The application is also related to copending applications entitled, “MASK INSTRUMENT AND METHOD FOR USING THE SAME”, filed ______ (Atty. Docket No. US87897).
The subject matter herein generally relates to a physiotherapy sheet and a method for using the same.
With the continuous improvement of people's material living standards, people's demand for health is also increasing. Followed by, the best-selling products of various physiotherapy sheets. Most of the physiotherapy sheets on the market are made of hard materials, and an area acting on the human body is also small, and the human body is not comfortable.
Implementations of the present technology will now be described, by way of embodiments, with reference to the attached figures, wherein:
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “another,” “an,” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean “at least one.”
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts have been exaggerated to better illustrate details and features of the present disclosure.
Several definitions that apply throughout this disclosure will now be presented.
The term “contact” is defined as a direct and physical contact. The term “substantially” is defined to be that while essentially conforming to the particular dimension, shape, or other feature that is described, the component is not or need not be exactly conforming to the description. The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
Referring to
The controller is electrically connected to the K electrodes 108, and the plurality of functional layers 104 in the flexible sheet 10 are controlled by the K electrodes 108. In one embodiment, according to
A material of the first flexible layer 102 or the second flexible layer 106 can be a flexible material such as non-woven fabric, silk, flexible cloth, porous flexible paper, or silica gel, and can be directly attached to a person's face. A thickness of the first flexible layer 102 or the second flexible layer 106 can be set according to actual needs. In this embodiment, the thickness of the first flexible layer 102 or the second flexible layer 106 is in a range from 10 to 100 micrometers. In use of the physiotherapy sheet, the second flexible layer 106 will be directly attached on a face. The second flexible layer 106 includes at least one opening 1062 at a position corresponding to the functional layers 104 to expose at least one of the functional layer 104. In
As shown in
A material of the electrode 108 can be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer, or conductive carbon nanotube. The metal or the alloy can be aluminum, copper, tungsten, molybdenum, gold, titanium, rhodium, palladium, iridium, or any alloy thereof. In this embodiment, the K electrodes 108 are all copper wires with a diameter of 1 micrometer. Preferably, an insulating layer can be coated on the surface of each of the K electrodes 108. A material of the insulating layer can be a flexible material.
Each of the plurality of functional layers can be a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes joined by van der Waals attractive force therebetween. The carbon nanotube layer can be a substantially pure structure of carbon nanotubes, with few impurities. The carbon nanotubes in the carbon nanotube layer can be single-walled, double-walled, and/or multi-walled carbon nanotubes. The diameters of the single-walled carbon nanotubes may range from about 0.5 nanometers to about 50 nanometers. The diameters of the double-walled carbon nanotubes may range from about 1 nanometer to about 50 nanometers. The diameters of the multi-walled carbon nanotubes may range from about 1.5 nanometers to about 50 nanometers. The lengths of the carbon nanotubes may range from about 200 micrometers to about 900 micrometers.
The carbon nanotube layer can be a freestanding structure, that is, the carbon nanotube layer can be supported by itself without a substrate. For example, if at least one point of the carbon nanotube layer is held, the entire carbon nanotube layer can be lifted while remaining its structural integrity. Compared with the carbon nanotube layer that is not freestanding, such as the carbon nanotube slurry layer, the freestanding carbon nanotube layer has better flexibility. Experiments have prove that if carbon nanotube slurry is brushed inside the flexible sheet 10 as the functional layer 104, after the carbon nanotube slurry is dried, the flexibility of the flexible sheet 10 will be reduced due to the carbon nanotube slurry layer.
The carbon nanotubes in the carbon nanotube layer can be orderly or disorderly arranged. The term ‘disordered carbon nanotube layer’ refers to a structure where the carbon nanotubes are arranged along different directions, and the aligning directions of the carbon nanotubes are random. The number of the carbon nanotubes arranged along each different direction can be almost the same (e.g. uniformly disordered). The disordered carbon nanotube layer can be isotropic, namely the carbon nanotube layer has properties identical in all directions of the carbon nanotube layer. The carbon nanotubes in the disordered carbon nanotube layer can be entangled with each other.
The carbon nanotube layer including ordered carbon nanotubes is an ordered carbon nanotube layer. The term ‘ordered carbon nanotube layer’ refers to a structure where the carbon nanotubes are arranged in a consistently systematic manner, e.g., the carbon nanotubes are arranged approximately along a same direction and/or have two or more sections within each of which the carbon nanotubes are arranged approximately along a same direction (different sections can have different directions). The carbon nanotubes in the carbon nanotube layer can be selected from single-walled, double-walled, and/or multi-walled carbon nanotubes. The carbon nanotube layer may include at least one carbon nanotube film. In other embodiments, the carbon nanotube layer includes at least one carbon nanotube film or at least one carbon nanotube wire. In other embodiment, the carbon nanotube layer consists one carbon nanotube film or at least two carbon nanotube films. The carbon nanotube layer can include at least two stacked carbon nanotube films.
In some embodiments, the carbon nanotube layer can include a plurality of carbon nanotube wires. In one embodiment, the plurality of carbon nanotube wires can be crossed with each other to form the carbon nanotube layer. In another embodiment, the plurality of carbon nanotube wires can be waved with each other to form the carbon nanotube layer. In other embodiments, the carbon nanotube layer can include only one carbon nanotube wire bended to form the carbon nanotube layer. Each carbon nanotube wire includes a plurality of carbon nanotubes substantially oriented along a same direction (i.e., a direction along the length direction of the untwisted carbon nanotube wire) and joined end to end.
The carbon nanotube layer has a better flexibility than the first flexible layer 102 and/or the second flexible layer 106. When the carbon nanotube layer is used as the functional layer 104 in the flexible sheet 10, the flexibility of the entire flexible sheet 10 is not decreased by the functional layer 104. The carbon nanotube layer has a large strength, as such, no matter how the flexible sheet 10 is bent or pulled, and the carbon nanotube layer is not damaged.
Referring to
Other characteristics of the physiotherapy sheet 200 are the same as the physiotherapy sheet 100 discussed above.
Referring to
Other characteristics of the physiotherapy sheet 300 are the same as the physiotherapy sheet 100 discussed above.
Referring to
Step S1: Provide a physiotherapy sheet, the physiotherapy sheet includes a flexible sheet, the flexible sheet includes: a first flexible layer; a second flexible layer, the first flexible layer and the second flexible layer are stacked with each other; a plurality of functional layers, the plurality of functional layers is located between the first flexible layer and the second flexible layer, each functional layer is a carbon nanotube layer; a plurality of electrodes, each electrode is electrically connected with a pair of functional layers.
The physiotherapy sheet can be any one of the physiotherapy sheets discussed in the above embodiments.
Step S2: providing a flexible conductive film, applying the flexible conductive film on user's face.
The flexible conductive film is used to directly adhere to the user's face. The flexible conductive film is a conductive material, has certain flexibility, and can fit on the user's face. Preferably, the flexible conductive film has a certain viscosity, and has a certain bonding force with the user's face, so that it can fit the user's face better. In this embodiment, the flexible conductive film is a hydrogel. The hydrogel has a certain viscosity, so that the flexible sheet can be completely attached to the surface of the hydrogel flexible conductive film, and the hydrogel can be closely attached to the user's skin. Further, the hydrogel has a certain resistance, and its degree of conductivity is moderate. The flexible conductive film can be arbitrarily replaced. In other embodiment, the flexible conductive film can be formed by coating a conductive gel on the user's face.
Step S3: applying the flexible sheet on the flexible conductive film.
The flexible conductive film is located between the user's skin and the flexible sheet. The second flexible layer of the flexible sheet is in contact with the flexible conductive film. Since the second flexible layer includes at least one opening at a position corresponding to the functional layer, the functional layer is exposed out from the second flexible layer, and the functional layer can be directly contacted with the flexible conductive film to electrically connect the functional layer and the flexible conductive film. The flexible conductive film can be used to separate the flexible sheet from the user's skin to prevent the flexible sheet from being polluted by the skin. Because the flexible conductive film has a low cost, it can be replaced at will. Since the flexible conductive film is a conductive material, it will not affect the flexible sheet. Provides electrical stimulation to the user's skin.
Step S4: applying a voltage to two electrodes of the plurality of electrodes, and forming a least one loop to generate current to stimulate the face skin of the user.
In use of the physiotherapy sheet, a voltage is applied to two pairs of functional layers or two functional layers via the two electrodes, and a micro-current will be input through the two electrode to the two pairs of functional layers or the two functional layers, and face skin between or under the two pairs of functional layers or the two functional layers will be stimulated by the micro-current. The voltage applied on each two electrodes can be kept for a power-on time, and the voltage is stop for a power-off time, then the voltage is applied to another two electrodes for another power-on time. In some embodiments, the voltage applied on each two electrodes can be in a range of 20V-36V and the frequency of the voltage can be in a range of 50-100 Khz.
When one electrode is electrically connected with a pair of functional layers, a voltage can be applied to a pair of electrodes, and a current can be input to the two pairs of functional layers. When one electrode is electrically connected with to one functional layer, a voltage can be applied to a pair of electrodes to input current on the two functional layers. Specifically, when one electrode is connected to one functional layer, a voltage is applied between any two electrodes to form a circuit loop on the left or right side of the flexible sheet. In the circuit loop, the current flows through a power, a first electrode of the plurality of electrodes, the functional layer electrically connected to the first electrode, the flexible conductive film, the user's facial skin, the flexible conductive film, the functional layer electrically connected to the second electrode, and the second electrode. The functional layer electrically connected with the first electrode and the functional layer electrically connected to the second electrode are located on a same side of the flexible sheet. When an electrode is connected to a pair of functional layers, when a voltage is applied between any two electrodes, two parallel circuit loops are formed. In each circuit loop, the current flows through the power, the first electrode of the plurality of electrodes, the functional layer electrically connected to the first electrode, the flexible conductive film, the user's facial skin, the flexible conductive film, the functional layer electrically connected to the second electrode, and the second electrode.
The voltage can be applied to two electrodes in an order 1 and 2, . . . K−1 and K (K is the numbering of each electrode), so that the two pairs of functional layers corresponding to each two electrodes are cyclically input current, and the face skin corresponding the two pairs of functional layers are cyclically stimulated. The numbers of the two pairs of functional layers are adjacent, such as numbers 2 and 3, which does not mean that the positions of the two pairs of functional layers are adjacent. The positions of the two pairs of functional layers adjacent to each other can be arbitrarily set according to actual needs.
Taking the physiotherapy sheet provided in the first embodiment as an example, when one electrode is connected to a pair of functional layers, the numbering diagram is as shown in
From the circuit loops formed above, it can be known that the flexible conductive film 12 should have a certain resistance, so that the current in the circuit loop is transmitted to the user's skin along the thickness direction of the flexible conductive film 12, rather than along the surface parallel to the flexible conductive film 12.
Referring to
The flexible sheet can be movably coupled to the controller. The flexible sheet defines an access at the window position on the first flexible layer or the second flexible layer, and the controller is connected to the flexible sheet through the access. The flexible sheet can be changed as needed. The flexible sheet can also be cleaned to achieve re-use purpose.
Compared with the prior art, the physiotherapy sheet provided by the present invention has the following advantages: first, the physiotherapy sheet can be used without the need to hold it by hand, which frees the user's hands. Secondly, through controlling a circuit by the controller, the skin can be selectively stimulated, and the skin parts to be stimulated can be selected more accurately without causing asymmetry.
The method of using the physiotherapy sheet provided by the present invention does not directly attach the flexible facial mask to the user's skin, but uses a flexible conductive film as an intermediate layer, and the flexible conductive film is used to attach the physiotherapy sheet to the user's skin. The skin is separated to prevent the physiotherapy sheet from being contaminated by the skin, so that the physiotherapy sheet can be easily reused. The flexible conductive layer can be replaced at will because of the cost. At the same time, since the flexible conductive film is a conductive material, it will not affect the flexible sheet to the user.
Depending on the embodiment, certain blocks/steps of the methods described may be removed, others may be added, and the sequence of blocks may be altered. It is also to be understood that the description and the claims drawn to a method may comprise some indication in reference to certain blocks/steps. However, the indication used is only to be viewed for identification purposes and not as a suggestion as to an order for the blocks/steps.
The embodiments shown and described above are only examples. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, especially in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202110827246.6 | Jul 2021 | CN | national |
202121669089.2 | Jul 2021 | CN | national |