Physiological parameter tracking system

Information

  • Patent Grant
  • 9788768
  • Patent Number
    9,788,768
  • Date Filed
    Tuesday, February 26, 2013
    11 years ago
  • Date Issued
    Tuesday, October 17, 2017
    7 years ago
Abstract
A physiological parameter tracking system has a reference parameter calculator configured to provide a reference parameter responsive to a physiological signal input. A physiological measurement output is a physiological parameter derived from the physiological signal input during a favorable condition and an estimate of the physiological parameter according to the reference parameter during an unfavorable condition.
Description
BACKGROUND OF THE INVENTION

Oxygen transport from the lungs to body tissue can be monitored by measuring various physiological parameters. For example, oxygen saturation of arterial blood (SaO2) is a measure of the ratio of oxyhemoglobin (HbO2) concentration to the sum of HbO2 and deoxyhemoglobin (Hb) concentrations in the arterial blood. Because HbO2 is the major oxygen carrying component of blood, SaO2 is indicative of oxygen delivery to body tissues. As another example, oxygen saturation of venous blood (SvO2) is a similar measure of HbO2 and Hb concentrations in venous blood and is indicative of oxygen consumption by body tissues. Measurements of the concentrations of carboxyhemoglobin (HbCO) and methemoglobin (MetHb) are indicative of abnormal hemoglobin constituents that interfere with oxygen transport.


Pulse oximetry is a noninvasive, easy to use, inexpensive procedure for measuring the oxygen saturation level of arterial blood. Pulse oximeters perform a spectral analysis of the pulsatile component of arterial blood in order to determine oxygen saturation (SpaO2), which is an estimate of SaO2. A pulse oximetry system has a sensor and a monitor. The sensor has emitters that typically consist of a red light emitting diode (LED) and an infrared LED that project light through blood vessels and capillaries underneath a tissue site, such as a fingernail bed. A sensor also has a detector that typically is a photodiode positioned opposite the LEDs so as to detect the emitted light as it emerges from the tissue site. A pulse oximetry sensor is described in U.S. Pat. No. 6,088,607 entitled “Low Noise Optical Probe,” which is assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.


SUMMARY OF THE INVENTION

One aspect of a physiological parameter tracking system comprises a physiological signal and first, second, third and fourth calculators. The physiological signal has at least first and second intensity signal components received from a light-sensitive detector that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood. The first calculator is configured to output a reference parameter responsive to the physiological signal. The second calculator is configured to output an ancillary parameter responsive to the physiological signal. The third calculator is configured to output a slow parameter that is a function of the reference parameter and the ancillary parameter. The slow parameter is a function of time that is slowly varying relative to the reference parameter and the ancillary parameter. A fourth calculator is configured to output a physiological measurement responsive to the reference parameter and the slow parameter. In an embodiment, the fourth calculator provides a physiological measurement that is at least in part a function of the reference parameter and the slow parameter. In an embodiment, the physiological measurement is a function of the reference parameter and the slow parameter during a first time interval and is the ancillary parameter during a second time interval. In an embodiment, the first time interval includes a period when calculations of the ancillary parameter are unfavorable. In an embodiment, the second time interval includes a period when calculations of the ancillary parameter are favorable.


Another aspect of a physiological parameter tracking system comprises inputting a physiological signal, deriving a physiological measurement from the physiological signal during a favorable condition, estimating the physiological measurement during an unfavorable condition and outputting a combination of the derived physiological measurement and the estimated physiological measurement. In an embodiment, estimating comprises calculating a slow parameter that is physiologically related to the reference parameter and the physiological measurement and tracking the reference parameter with the slow parameter. In an embodiment, outputting comprises selecting between estimated physiological measurement and derived measurement according to the favorable condition and the unfavorable condition. In an embodiment, the favorable condition and the unfavorable conditions relate to power consumption goals. In an embodiment, the favorable condition and the unfavorable conditions relate to the quality of the physiological signal.


A further aspect of a physiological parameter tracking system comprises a physiological signal input, a reference parameter calculator and a physiological measurement means for outputting and estimating. The physiological signal input has at least first and second intensity signal components received from a light-sensitive detector that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood. The reference parameter calculator is configured to output a reference parameter responsive to the physiological signal. The physiological measurement means outputs a physiological parameter derived from the physiological signal input during a favorable condition and estimates the physiological parameter according to the reference parameter during an unfavorable condition. In an embodiment, a slow parameter means relates the reference parameter to the physiological parameter during the unfavorable condition. In an embodiment, an update means selects a first time period for outputting the derived physiological parameter and a second time period for outputting the estimated physiological parameter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a slow parameter calculation embodiment of a physiological parameter tracking system;



FIG. 2 is a graph illustrating operation of a physiological parameter tracking system in a sample and hold (S/H) mode;



FIG. 3 is a graph illustrating operation of a physiological parameter tracking system in a track and hold (T/H) mode;



FIG. 4 is a block diagram of an ancillary calculation embodiment of a physiological parameter tracking system for operation in a S/H mode; and



FIG. 5 is a block diagram of an ancillary calculation embodiment of a physiological parameter tracking system for operation in a T/H mode.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Overview



FIGS. 1, 4 and 5 illustrate embodiments of a physiological parameter tracking system that advantageously provide a clinically accurate physiological measurement by tracking a reference parameter based upon a slowly varying (“slow”) parameter. As such, it is not necessary to continuously or frequently perform complex calculations to derive the physiological measurement. That is, the physiological measurement is a relatively simple function of the reference parameter and the slow parameter. Slow parameter calculations are performed only when conditions are favorable, or alternatively, suspended when conditions are not favorable, as indicated by an update command. The update command may be responsive to conditions such as power consumption goals or the quality of a physiological signal input to name a few.


In one embodiment, the slow parameter is HbCO or MetHb, and the reference parameter is SpaO2. Accordingly, the physiological measurement is SpaO2 corrected for the presence of one or both of these abnormal hemoglobin constituents. In another embodiment, the slow parameter is Δav=SpaO2−SvO2, a measure of oxygen consumption at a tissue site, and the reference parameter is SpaO2. Accordingly, the physiological measurement is an estimate of SvO2.


Slow Parameter Calculation



FIG. 1 illustrates a slow parameter calculation embodiment of a physiological parameter tracking system 100 in which the slow parameter 22 is derived from and responsive to a physiological signal 02. The physiological parameter tracking system 100 has a physiological signal 02 input, a reference parameter calculation 10, a slow parameter calculation 20 and a tracking function 30 and generates a physiological measurement 08 output. The reference parameter calculation 10 generates a reference parameter 12 from the physiological signal 02. The slow parameter calculation 20 generates the slow parameter 22 from the physiological signal 02 input. The tracking function 30 generates the physiological measurement 08 from the reference parameter 12 and the slow parameter 22.


As shown in FIG. 1, the physiological signal 02 is responsive to a physiological condition. In one embodiment, the physiological signal 02 originates from an optical sensor (not shown) attached to a tissue site. The sensor transmits multiple wavelengths of optical energy λ1, λ2, . . . , λn into the tissue site and detects corresponding optical energy emerging from the tissue site. The reference parameter calculation 10 may include pulse oximetry algorithms that operate on the physiological signal 02 to generate arterial oxygen saturation, SpaO2, as the reference parameter 12. A pulse oximetry signal processor and algorithms are described in U.S. Pat. No. 5,632,272 entitled Signal Processing Apparatus which is assigned to Masimo Corporation, Irvine, Calif. and incorporated by reference herein.


Also shown in FIG. 1, the slow parameter calculation 20 generates a slow parameter 22 from the physiological signal input 02 according to an update command 04. As an example, the slow parameter calculation 20 may include algorithms that operate on the physiological signal 02 to generate a measure of the concentration of abnormal hemoglobin, such as HbCO or MetHb. Multiple wavelength signal processing for measuring abnormal hemoglobin constituents, for example, is described in U.S. Provisional Patent App. No. 60/426,638 entitled “Parameter Compensated Physiological Monitor,” U.S. Provisional Patent App. No. 60/428,419 entitled “Blood Parameter Measurement System,” and U.S. Pat. No. 6,229,856 entitled “Method and Apparatus for Demodulating Signals in a Pulse Oximetry System, which is assigned to Masimo Corporation, Irvine, Calif., all incorporated by reference herein.


Further shown in FIG. 1, the update command 04 may operate in a sample and hold (S/H) mode. That is, when the update command 04 is asserted, the slow parameter calculation 20 is triggered and the resulting slow parameter 22 value is held until a subsequent calculation. Operation of a physiological parameter tracking system having a S/H update is described with respect to FIG. 2, below. Alternatively, the update command 04 may operate in a track and hold (T/H) mode. That is, while the update command 04 is asserted, the slow parameter calculation 20 continues to generate values for the slow parameter 22. When the update command 04 is not asserted, the last generated value of the slow parameter 22 is held until the update command 04 is once more asserted. Operation of a physiological parameter tracking system having a T/H update is described with respect to FIG. 3, below.


Tracking Examples



FIG. 2 is an amplitude versus time graph 200 illustrating operation of a physiological parameter tracking system utilizing a S/H update. The graph 200 illustrates a reference curve 210 corresponding to a reference parameter 12 (FIG. 1) and a slow parameter curve 220 corresponding to a slow parameter 22 (FIG. 1). Below the graph 200 is a timing diagram 230 corresponding to the update command 04 (FIG. 1). A physiological measurement curve 240 corresponds to the physiological measurement 08 (FIG. 1).


As shown in FIG. 2, the physiological measurement curve 240 tracks the reference curve 210 according to a tracking function 30 (FIG. 1), which in this illustration is the difference between the reference parameter 12 (FIG. 1) and the slow parameter 22 (FIG. 1). A slow parameter 220 value is calculated at sample times 232, 236 and maintained throughout hold periods 234, 238. In particular, during a first sample time 232, a slow parameter value 222 of Δ1 is calculated, and during a second sample time 236, a slow parameter value 226 of Δ2 is calculated. As a result, during a first hold period 234, the physiological measurement curve 240 tracks the reference curve 210 by a difference of Δ1. Likewise, during a second hold period 238, the physiological measurement curve 240 tracks the reference curve 210 by a difference of Δ2. In this manner, the physiological measurement 240 is advantageously displayed with clinical accuracy utilizing only occasional computational resources and reducing power consumption accordingly.



FIG. 3 is an amplitude versus time graph 300 illustrating operation of a physiological parameter tracking system utilizing a T/H update. The graph 300 illustrates a reference curve 310 corresponding to a reference parameter 12 (FIG. 1) and a slow parameter curve 320 corresponding to a slow parameter 22 (FIG. 1). Below the graph 300 is a timing diagram 330 corresponding to the update command 04 (FIG. 1). A physiological measurement curve 340 corresponds to the physiological measurement 08 (FIG. 1).


As shown in FIG. 3, the physiological measurement curve 340 tracks the reference curve 310 according to a tracking function 30 (FIG. 1), which, again, is the difference between the reference parameter 12 (FIG. 1) and the slow parameter 22 (FIG. 1). Slow parameter 320 values are calculated throughout track periods 332, 336, and the last computed values are maintained throughout the corresponding hold periods 334, 338. In particular, during a first track period 332, the physiological measurement curve 340 is the reference curve 310 minus the slow parameter curve 320. At the end of the first track period 332, a slow parameter value 332 of Δ1 is maintained throughout the first hold period 334. As a result, during the first hold period 334, the physiological measurement curve 340 is the reference curve 310 minus Δ1 and does not depend on the slow parameter curve 320. That is, during the first hold period 332, the physiological measurement curve 340 tracks the reference curve 310 by a difference of Δ1.


The “track” periods 332, 336 are so named because the slow parameter calculation 20 (FIG. 1) in response to the update timing 330 operates in a manner roughly analogous to a conventional track/hold amplifier when its output tracks the input. These are not to be confused with the periods when the physiological measurement curve 340 is “tracking” the reference parameter curve 310, which actually is during the hold periods 334, 338, when the slow parameter 22 (FIG. 1) output is held constant.


Also shown in FIG. 3, during a second track period 336, the physiological measurement curve 340 is again the reference curve 310 minus the slow parameter curve 320. At the end of the second track period 336, a slow parameter value 326 of Δ2 is maintained throughout the second hold period 338. As a result, during the second hold period 338, the physiological measurement curve 340 is the reference curve 310 minus Δ2 and does not depend on the slow parameter curve 320. That is, during the second hold period 338, the physiological measurement curve 340 tracks the reference curve 310 at a difference of Δ2.


Further shown in FIG. 3, the hold periods 334, 338 may correspond to slow parameter drop-out periods 324, 328, i.e. periods when the slow parameter cannot be accurately calculated. In this manner, the physiological measurement 340 is advantageously displayed with clinical accuracy even when noise or other signal corruption prevents measurement of the slow parameter 320.


Ancillary Parameter Calculation



FIG. 4 illustrates an ancillary parameter calculation embodiment of a physiological parameter tracking system 400 in which the slow parameter 22 is derived from an ancillary parameter 52 in S/H mode. The ancillary parameter 52, in turn, is derived from a physiological signal 02. That is, unlike the slow parameter calculation embodiment 100 (FIG. 1), the slow parameter 22 is only indirectly derived from and responsive to the physiological signal 02. The physiological parameter tracking system 400 has a physiological signal 02 input, a reference parameter calculation 10 and a tracking function 30, and, accordingly, generates a physiological measurement 08, similarly as described with respect to FIG. 1, above. However, in the ancillary calculation embodiment 400, the slow parameter 22 is a function 60 of the reference parameter 12 and/or an ancillary parameter 52. An ancillary parameter calculation 50 generates the ancillary parameter 52 from the physiological signal input 02 according to a S/H update command 04 input, such as described with respect to FIG. 2, above.


As an example, the ancillary parameter calculation 50 may include algorithms that operate on the physiological signal 02 to intermittently calculate venous oxygen saturation, SpvO2, as determined by a S/H update command 04. A corresponding slow parameter function 60 is the difference between an SpaO2 reference parameter 12 and the SpvO2 ancillary parameter 52 to yield a Δav slow parameter 22. Then, the tracking function 30 is a difference between the SpaO2 reference parameter 12 and the sampled Δav slow parameter 22 to generate a SpvO2′ physiological measurement 08. That is, the physiological measurement 08 in this example advantageously provides a continuous measurement of venous saturation SpvO2′ utilizing intermittent calculations of SpvO2. Apparatus and methods for determining SpvO2 from mechanical or ventillator induced perturbation of the venous blood volume are described in U.S. Pat. No. 5,638,816 entitled “Active Pulse Blood Constituent Monitoring” and U.S. Pat. No. 6,334,065 entitled “Stereo Pulse Oximeter,” which are assigned to Masimo Corporation, Irvine, Calif. and are incorporated by reference herein.



FIG. 5 illustrates an ancillary parameter calculation embodiment of a physiological parameter tracking system 500 in which the slow parameter 22 is derived from an ancillary parameter 52 in T/H mode. The ancillary parameter 52, in turn, is derived from a physiological signal 02. The physiological parameter tracking system 500 has a physiological signal 02 input, a reference parameter calculation 10, an ancillary parameter calculation 50, a slow parameter function 60 and a tracking function 30, and, accordingly, generates a physiological measurement 08, similarly as described with respect to FIG. 4, above. However, in this ancillary calculation embodiment 500, the update command 04 operates in a track and hold mode, as described with respect to FIG. 3, above. Accordingly, the ancillary calculation embodiment 500 also has an output multiplexer 70 having the tracking function output 32 and the ancillary parameter 52 as inputs and the physiological measurement 08 as an output, as controlled by the update command 04 input. As such, the physiological measurement 08 is the ancillary parameter 52 during a track period 332, 336 (FIG. 3) of the update command 04 and is a function of the ancillary parameter 52 and the reference parameter 10 during a hold period 334, 338 (FIG. 3) of the update command 04. That is, the physiological measurement 08 is advantageously the ancillary parameter 52 except during a hold period, when the physiological measurement 08 tracks the reference parameter 12 according to the maintained value of the slow parameter 22.


As an example, the ancillary parameter calculation 50 may continuously calculate venous oxygen saturation, SpvO2, as determined by the update command 04 during track periods, and this calculation is provided as the physiological measurement 08. However, during hold periods of the update command 04, the physiological measurement 08 becomes SpvO2′ i.e. the SpaO2 reference parameter 12 minus a maintained value of the Δav slow parameter 22. The physiological measurement 08 in this example advantageously provides a measurement of venous saturation that is continuous through drop-out periods.


A physiological parameter tracking system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate many variations and modifications.

Claims
  • 1. A method of monitoring a patient's condition by electronically tracking one or more physiological parameters of the patient through processing signals received from a noninvasive sensor, said electronically tracking including transforming said signals into measurements of said one or more physiological parameters, the method comprising: receiving a physiological signal from a noninvasive physiological sensor that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood;electronically processing said signal in a pulse oximetry signal processor, including: calculating a first blood parameter responsive to the physiological signal, the first blood parameter having a first rate of amplitude change over time;responsive to an update command: in a sample period of the update command calculating a sampled value of a second blood parameter responsive to the physiological signal, the second blood parameter having a second rate of amplitude change over time, wherein the first blood parameter and the second blood parameter are different blood parameters, andin a subsequent hold period of the update command following the sample period, maintaining the sampled value of the second blood parameter calculated during the sample period,calculating a third blood parameter based at least in part on a difference between a current value of the first blood parameter and the sampled value of the second blood parameter; anddetermining a physiological measurement of oxygen saturation in the body tissue at least partly by tracking the first blood parameter by the third blood parameter such that, in the sample period, the physiological parameter represents the sampled value of the second blood parameter and, in the hold period, the physiological parameter represents an estimate of the second blood parameter based on the current value of the first blood parameter and the sampled value of the second blood parameter, wherein determining the physiological measurement using the sample period and the hold period utilizes less computational resources and consumes less power than determining the physiological measurement without the sample period and the hold period; anddisplaying the physiological measurement.
  • 2. The method of claim 1, wherein the calculating said second blood parameter comprises suspending calculations during a first time interval comprising the hold period and performing calculations during a second time interval comprising the sample period as indicated by the update command.
  • 3. The method of claim 2, wherein the determining said physiological measurement further comprises calculating the physiological measurement, during the first time interval, as a function of the first blood parameter and a difference corresponding to the measured value of the third blood parameter.
  • 4. The method of claim 2, wherein the determining said physiological measurement further comprises outputting the second blood parameter during the second time interval.
  • 5. The method of claim 1, further comprising asserting the update command wherein, upon assertion, a value of the third blood parameter is repeatedly generated.
  • 6. The method of claim 1, further comprising asserting the update command wherein, upon assertion, a value of the third blood parameter is held for a predetermined duration.
  • 7. The method of claim 1, wherein the calculating said second blood parameter further comprises repeatedly calculating venous oxygen saturation.
  • 8. The method of claim 1, comprising providing said noninvasive physiological sensor.
  • 9. The method of claim 1, comprising providing a patient monitor including an input to receive said signal and a signal processor to execute said processing.
  • 10. The method of claim 1, further comprising asserting the update command responsive to power consumption goals or quality of a physiological signal input.
  • 11. A patient monitor configured to receive a signal from a non-invasive optical sensor, the monitor comprising: an input configured to receive a physiological signal from a noninvasive physiological sensor that detects light of at least first and second wavelengths transmitted through body tissue carrying pulsing blood, said physiological signal responsive to said detection of said light; anda pulse oximetry signal processor configured to receive data responsive to said physiological signal and configured to: calculate a first blood parameter responsive to the physiological signal, the first blood parameter having a first rate of amplitude change over time,responsive to an update command: in a sample period of the update command calculate a sampled value of a second blood parameter responsive to the physiological signal, the second blood parameter having a second rate of amplitude change over time, wherein the first blood parameter and the second blood parameter are different blood parameters, andin a subsequent hold period of the update command following the sample period, maintain the sampled value of the second blood parameter calculated during the sample period,calculate a third blood parameter based at least in part on a difference between a current value of the first blood parameter and the sampled value of the second blood parameter, anddetermine a physiological measurement of oxygen saturation in the body tissue at least partly as a difference between the first blood parameter and the third blood parameter such that, in the sample period, the physiological parameter represents the sampled value of the second blood parameter and, in the hold period, the physiological parameter represents an estimate of the second blood parameter based on the current value of the first blood parameter and the sampled value of the second blood parameter; anda display configured to display the physiological measurement.
  • 12. The patient monitor of claim 11, wherein the signal processor is also configured to suspend calculations during a first time interval comprising the hold period and to perform calculations during a second time interval comprising the sample period as indicated by the update command.
  • 13. The patient monitor of claim 12, wherein the signal processor is also configured to calculate the physiological measurement as a function of the first blood parameter and the third blood parameter during the first time interval.
  • 14. The patient monitor of claim 12, wherein the signal processor is also configured to output the second blood parameter during the second time interval.
  • 15. The patient monitor of claim 11, wherein the signal processor is also configured to generate a measure of the concentration of abnormal hemoglobin.
  • 16. The patient monitor of claim 11, wherein the signal processor is also configured to assert the update command wherein, upon assertion, a value of the third blood parameter is repeatedly generated.
  • 17. The patient monitor of claim 11, wherein the signal processor is also configured to assert the update command wherein, upon assertion, a value of the third blood parameter is held for a predetermined duration.
  • 18. The patient monitor of claim 11, wherein the signal processor is also configured to repeatedly calculate venous oxygen saturation.
  • 19. The patient monitor of claim 11, wherein the signal processor is configured to assert the update command responsive to power consumption goals or quality of a physiological signal input.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority benefit under 35 U.S.C.§120 from, and is a continuation of U.S. patent application Ser. No. 11/834,602, filed Aug. 6, 2007, entitled “Physiological Parameter Tracking System”, which is a continuation of U.S. patent application Ser. No. 10/930,048, filed Aug. 30, 2004, entitled “Physiological Parameter Tracking System”, which claims priority benefit under 35 U.S.C.§119(e) from U.S. Provisional Patent Application No. 60/498,749, filed Aug. 28, 2003, entitled “Physiological Parameter Tracking System”. The present application incorporates the foregoing disclosures herein by reference.

US Referenced Citations (192)
Number Name Date Kind
4407290 Wilber Oct 1983 A
4603700 Nichols et al. Aug 1986 A
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5101825 Gravenstein et al. Apr 1992 A
5163438 Gordon et al. Nov 1992 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5685299 Diab et al. Nov 1997 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5746697 Swedlow et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5788647 Eggers Aug 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5842979 Jarman Dec 1998 A
5853364 Baker et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6754516 Mannheimer Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990426 Yoon et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254431 Al-Ali et al. Aug 2007 B2
8385995 Al-Ali et al. Feb 2013 B2
20040034294 Kimball Feb 2004 A1
Non-Patent Literature Citations (1)
Entry
Schuman, Andrew J., M.D., “Pulse oximetry: The fifth vital sign,”available at: http://contemporarypediatrics.modernmedicine.com/contemporary-pediatrics/news/pulse-oximetry-fifth-vital-sign?page=full. Oct. 1, 2014.
Related Publications (1)
Number Date Country
20130274572 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
60498749 Aug 2003 US
Continuations (2)
Number Date Country
Parent 11834602 Aug 2007 US
Child 13777936 US
Parent 10930048 Aug 2004 US
Child 11834602 US