanying drawings in which:
As seen best in
Referring additionally to
In embodiments in which the electrode contact portions 30A, 30B are EKG electrodes, the contact portions may hydrogel contact portions.
The A and B electrode connector portions 28A, 28B are radially spaced from each other. The A electrode connector portion 28A is radially inboard of the B electrode connector portion 28B. The A electrode contact portion 30A is radially spaced from and radially outboard of the A electrode connector portion 28A. The B electrode contact portion 30B is radially spaced from and radially outboard of the B electrode connector portion 28B. In this specification, the use of the term “radial” and variants thereof is not intended to limit the form of any component to a circular shape, such as that seen in
A cleat O-ring seat 40 resides radially between the A and B electrode connector portions 28A, 28B. A cleat O-ring 42 resides radially between B connector portion 28B and contact portions 30A, 30B.
An A conductor element 38A connects the A contact portion 30A to the A connector portion 28A in order to convey signals between contact portion 30A and connector portion 28A. A B conductor element 38B connects the B contact portion 30B to the B connector portion 28B in order to convey signals between contact portion 30B and connector portion 28B. As illustrated, conductor elements 38A, 38B are considerably more localized than the connector and contact portions 28A, 28B, 30A, 30B, all of which have a substantial circumferential spread. Nevertheless, conductor elements 38A, 38B could be more circumferentially extensive than those illustrated.
The monitor also includes an equipment module 50 removably attached to or removably attachable to the cleat as described in more detail below. Equipment module 50 includes electronic components of the monitor housed in an equipment compartment 52. The electronic components may include at least a processor for processing data signals from electrodes 26A, 26B and from one or more sensors other than the electrodes (described below). The compartment may also house one or more amplifiers, one or more filters to amplify and de-noise the sensor and electrode signals, and a transceiver to provides communication with remote devices such as information displays and user controls. The compartment may also house a battery. Further examples of equipment modules, cleats, and their architectures may be found in U.S. provisional patent applications 62/588,598 filed on Nov. 20, 2017, 62/592,602 filed on Nov. 30, 2017, 62/618,772 filed on Jan. 18, 2018, and 62/607,646 filed on Dec. 19, 2017. The contents of the foregoing applications are incorporated herein by reference.
Equipment module 50 has an A module connector portion 58A and a B module connector portion 58B. The A module connector portion 58A is radially inboard of the B module connector portion 58B. As a result the A and B module connector portions 58A, 58B connect respectively with the A and B electrode connector portions 28A, 28B of the cleat when the equipment module is connected to the cleat as in
An equipment module O-ring 44 resides radially between module connector portions 58A, 58B. An equipment module O-ring seat 46 resides radially outboard of B module connector portion 58B. When the equipment module is connected to the cleat as seen in
Equipment module 50 includes a module mechanical connector element 62 which extends transversely from the A module connector portion 58A. The illustrated connector element 62 comprises two cylindrical sections 64, 66 and an intervening ring 68 whose diameter is greater than that of the cylindrical sections.
Cleat 20 includes a cleat mechanical connector element 72 which extends transversely from A electrode connector portion 28A. The illustrated connector element 72 comprises two cylindrical sections 74, 76 and an intervening groove 78 with a diameter greater than that of the cylindrical sections. The module and cleat mechanical connector elements are adapted to mate with each other to affect a mechanical connection between cleat 20 and equipment module 50. In particular ring 68 snaps into groove 78 to affect the mechanical connection. The ring is also separable from the groove so that the equipment module can be detached from the cleat. As noted earlier in this specification, the fact that the equipment module is attachable to and detachable from cleat allows the equipment module to be temporarily removed from the cleat when the patient participates in activities that could cause damage to components of the equipment module. The equipment module can be subsequently re-attached to the cleat.
In the illustrated embodiment the mechanical connection between the cleat and the equipment module is distinct from the A signal connection defined by the A connector portions 28A, 58A of the cleat electrodes and the equipment module and is also distinct from the B signal connection defined by the B connector portions 28B, 58B of the cleat electrodes and the equipment module.
When the cleat and equipment module are connected to each other as seen in
In the specific embodiment shown in the drawings the A and B electrode connector portions 28A, 28B are circumferentially complete, i.e. they extend circumferentially 360 degrees to define an A signal connector ring 28A and a B signal connector ring 28B which circumscribes the A signal connector ring. The A cleat contact portion 30A is radially spaced from and is in signal communication, by way of conductor 38A, with the A cleat signal connector ring 28A. The B cleat contact portion 30B is radially spaced from and is in signal communication by way of conductor 38B, with the B cleat signal connector ring 28B. The A and B module connector portions 58A, 58B are also complete signal connector rings arranged so that the B module signal connector ring 58B circumscribes the A module signal connector ring 58A.
Referring to
As seen in
The monitor is in the assembled state of
Although this disclosure refers to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the subject matter set forth in the accompanying claims.
This application claims priority to U.S. Provisional Application 62/621,232 filed on Jan. 24, 2018 and entitled “Physiological Parameter Monitor with a Cleat and an Equipment Module Removably Attachable to the Cleat”.