Pi estimating method (PEM Algorithm) and device (D)

Information

  • Patent Application
  • 20130110270
  • Publication Number
    20130110270
  • Date Filed
    November 01, 2011
    13 years ago
  • Date Published
    May 02, 2013
    11 years ago
Abstract
Original Pi Estimating Method (PEM) Algorithm is primarily intended for computer application. PEM Algorithm, given in ‘word format’, describes a math process suitable for programming. Using sufficient pi truncations and the set of all real numbers for domain divisions, PEM math process permits a user to specify goal-precisions and to estimate goal-displacements in ALL dimensional-space, domains and ranges, particularly, for ALL infinitesimal space, including beyond quantum values. By use of super-computer, PEM Algorithm can be combined with appropriate interface to control high energy devices for consistent, precise, repeatable values. Uncertainty and probabilities, involved during microscopic, infinitesimal displacements, require precise and repeatable estimates within atomic, sub-atomic, and beyond—domains. Since PEM provides reliable, repeatable, estimates of pi approximations close to actual displacements: probabilities increase and uncertainties lessen. Not to be overlooked, self-contained, binary hardware, PEM Devices involve vastly numerous configurations and unlimited sizes.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Not Applicable.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable.


REFERENCE TO SEQUENCE LISTING, A TABLE, OR A COMPUTER PROGRAM LISTING, COMPACT DISC, APPENDIX

Not Applicable, in that, each PEMD Table for fractional displacements are less than 300 lines long.


BACKGROUND OF THE INVENTION

Precise infinitesimal displacements are not exact but require finite estimates of changes from a predetermined reference. PEMD is a novel utility, ornamental binary device, and original math method which obeys established pi relationships of inverted trigonometric functions of a circle's interior angles (versus center angles). By operation of pi's transcendental property (no algebraic variations-on-integers can equal to its value) and pi's irrational property (pi's value as a decimal representation never ends, infinite!, or never repeats during infinite truncations—pi decimal values to the right of zero). Pi's unique math properties permit almost limitless software (mathematical) simulations for estimating fractional, arc displacement values. Based on target displacements and values resulting from PEMD's simulation using PEM's binary math utility, unique ‘hardware’ configurations can be fabricated for target ‘software’ precisions.


Real world (not infinite) fractional-displacement-estimates are limited by computer data processing limits—that is, estimates requiring precisions several places to the right of a decimal. However, real world-accuracy-limits, can entail realizable and large amounts of finite pi divisions for arc length estimates—but require sufficient pi divisions within fractional arc increments, such that values become extraordinarily numerous and result very close to actual values. What are reasonable infinitesimal limits? Decimal representations of pi truncated to 12 decimal places are sufficient precision for accuracy comparable to the range of Bohr's radius of the hydrogen atom. Precision range within this Utility Patent Application, using PEMD's pi truncation, use 6 decimal precision owing to Printed Table Space Limits and the absence of a supercomputer. However, PE Methods within this application allow ‘n’ digit computer simulation for fractional displacement precisions. These estimates are very close to actual arc lengths and demonstrate pi estimating methods (PEM) for infinitesimal displacements. PE Method and Device (PEMD) are introduced by three PEM Devices: Full, half, and quarter size PEMDs. A Prototype Binary Device is used for illustration purposes, to set-up: unquestioned range values and unquestioned domain values. PEMD's unique binary configuration, permits displacement calibrations and establishes distinct arc motions with pre-set and corresponding partitions for precise value-goals.


Among numerous PEM Device ‘hardware configurations’ suggested by PEMD's Simulation Methods for Displacement Estimates, only select PEMD Examples are presented that illustrate a basis for a novel binary math utility and unique pi estimating method. Select examples illustrate how manipulations of ‘hardware’ parameters approximate fractional displacements accurately, while benefiting from unlimited pi combinations within PEMD's vast ranges of operation. Displacement Ranges depend on PEM Device's physical and governed limits. Many displacement devices can result for articles of manufacture, controlled by user requirements. User physical variations will bound ‘hardware’ targeted precisions—but, PEMD's use of pi's unbounded estimates for arc length and PEMD's ‘software/mathematical methods’ permit many and varied user-defined precisions to be achieved.


Applications which require close estimates to user-specific, target values, or infinitesimal values, and close design tolerances, are implied in many fields of endeavor. Considering Classifications, PEM Algorithm should be listed in many fields of the numerous USPTO Patent Classifications Definitions. Owing to PEM Algorithm's general utility and special methods for ‘infinite’ values, many fields of endeavor utilizing infinitesimal values would involve listing PEM many times. Citing one specific classification, probably will cause PEM's salient appeal to be lost for wide/diverse applications. Only, Classification 341, “Coded Data Generation or Conversion” was observed on USPTO Web-site as sufficiently descriptive for PEM Algorithm's wider appeal. That is, for emphasis again, precision values surface in many fields of endeavor and coded data & conversion-technology state-of-art, vary within many specialized applications. Also emphasis is directed to PEM Algorithm as an original math utility and its ‘Infinite Pi Data’ are not necessarily for machine ends.


Specific references used during development for pi utility, design, math methods, and fabrication of a binary prototype device, using Pi Estimating Method and Device (PEMD) for fractional displacements are:

  • R. E. Johnson and F. L. Kiokemeister. The Calculus with Analytic Geometry. Third Edition. Boston: Allyn and Bacon, Inc. 1964.
  • Reginald Stevens Kimball, Ed. D., Editor. Practical Mathematics, Theory and Practice with Applications to Industrial, Business and Military Problems. New York City: National Educational Alliance, Inc., 1948.
  • Samuel M. Selby, Ph.D. Sc.D., Editor. CRC Standard Mathematical Tables. Seventeenth Edition. The Chemical Rubber Company, Cleveland, Ohio: 1969.
  • Erick Oberg, Franklin D. Jones, and Holbrook L. Horton. Machinery's Handbook. Edited by Paul B. Schubert. 21st Edition. Industrial Press Inc. 1969.
  • Arthur Beiser, New York University, Concepts of Modern Physics, McGraw-Hill Book Company, New York, 1967.
  • Dr. Richard Okura Elwes, Mathematics 1001. Firefly Books Ltd., Ontario, Canada, 2010.
  • Marc Freidus. Catalog 2010A 2010-2011 Reference Catalog, Victor Machinery Exchange, Inc. Brooklyn, New York: 2010.


BRIEF SUMMARY OF THE INVENTION

Pi Estimating Method and Device (PEMD) is an original utility, yielding an ornamental device (hardware), and an original mathematical method (software) which takes advantage of pi's unique property of transcendental values for not repeating itself, and in decimal form, for never ending, thereby permitting many PEMD sizes for different displacement precisions and within various design physical-size, packaging constraints. Four basic physical parameters are used to affect displacement precisions. Then, using four physical changes affecting precision, different PEMD Tables (Avg. ppc—see Tables 4 through 7, Pages 50 to 81) of pi estimates are produced for ‘software’ comparison and illustration. An initial ‘hardware’/Test PEMD, hereafter referred to as Prototype Device, was fabricated to establish size references, operating parameters, precisions, and ‘base values’ for software references and comparisons. Tables of fractional displacement are generated for different: Face Heights (Ht.), Track Lengths, crank-drive major Diameters—crank threads-per-inch (TPI)—e.g. 0.75-10 UNC, and Roller Diameter. Unique combinations of four (soft/calculated) variables, relative to an established/(physically verified/tested) math model, combined with physical (hard) Prototype Device, are used to establish proof for claims. Also, accepted mathematical relationships will establish proof of claims when required. Value references, fractional estimated values, are produced in Tables for PEMD Quarter Size, Half Size, and Full Size (same as Prototype Size except with high tpi) and are integral for use with an original PEM Algorithm. Initial Prototype Device values establish hard (ware) and soft (ware) ‘base’ references for illustration purposes only. In dimensional comparisons, initial, verified/proven values are established for ‘real world’ comparisons for different PEMD sizes, in order to demonstrate PEMD's novel utility, flexible device—size options, and to present unique math methods/hardware binary devices for pi estimates of fractional displacements using an original PEM Algorithm.


The main object of the invention is to establish PEMD mathematical methods, using pi estimates to ‘find’ targeted, user-defined, microscopic displacements, by use of either manual, by electro-mechanical, or by electronic or by computer control. For example, DC drives & control, as well as computer driven PEM Devices (thinking outside the prototype-device-box) can involve Cathode-Ray electron beam targeting, and miscellaneous high energy targeting within present and established industry art. Electronic PEM Device fabrication and detail are not discussed. PE Methods & Algorithm can use CNC targeting, and when appreciated, ‘Benefits from PE Methods’ will allow Decision/Precision Maps for computations of PEMD Binary Domains and Ranges or Targeted/Goal Precision Values. PEM Algorithm benefits become obvious, once Tables of Average Precisions per Crank (Avg. ppc) are established for an intended device. Values within a unique PEMD's Table, then become a ‘calibrated method’ for ‘finding’ or ‘pi-estimated’ accurate displacement values very close to, if not equal to, target or goal values. Goals can be above (nX) Reference PEMD Full-Size or a Fractional (1/n) PEMD Size. PEMD Configurations are vastly numerous based on diverse measuring and displacement applications.


What is important and discloses the general idea behind this ornamental and unique method-of-estimation/utility invention is: PEM, within a user-application, permits a user to initially specify target precisions, use PEM's mathematical (soft) methods of estimation, and then, produce hard-results by use of pi estimating methods—which allow a PEM Hardware Device, a novel device that obeys pi's fractional displacement estimates. PEM Device's reliance on pi's math property of unique infinite values to the right of zero, without repeating values, allow many physical variations of PEM Devices. Each device that satisfies PEM will function within calibrated displacement-increments, and will operate on pi's ability to yield infinite number of fractional decimal values. Based on a physical configuration sought, dictated by a chosen target displacement, pi's fractional values, although having no ending or limits within displacement intervals, will aligned to values within displacement increments, such that, discrete infinitesimal values are realized for precision determinations.


BRIEF DESCRIPTION OF THE SEVERAL FIGURES
Graph, Math, Photo-View, Tables, and Sample Calculations

The first listing are Graph Figures derived from a Prototype Device which establishes ‘base data’ for generalized pi estimating methods, which obey PEM. Statements for purpose and cross-reference to detailed descriptions will be given as appropriate. The second listing are for Mathematical Equation Figures. The third listing are Photographic-view Figures of a Prototype PEM Device which more clearly illustrates a hardware example that complies with pi estimating methods of PEM Device. Statements corresponding to each Photo-view Figure will explain the purpose of each figure. The fourth listing are various Sample Calculations and a Table for Prototype Device and Tables for three Examples of PEMD physical variations on precisions. The final Table, Table 8, addresses Fractional PEM. Each table will be supported by explanations referenced to other tables or figures when needed and will be provided with sample calculations as appropriate. Total Listing follows:





GRAPH FIGURE LISTING


FIG. 1. FIG. 1. Graphical Solution for Prototype Displacement Values.



FIG. 1 also represents Graphical Solution for PEMD Initial Base Values. FIG. 1 establishes ‘Y’ Values of displacement that correspond to each whole value of ‘X’. ‘X’ values correspond to Prototype Crank Major Diameter ¾″-10 threads per inch (tpi), Roller (2″ diameter), Face Height (3″), and Track A & B Length (11″). Roller movement progresses from an initial setting of 1″ (parked), an inverted reference from right to left for increasing values, instead of left to right for increasing values. ‘Y’ Values are graphically determined for Roller Positions, ‘X’ equal to 1, 2, 3, 4, 5, 6, 7, and 8.



FIG. 2. FIG. 2. Trigonometric Relationships of a Triangle Inscribed in a Circle.



FIG. 2 presents two distinct, inscribed triangles, subtended by an arc length of a circumference segment for math-modeling a PEM Device's fractional displacements. A distinct arc segment below ‘level’ is Arc Partition One (P1). P1 renders negative values of displacement and is used primarily for leveling/calibrating zero used in PEMD. The arc segment above level is Arc Partition Two (P2). P2 is used primarily for pi estimating fractional displacements.



FIG. 3. FIG. 3. Prototype Full Size, PEMD Full Size, PEMID Half Size, and PEMD Quarter Size Configurations.



FIG. 3 illustrates dimensional changes for proportional PEMD variations (Prototype Device as reference) to changes in Crank-drive-major-diameter, threads per inch (tpi), Face Height (Ht., Roller Diameter (Dia.) and Track Length (L). Changes for full-size, half-size, and quarter-size PEMD are ‘keyed’ to domain and range values of the Full-size ‘Reference’, Prototype Device. FIG. 3's particular purpose is to illustrate how physical proportionality affects displacement range and domain. Four proportional component changes for PEMD obey binary operation. All PEMD Sizes are binary and require pi estimating methodology. Fractional PEMD less than Quarter-Size are discussed at Table 8, Page 86. Many PEMD Sizes can be achieved as long as binary proportionality is obeyed.


MATH FIGURE LISTING


FIG. 4. FIG. 4. A Simple Line Equation for Verifying Prototype Device Measured Displacements.



FIG. 4 represents a Line Equation, translated from a circle's central origin and obeys ‘central angle’ relationships for a line that pivots from its translated ‘Hub’. A simple line equation is used only for establishing/confirming initial values of ‘Y’ from ‘X’ positions. Initial Values are used to find unique-Interval Angles of Arc Partitions (P1 & P2) inscribed in a circle (See FIG. 2). Each angle corresponds to whole values of ‘X’ which become PEMD's Binary Range Basis for Intervals used in dividing P1 & P2 Arc Segments—which in turn, permit the use of pi estimating methods for fractional displacements (See FIG. 4, and Table 1, Page 41.



FIG. 4 Sample Calculations for Table 1-1.


General Form, Equation 1-1 is used for verifying ‘measured’ values of ‘Y’. Sample calculations by operation of Equation 1-1, 1-2 and 1-3 for ‘X’ at 6″, ‘Y’ (at ‘X’=6″) are used for example. Appropriate definitions are given. See Page 42.



FIG. 4 Sample Calculations for Table 1-2.


PEMD's general mathematical expressions are developed at two places: FIG. 2 and at FIG. 5. Equation 2 is primarily used for PEMD's pi estimating fractional displacements. Pi's Intervals, used for PEMD, are established at FIG. 4 and Table 1. Congruence with prototype are checked at Table 1-1. Knowing “base values” for ‘X’ Intervals and corresponding ‘Y Intervals’ (expressed in decimals), provide congruence for ranges of pi intervals (expressed in degrees) at Table 1-2. Values must comply with pi's calibrated Intervals in order to be PEM within binary domain & range boundarys; and, to represent a binary device, displacement values must comply with pi estimating method (PEM) and it's device (D) for PEMD. Page 43.



FIG. 5. FIG. 5. Trigonometric Inverse Function for Computing Displacement.



FIG. 5 presents an inverted, unconventional tangent function (see FIG. 5 and Paragraph [0069]), given as Equation 2, that is a simple expression and used extensively for computing fractional displacements in all Tables included with this utility submission. Parameters of Equation 2 are discussed in DETAILED DESCRIPTION OF THE INVENTION. Long established mathematical proofs support arc-length-estimating and become the basis for proving infinitesimal decimal values in all Tables as unquestioned-proof given by pi's estimating method (PEM). Using fractional pi (expressed in degrees) and using corresponding pi's truncated decimal values, allow expressions for microscopic precisions, available for various PEMD. See Pages 33 thru 40 for PEM Algorithm and utility process for precise estimations.



FIG. 6. FIG. 6. Pi Estimating Method (PEM) Algorithm, with Table 5 Values for Illustration, and Sample Calculations for Pi Truncated.



FIG. 6 presents a simplified diagram for a PEM control unit interfaced to a special device unit when a PEMD's domain and range become too small for a PEM Device to be configured as a single self-contained unit (e.g.: the prototype example at FIG. 7). Prototype Device yields pi estimating within a single unit, self-contained binary mechanism Infinitesimal PEM Devices will require PEM control separate from a displacement device. PEM Control obeys a Math Scheme, demonstrated by word or manual algorithm utility which can be readily adapted to programmed decisions for computer application. Micro-miniature PEMD precisions are increased with expanded pi truncations for close approximations, and entail numerous calculations of fractional-arc-length-estimates of infinitesimal displacements. Atomic, subatomic and beyond, displacements require expanded computer use (See Table 8, Pages 82 thru 97).


Sample 1/64 th inch calculations are given for pi truncated to 4 digit, 5 digit, and 6 digit accuracy. Pi Estimates for Example Targets are shown within 6th Digit precision to the right of decimal point. Tables 4, 5, 6, & 7 use only 4 digit domain and range values for Average Precision Per Crank (Avg. ppc). Special calculations for 5 digit and 6 digit truncations (Pages 37 and 39) are given as sample calculations for illustrating additional precision by pi truncated. Math Domain and Range Values, using 4 digit, are sufficient for most displacement estimates Quarter-Size PEMD and greater. Additional truncations for pi, 12 digits or greater should be utilized when sub-fractional arc estimates are needed to simulated values that fall within atomic and sub-atomic domain and range measurements using pi estimating (PE) Methods (M). For illustration purposes, 4 digit pi is used in measuring, math checks, and calibrating devices for binary domain and range relationships using a Prototype Device and three PEMD examples. A fourth example, PEM Algorithm Example, is given at Table 8 to demonstrate “estimating a known and unquestioned atomic value” to confirm PEM Algorithm's infinitesimal power.


PHOTO-VIEW FIGURE LISTING


FIG. 7. FIG. 7. Perspective View.



FIG. 7 is a side-view of a Full-size Prototype Device and, if desired, FIG. 7 can be used in other publications which require a front page for PEMD. PEM Algorithm is not suitable for photo-representation. See Pages 33, 37. 39, 96 and Paragraph [0103]).



FIG. 8. FIG. 8. Top/Pan View.



FIG. 8 is a top/plan view of a Full-size Prototype Device which has parallel threaded rods for mounting various devices (for example: electron-gun, photo-electric device, laser device, etc). If desired, permanent mounting of a device involves direct attachment to the Lift Arm, directly above Track B—which permits parallel rod deletion.



FIG. 9. FIG. 9. Bottom View.



FIG. 9 is a bottom view of a Full-size Prototype Device. Crank shaft length in photograph is longer than needed for selected binary ‘X’ Domain that governs Roller movement. Full-size prototype is used in initial testing, measuring, and incidental PEMD performance verifications.



FIG. 10. FIG. 10. Elevation/Right-Side View.



FIG. 10 is an elevation/right-side view of a Full-size Prototype Device. The left-side elevation is mirror image to its right. Tracks, Roller and Device Mounting Rods are clearly shown. Prototype is shown in the parked position, which is below level. Level is when the Roller is at ‘X’ equal to 2″ for Full-size, Face Ht.=3″, ¾″-10 tpi, Roller Dia.=2″, and Track Length=11″. Prototype Device values are ‘base values’ for all PEMD.



FIG. 11. FIG. 11. Front/End View.



FIG. 11 is an end view that is presented as a front view of a Full-size Prototype Device. Mounting bracket for test devices are attached to the Top Track (designated as Track B, which obeys fractional arc length displacements relative to its Hub). A PEMD at level, is a low-profile device.



FIG. 12. FIG. 12. Rear/End View.



FIG. 12 is an end view that is presented as a rear view of a Full-size Prototype Device. The Crank (C) advances the Lift Roller according to crank-shaft tpi, advances proportional to 2 pi full revolution, and according to fractional-pi-proportional-displacement within a full revolution of Crank (C).



FIG. 13. FIG. 13. Left Hand & Right Hand Portable View.


The purpose of providing portable views are to demonstrate that PEMD does not have to be permanently attached to a bench or permanently to any support structure. Again, the threaded rod used on the “test” model for determining a governed ‘Binary’ (Roller) Domain, the rod is longer than required for the Prototype's binary displacement-range selected. For the rod length shown, Track B will stand straight up or 90 degrees, with ‘X’ at 10″ (or orthogonal to level). User PEMD must be governed (restricted) for targeted displacements that cover binary values and will be less than “test” rod length shown on FIG. 13.





TABLE LISTING

Table 1. Y Determinations of Graph FIG. 1 (FIG. 1).


Base values are measured, calculated, and established using GF 1 for a Prototype Binary Device: Face Ht.=3″, ¾-10 UNC, Roller Dia.=2″, Track L=11″: Page 41.


Table 1-1. Measured ‘Y’ Displacement for Each ‘X’.


The purpose of Table 1-1 is to create ‘base values’ to be used for user target/goal displacements. Prototype Device's base values are binary and are dependent on physical parameters of the prototype. Prototype physical parameters selected for Full-Size are: Face Area 3″ height, Drive Crank ¾″major diameter, 10 threads per inch, Unified National Course Standard (0.75-10 UNC), Lift Roller 2″ OS diameter, and (roller) Track Length (L) 11″. Other PEMD Bases could have been chosen initially. For PE Methods, Prototype's Device-physical-parameters are binary and are distinctly selected to demonstrate an original binary scheme, a scheme for pi estimating, and for presenting, that is, for illustration purposes, an example of ornamental device, that obeys PEM. All PEMD above and below Full-Size must obey binary proportionality. Prototype Device Graphical Values on Table 1-1 list ‘Target’ or ‘Goal’ Domain & Range Binary Values and allow a Scheme of known/measured Displacements Ranges (Y) to be compared to a simple line equation for ‘calibrating’ PEMD to restricted partitions of two arc segment lengths (P1 & P2). Using Prototype values as PEMD base values, physical, and graphical measured displacement (Y) values, are compared to line equation solutions for ‘Y’ on Table 1-1. This is done as a check, a double check, for measured versus calculated ‘Y’ congruence and for unquestioned base values. Subsequent PE Methods using base values become unquestioned/proven, for simulating pi estimated values using PEM and its device (D). Thus, subsequent PEMD will not require double checks (graph or line equation), but will only require conformance to binary proportionally of pi methods and device parameters calibrated for Full-Size PEMD. See FIG. 3.


Table 1-2. Calculated Angles (Degrees) from Graphical Results of FIG. 1.


Table 1-2 utilizes ‘X’ & ‘Y’ Values from Table 1-1 and by use of inverted trigonometric relationships of interior angles and Equation 2, an alternate method, a pi estimating method (PEM), for calculations, yield PEMD's unique math scheme of dividing displacement-arc-lengths into predetermined Intervals. Inverse tangents using Prototype's ‘X’ binary domain and ‘Y’ binary range, produce ‘angle boundary values’ for each Interval (pi values within an arc length), and then each restricted partition (P1 & P2) are divided by predetermined Intervals (increments that obey tpi), such that, calibrated ‘Y’ displacements, are presented according to domain Intervals, with each Intervals divided by tpi increments. Prototype's calibrated (measured and calculated) domain and range values are PEM base-reference-values. Exact angle boundary (in degrees) for all PEM Intervals are now established for the pre-determined Arc-Segment-Partitions (P1 & P2), as illustrated by Exploded View within FIG. 2 and Table 1-2, Page 41.


Table 2.


The purpose of Table 2 is to show Prototype's Conformance to FIG. 2's ‘below level’ Arc Partition 1′ (P1) and ‘above level’ Arc Partition 2 (P2). A Key Scheme is introduced that align whole values of X to unique and specific angle values using Eq. 2, Page 31. Also, another purpose of Table 2, is to demonstrate how Intervals between ‘calibrated degrees’ are translated to threads per inch (TPI) for establishing ‘X’ Domain Increments and how corresponding degree increments allow computation of fractional displacements. Prototype's P2 Domain is binary and utilizes Intervals 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7 and 7 to 8 for estimating Prototype's Displacements with integral links to corresponding binary range values. By use of pi (degrees) that correspond to binary range values: +90 to 85.24, 85.24 to 82.87, 82.87 to 78.69, 78.69 to 75.96, 75.96 to 68.55, and 68.55 to 63.44 degrees, respectively, displacement ‘Y’ are calculated using Eq. 2-1. Page 44 calculated values for displacement (Y) are given in inches and millimeters. Although millimeter equivalents were used with inches during Prototype Device testing, inches are selected for presentation and are used throughout further discussions without necessarily stating dimensions. For this application, Inches are understood when not stated.


Table 3


The purpose of Table 3 is a refresher for standards that relate a circle's circumference divided by fractional pi (radians) and degree equivalents of fractional pi. Also fractional pi are related to conventional Quadrant Standards using counter-clockwise rotation for positive angles. For example, a radius from a circle's origin to its circumference, begins a positive sweep at zero degrees when radius is congruent with a positive horizontal axis and begins a positive arc segment on a circle's circumference by counter-clockwise rotation; and, the summation of all arc segments will equal to its circumference when one revolution is complete or a 360 degree sweep returns to point-of-beginning. By definition, an ‘arc segment’ is that fractional length on a circle's circumference which was subtended when a circle's radius rotated a given angle [i.e.: arc=Radius times angle (radians)]. Although a PEMD's motion obeys circle's central angle, the circle's arc segment is equivalently estimated in two restricted Partitions (P1 & P2) by Equation 2. See FIG. 2 and FIG. 5.


PEMDs that are fabricated using a hand crank will require an individual's knowledge of Table 3-1 through 3-6 and his or her comfort with fractional pi estimates for controlling, measuring, and displacing incremental values. Unless fixed fractional displacements are routinely sought and PEMD settings remain predetermined (plus owing to pi's rigor), a pi estimating method (PEM) Algorithm using computer control is suggested. PEM is integral to all PEM Devices (Ds), or PEMD (s). Computer control using PEM Algorithm is the preferred control method. However, with pi familiarity, and use of PEM Word Algorithm, precise estimates can be ‘cranked’ or calculated with relative ease. Then, by use of a PEMD, accurate displacements or measurements can be made. PEMD Quarter-Size and above, permit displacement values by hand or motorized ‘crank’. Based on PEMD sizes much smaller than Quarter-Size, and if need for multiplicity of estimated values, PEM Algorithm by computer control of a device—a device that obeys PEM—will prove to be most useful.


Table 4.


Table 4 is a listing of Average Precision per Crank (Avg. ppc) of the Binary Prototype Device, Face Height=3″, crank diameter=¾″, 10 threads per inch (10 tpi), Roller Diameter [outside (OS)]=2″, and Track A or B Length (L)=11″. First (Left) Column (C), lists the number of completed revolutions per increment within Domain Intervals keyed to whole numbers (e.g. 1-2, 2-3, . . . 7-8) and subdivided by TPI and ‘calibrated to Range Pi Partitions (e.g.: +90 Degrees to +85.24 Degrees which corresponds to Key 2-3). Second Column are increments of ‘X’ using TPI for divisions or alternately, a scheme for determining Domain Divisions can be found on Tables 6 and Table 7, Pages 68 to 74 and 75 to 81, respectively. The Third Column are calculated Y Values using Eq. 2-1, Page 31. Each Table 4 (e.g.: Tables 4-1, 4-2, . . . 4-7. Pages 50 to 53) are a listing of Y Precisions that fall within the whole number Key Scheme that signifies a PEM Domain under consideration. The Remaining Columns are precisions within fractional Cranks (C)—Reference Table 4, Page 50—and each of these columns are averaged to yield “Average Precision per Crank” (Avg. ppc). Avg. ppc is integral to pi estimating (PE) method (M) for approximating Target (T) Values by PEM Algorithm. See Table 3 (Page 47), Table 2-5 (Page 45), Table 2 Sample Calculations (Page 46)., and PEM Algorithm (Page 33).


Table 5.


Table 5 provides a listing for Avg. ppc for a Full-Size PEMD when TPI is changed. Forty threads per inch (¾-40 UNS) is selected for comparison to Table 4, 10 tpi, Prototype Device. Sample Calculations using Table 5 Values and PEM are at Page 34. Impact on accuracy is demonstrated by Target Value minus Pi Estimated (PE) Value: (T−E) using PEM Algorithm (See Page 36).


Table 6.


Table 6 provides a listing for Avg. ppc for a Half-Size PEMD when all four physical parameters are uniformly altered to configure PEMD to binary one half size. Half size PEMD involves half size for Face Ht (3″ reduced to half or 1.5″), Crank Diameter (¾″ reduced to 5/16″ & TPI (40 increased to 48) or 0.3125-48 UNS, Roller Diameter (2″ reduced to half or 1″) and Track Length (11″ reduced to half or 5.5″). Go to FIG. 3 (FIG. 3), for relative physical, proportional, reductions and overview of PEMD Example Rationale. Sample Calculation using Table 6 Values and PEM are at Page 37. Impact on accuracy is demonstrated by Target Value minus Pi Estimated (E) Value (T−E) using PEM Algorithm (see Page 38). Sixth Digit Accuracy improves but remains between one one-millionth and ten one-millionth of an inch.


Table 7.


Table 7 provides a listing for Avg. ppc for a Quarter-Size PEMD when all four physical parameters are uniformly altered to configure PEMD to binary one quarter size relative to a Full-Size binary PEMD. Quarter size PEMD involves quarter size for Face Height (3″ reduced to ¾″), Crank Diameter (¾″ reduced to 3/16″ & TPI (40 increased to 72) or 0.1875-72 UNS, Roller Diameter (2″ reduced to ½″) and Track Length (11″ reduced to 2¾″). Sample Calculations using Table 7 Values and PEM are at Page 39. Same Target (T) Value were used by Table 5, 6, and 7 (or near 1/64th inch) for comparison to precision changes affected by different physical configurations. Although 6th digit precision variations are slight and minor, T−E maintains 6th digit accuracy within ten one-millionth of an inch.


Table 8.


Table 4 (Prototype), Table 5 (Full-Size PEMD), Table 6, (Half-Size PEMD), and Table 7 (Quarter-Size PEMD) involve methods for estimating displacement that fall within machine tolerances. Sizes above Full-Size PEMD are not addressed, in that, proportionalities will involve the same binary methods and tolerances. Table 8's purpose is to demonstrate PEM Schemes (opposite to large for contrast) such that, extremely small displacements are equally valid for PEM Algorithm and a Device, a PEM computer controlled device. Table 8 contains a collection of tables that show added techniques for estimating micro-miniature displacements. By use of PEM Algorithm and math schemes used at machine-levels, pi estimating for atomic and subatomic approximations for any value can be produced and “repeated” when an Algorithm obeys pi-keyed-equivalent-proportionalities of PE Methods. Although a self-contained PEMD for atomic and subatomic level displacement values are not practical in a single unit, PEM software control, obeying the techniques of pi estimating, are realizable for interfacing with and controlling a PEM device. Table 8 addresses pi estimating method (PEM) to estimate known Niels Bohr's Hydrogen Radius Value (Target) for illustration only, and offers example math methods for using PEM Control: to find micro-miniature binary domain and range values for Target Values, to pi estimate, measure and/or displace Target Values using the process of PEM. Consistent PE Methods permit logical “repeat” values above and below Targets by Algorithm. One should realize the salient importance of finding, measuring, and repeating microscopic displacements smaller than Hydrogen, smaller than subatomic, and smaller than smaller by consistent methods offered by PEM.


Table 8-1 lists PEMD Binary Sizes and Binary PEMD Domain and Range Values. It should be noticed that Full-Size (Table 5, Page 54) is identified as 1×, Half-Size (Table 6, Page 68) is “n”=0, and Quarter-Size (Table 7, Page 75) is “n”=1. Hydrogen-Size (Table 8, Page 86) is “n”=27.


Fractional PEMD domain and range lower boundary values correspond to Prototype Device at level, reference zero, and above level. Binary domain, X and Y Values below level are not included in displacement approximations. All “keyed references” are calibrated or use Prototype binary relationships; hence: Equivalent Domain Lower=2, Equivalent Domain Upper=8, Equivalent Range Lower=0, and Equivalent Range Upper=4 (Refer to Table 8-1 and Tables 2 & 4). Since a PEMD obeys binary, notice all binary range values (Ref. Table 8-1, Page 82) are one half of ‘full upper’ domain value because of binary. This binary relationship for domain and range continues on into atomic, subatomic and beyond, for pi estimating.


Table 8-2's purpose is to compare Prototype Device, Full-Size PEMD, Half-Size PEMD and Quarter-Size PEMD, Average Precision Per Crank (Avg. ppc) against Most Significant Digit (MSD) of values in Standard Form resulting from fractional Cranks within one revolution (or one Crank). Exponent values of Avg. ppc are shown for Key Scheme Intervals and for all fractional pi. Then, exponents are averaged for relative precision comparisons of the three PEMD examples to the Prototype Device. Basically, precisions are the same for the four examples regardless of size, except that displacement ranges and domain change. Highlighted (bold) exponent values are for special interest in MSD values used for PEM Form at Table 8-3. Page 85. Table 8-2 lists Domain Lower & Upper Boundary and Range Lower and Upper Boundary in Standard Form where every number can be expressed as a number between 1 and 10 and can be represented as a positive or negative power of ten.


Table 8-3's main purpose is to establish a PEM Form that differs from Standard Form in Table 8-2. In PEM Form, the MSD is just right of the decimal point and every number can be expressed as a number between 0.0 and 1.0 and can be represented as a positive or negative power of ten—with negative power being of interest for Fractional PEMD. PEM Form is used for math ease in allowing the majority of computations in the same power of ten without shifting exponents (See PEM Form “A×C=” Column on Table 8-3, Page 85). Values between zero and one are associated with PEM Form for all PEMD Calculations and its form are integral to PEM Algorithms.


Table 8-4 is ‘Table 8-5 in progress’ with explanations by example calculations (See Page 86). Table 8-4 combines the functions of Tables 8-1, 8-2 and 8-3 to find Niels Bohr's Hydrogen Radius Value. Using Bohr's known and well established Radius Value, as a Target (T) Value, is intended to take advantage of a known micro-miniature value to illustrate pi estimating method (PEM) and PEM Algorithm. In a sense, Table 8-4 is a ‘setup’ Table for determining PEM Key Scheme, PEM Domain and Range Intervals, and methods of Interval Increments for producing only the specific Average Precision per Crank (Avg. ppc) Table (e.g.: Table 8-5, Page 95) that has Hydrogen's Radius Value.


Table 8-5 is preceded by Table 8-5 Confidence Check. The purpose of the confidence check is to assure that micro-miniature PEMD binary magnitudes are proportional equivalents to Full-Size PEMD. Table 8-5 contains Hydrogen's Value. In binary proportional atomic space, Hydrogen is located at Full-Size PEM Key: 4 to 5 Equivalent, Crank 20 to 30 Interval, and by PEM Avg. ppc Table, Table 8-5 in PEM Format, Hydrogen's Radius can be approximated by using PEM Algorithm as given on Table 8-5 Sample Calculations (Page 96).


DETAILED DESCRIPTION OF THE INVENTION

A pi estimating method (PEM) and its device (D) or PEMD is a self contained binary unit that can measure, control, and provide precise displacement for an attached mechanism within a single unit and is a hardware pi device. PEMD is distinguished from a PEM Software Binary Unit, in that, pi estimating method (PEM) is an Algorithm, primarily intended for synthesized displacement, obeying pi approximations for Target (T) Measurement by the Algorithm. Values resulting from computed pi estimates are to be used for computer control of an ‘external device’ interfaced to a PEM Unit. PEM Algorithm, which is integral to this Utility Application, is primarily intended for computer control applications. A PEM hardware device (D) or PEMD, performs the PEM Algorithm by operation of its mechanism.


The best mode for demonstrating how binary operations of the Prototype Device (FIG. 7) begins with FIG. 1, and PEMD Examples (FIG. 3) and begin with recognizing that a lift roller is calibrated to move (in reverse motion) up Track A and is restricted to movement within a ‘binary domain’. Xb increases in value as the lift roller moves up Track A but maintains a ‘continuous set’ of real numbers, as Xb glides between 1 and 8, which in theory, can cover an infinite number of intermediate values within Intervals, divisions and subdivisions of Xb. However, Prototype Device and three PEMD Examples use ‘threads per inch’ (TPI) for Xb Divisions and therefore, the number of intermediate values within Intervals are small. A PEM Software Binary Unit can utilize vastly expanded intermediate values within Intervals and will be limited only by computer computational power. Using power of 10, there are 10n continuous set of real numbers available for Interval divisions and subdivisions available for synthesized pi estimating method (PEM). Special attention is hereby made, for heightened awareness throughout discussions on Pi's property of infinite truncations without repeating and never ending for domain and range values. Computers are essential for vastly expanded computations that require precisions infinitesimally close to Target.


The ‘X’ domain has been restricted to two distinct partitions for lift operation, Reference (Ref.) FIG. 2 for further discussion of pi partitioning (P). The lower partition (P1) is for lift zeroing, or in x-y plane, for leveling. P2's Domain or Xb's Binary Domain (2 to 8), is Binary: 21=2 and 23=8, at Domain Boundaries Only. All intermediate values between binary boundarys obey Equation 2 (Page 31) for all PEMD and in all PEM Domains and Ranges Limits.


Refer to Geometry for Yb, FIG. 5, Domain Intervals are the same, using equivalent scheme, in all Tables for “Average Precision per Crank, Tables 4 through 8, Pages 50 to 97. An Interval Scheme uses whole numbers in Xb's Binary Domain for intermediate values between binary (2 to 8). Whole numbers are discrete (e.g.: 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7 and 7 to 8), and being whole numbers, have gaps between and allow Intervals of real sets of numbers within PEMD's binary boundaries. This whole number convention and its equivalence due to proportionality within PEMD, is used as a ‘Key Scheme’ for locating PEMD's displacement (Yb) conditions and is utilized for all Tables referenced.


Prototype ‘Xb’ Binary Domain follows the following Interval Convention as Key Scheme:






X
b=(parked),(1,2],[zeroed],(2,3],(3,4],(4,5],(5,6],(6,7], and (7,8],


whole number Intervals for all “Avg. ppc Tables” (Ref. Tables 4 through 8)—exception for Table 8 (Ref. Page 87) which does not use Xb Interval (1, 2] or (parked), but uses only domain ranges that yield displacements (Yb) above zero reference, without loss of precision or interruption of equivalence. Sample Xb: 2 to 3 Interval for Prototype Device and PEMDs are given below:
















tpi = 10:
(2.0, 2.1, 2.2 . . . 3.0]
Key: 2-3, Ref.




Table 4-2, Page 50.




(note: Interval has




10 divisions)


tpi = 40:
(2.000, 2.025, 2.050 . . . 2.250]



tpi = 40:
(2.250, 2.275, 2.300 . . . 2.500]
Key: 2-3, Ref.




Table 5-8, Page 57.


tpi = 40:
(2.500, 2.525, 2.550 . . . 2.750]
(note: Interval has




4 divisions and


tpi = 40:
(2.750, 2.775, 2.800 . . . 3.000]
10 subdivisions each




for 40 total)


tpi = 48:
(1.000, 1.021, 1.042, . . . 1.500]
Key: 2-3 equiv.




Ref. Table 6-2,




(note: Interval has




24 divisions or half




48 because PEMD is




½ Size)


tpi = 72:
(0.500, 0.514, 0.528, . . . 0.750]
Key: 2-3 equiv. Ref.




Table 7-2, Page 76.




(note: Interval has 18




divisions or ¼




of 72 because PEMD is




¼ Size)










It should be noticed that each Key Scheme/Interval has an open interval for lower interval domain boundary, hence, end points are not included. Upper interval domain boundary is a closed interval and therefore include end points. Data are presented on each Table that respect the foregoing convention.


Self-contained PEMD using tpi for Xb Domain Interval divisions quickly deminish with physical thread options for Fractional PEMD. Hence, computer simulation of PEM operations benefit from 10n Interval divisions and permit arc length approximations for displacement (yb) estimates to be very close, if not equal to, exact values. Recognizing 10n increments in Xb domain values, and Pi not repeating itself for infinite truncations, the development of Table 2 (Ref. Page 44), supported by its Sample Calculations, reveal the need and subtle power of a method or Algorithm which integrally has Xb's 10n divisions & range values with Pi's infinite vastness.


A Prototype Device is constructed so that its lift function obeys Binary Range Motion and its action is accomplished by Track B being tangent to the lift roller while it travels up Track A, which in turn, is proportionally configured to allow Track B displacement to obey Binary Range Boundary Values. Track B's arc movement, relative to its Hub, yield Yb Binary Range Boundary Values: 0 to 4 which are congruent with its Xb Binary Domain Boundary Values: 2 to 8 (FIG. 1 & FIG. 2).


Table 1 (Page 41) lists Prototype Device measured values. These values are verified by simple linear relationships. However, the lift operation moves according to a circle's arc segment during each discrete whole value of Xb and its displacement values agree with discrete pi values (Table 1-2, Page 41). For convenience, pi is expressed in degrees, where 360 degrees=2 pi radians. Owing to Track B's arc movement, (FIG. 2 and FIG. 5 respectively), Equation 2 is used to equate device motion by operation of changes in its interior angle (θ2). Using intermediate pi values (in degrees) of Table 1-2 and regular domain intervals, in general:





Domain Interval (In)={(x0,x1],(x1,x2], . . . (xn-1,xn]},


there exists a function, yb=f(xb), such that, for every value of xn in a restricted binary domain (xn-1, xn], there exists precisely one number, such that, yb=f(xb) exists in restricted binary range (0, yb],


By Eq. 2-1:






y
b
=f(xb)=xb/tan(θ2), if and only if (− 5/18 pi<θ2<⅙pi]

    • (See Table 3-5, Page 49).


And, f(xb) is smooth because f′(xb) exists and f(xb) is restricted to be continuous at every number (no gaps or jumps) within 2 judiciously selected, and restricted, arc segment Partitions (P1 and P2), which assure the tangent function remains smooth and continuous:












x




(

x

tan





θ


)


=


1
/
tan







θ
2



,

derivative






exists
.






And, −θ2 in Partition One (P1) is: − 5/18 pi<−θ2<−½ pi (for zeroing PEMD)


And, +θ2 in Partition (P2) is: +½ pi>+θ2>+⅓ pi (for incremental displacements).


Partition One (P1) is not necessary for Fractional PEMD (See Table 8) owing to methods developed by Table 8, Pages 82 thru 97, and therefore, only binary range using pi within P2 boundarys above are considered.


With Equation 2-1 restricted by P2's pi range, and to be congruent with restricted Domain Set of all real numbers within pi Intervals, then all values within domain and range Intervals to be congruent within P2, must obey the following pi Intervals, divisions, and sub-divisions, and obey open & closed interval convention as given (See Paragraph [0051] above, Table 1 and FIG. 1):

    • Range Intervals: (+90, 85.24], (85.24, 82.88], (82.88, 78.70], (78.70, 75.97] (in degrees)
      • (75.97, 68.55], and (68.55, 63.44].


In general expression:





Range Interval (In)={y0,y1],(y1,y2], . . . (yn-1,yn]},


a unique yb (or yn) exists for every value of xb congrument with pi range intervals immediately above.


Proof of the above are not given, in that, the tangent function, within Equation 2, is well established by trigonometric precedence. Decimal values of unlimited pi truncations, permit unlimited displacement values within restricted Partition P2, calculated via Equation 2-1, and yield unlimited computer simulated displacement values that extended beyond atomic, beyond sub-atomic, and beyond—beyond. Pi estimated method (PEM) precisions achieved via use of PEM Algorithm are only restricted by computer computational capacity and cost.


The PEM Algorithm is presented in word format (Refer to FIG. 3, PEM Ex. (Page 34), PEM Ex. (Page 37), and PEM Ex. (Page 39). Word decisions are utilized for illustrating pi estimating logic. Explanations are given that relate how Average Precision per Crank (Avg. ppc) Tables for specific PEMDs or PEM Control in computer applications are integral to pi estimating. Further Detailed Description of the Invention are located at FIG. 5 and Table 8-4 (Page 86) Sample Calculation for Hydrogen (H2). Various detailed discussions are included in Brief (additional detail for clarity) Description of the Several Figures: Graph, Math, Photo-View, All Tables, and Sample Calculations as required.



FIG. 4: Confirming Prototype Device Measured Values—Sample Calculations using Equation 1 for verifying binary base values’ utilized in the PEM Process.






m
1=(y2−y1)/(x2−x1)  Eq. 1-1






m
1=(yb−1)/(xb−0)  Eq. 1-2






y
b
=m
1
x
b+1  Eq. 1-3


In the x-y plane, Prototype Example, Reference FIG. 1: the top track (B) is displaced vertically when the roller advances toward a hing, its hub, and obeys the Point-Slope Form of a Line Equation, passing through two Points: (x2, y2) and (x1, y1), reference origin is circle center. The Point Slope (m1) Form is given by Equation (Eq.) (1-1) below, and has a ‘y’ axis intercept occurring at Track A and Track B Hub, Point (h,k), and crossing ‘y’ axis passing thru the Hub at (h,k)=(x1,y1)=(0,1). The Prototype's upper track mounting arm, hinged at (0,1), obeys a Line Equation not parallel to a coordinate axis (except zero) and is represented by:






m
1=(y2−y1)/(x2−x1) General Form.  Eq. 1-1


Let Track B Mounting Arm be represented by the Line of Eq. 1-1, starting at its Hub, (0,1), and ending where the Track Arm and the Track B intersect, the absolute value of |y2−y1|=yb—to provide ‘y’ ‘displacement reference’ and to distinguish from a graph point location, given by (x2, y2). Subscript ‘b’ also alludes to absolute ‘x’ roller displacement from an ‘xb’ zero reference, Track length (L) distance from (0, 0) and (11, 0). Start of Device's Roller movement toward it's Hub, always begins at an initial position, and initial condition for Prototype Device is xb=1. However, all xb movement is relative to its zero reference. Eq. 1-1 translated is:






m
1=(yb−1)/(xb−0) Translated Slope in terms of Hub location.  Eq. 1-2


Values for Slope (m1) and yb are obtained by Graphical Solution (FIG. 1) for whole values of xb, and (xb, yb) are graphical solution-values for the line originating at the Hub, tangent to Device's roller, and ending at (xb,yb), for each ‘controlled value’ of xb. This pivoting Line at Hub, in basic form, is given by:






y
b
=m
1
x
b+1 Eq. 1-3 purpose is to confirm measured xb and yb. Use of 1-3 Equation involves 2 unknowns.  Eq. 1-3


Hence, in order to obtain calculated solutions without the use of a graph (FIG. 1), a second equation is used that utilizes inverted interior angles that correspond to the Prototype's reversed movements. Eq. 1-3 Solutions are listed on Table 1-2 for determining interior angle θ2 and by a second equation detailed at FIG. 2 and FIG. 5. Yb displacement can be calculated without the use of a graph. However, values are checked against initial solutions for confidence checks. Refer to Table 1-2 at Page 41.



FIG. 5. Equation 2 Values are restricted by binary domain and range.






Y
b
=f(xb)=Xb/(tan θ2) θ2 is an interior angle in FIG. 5, and Not a center angle. See Below.  Eq. 2-1



FIG. 5 illustrates triangles inscribed in a circle. Prototype Lift Roller movement is from a ‘parked position’ at xb=1.0 and moves to xb=2.0. As illustrated by FIG. 5 Exploded View, a unique arc partition below-level (or reference zero) is bounded by fractional pi displacements corresponding to −53.13 degrees (at Track B tangent to Roller at xb=1.0) and to 90-degrees (Track B tangent to Roller at xb2.0). The purpose of this particular arc-segment-length-below-reference is to permit PEMD to ‘zero (at xb=2.0)’. Emphasis is given that the arc partition below level is not used by arc segment estimating for displacements (above level). The negative superscript for 90 degrees signifies when f(xb) approaches 2.0 “from below”, f(x) approaches reference zero “from below”, and corresponds to 90-degrees “from below”.


The following One-sided Limits, which state Pi boundaries (in degrees), use two separate and distinct PEM Partitions (Ref. FIG. 5 Exploded View), which show PEMD's Xb motion and degree equivalents of the two Partition Boundaries for P1 (lower Partition) and P2 (upper Partition):












lim


x
b



2
-





[

arctan


(

-
z

)


]


=


-

90
-








deg
.









f


(
x
)








to





zero








from





below












See





Table





1


-


2





for






z












values
.





(


P
1



s






R
U









from





below




)



-





See





Table





8


-


1





for






R
U







meaning
.








Eq
.




2



-


2









lim


x
b



2
+





[

arctan


(

+
z

)


]


=


+

90
+








deg
.





f


(
x
)








to





zero








from





above











(


P
2



s






R
L









from





above




)









Ref
.

:







Table





8


-


1





Domain





&







Range
(


D
U

,

D
L

,

R
U

,

&

R
L



)






Eq
.




2



-


3








lim


x

b
>
2



8




[

arctan


(

+
z

)


]


=


+
63.44







deg
.





P
2




s





angle





at







R
U

.







Eq
.




2



-


4








lim


x

b
<
2



1




[

arctan


(

-
z

)


]


=


-
53.13







deg
.





P
1




s





angle





at







R
L

.







Eq
.




2



-


5







Refer to FIG. 5 and locate two inscribed triangles with two angles, θ2 & −θ2. Both triangles have Xb as side-opposite angle. Arc Partition 2 has positive Yb as side-adjacent to Angle 2. Arc Partition 1 has negative Yb as side-adjacent to negative Angle 2. For the inscribed triangles, it is important to notice that conventional trigonometric tangents of a center angle (circle origin reference) become inverted. Instead of convention tan(θ2)=Y/X, PEMD's motion is represented by a tangent of Angle 2 that uses conventional/standard trigonometric tangents with side-opposite divided by side-adjacent. However, physical ratios using interior angle-coordinates become inverted (mirror) when referenced to use of ‘interior Angle 2 motions. Hence, the tangent of Angle 2 is equal to Xb (side-opposite relative to θ2) divided by Yb (side-adjacent relative to θ2). Therefore:





tan(θ2)=Xb/Yb  Eq. 2-6



FIG. 6. PEMD units, ¼ Size or greater, utilize a Crank Hand Wheel or DC Motor for turning a threaded rod for dividing a PEMD's ‘domain’ values. PEMD unit is self-contained (i.e., PEM and Device) are configured as a single unit), obeys PEM displacements, and, as a complete unit, is the PEM Device (PEMD) that renders precision displacements for target goals of the PEMD Size selected. Word Algorithm is used for estimating target values for the PEMD. Sizing the PEMD is given on Table 8-1, Page 82.


PEMD units smaller than ¼ Size, require a PEM Computer Software Control Algorithm for simulating equivalent (equiv.) ‘domain’ divisions used in determining ‘range’ divisions for targeted pi estimated displacements. PEM Software Values can then be loaded into an Interface Unit (or integrated as a single unit—computer/interface) for driving a Device Unit that can position micro-miniature units with infinitesimal displacements or, for example, drive a laser or electron gun during infinitesimal positioning. All PEMD Schemes obey equivalent (equiv.) ‘domain’ and ‘range’ schemes of the ‘Full-Size’ Prototype Binary Unit.


Pi Estimating Method (PEM), Sample Calculation Examples, and Table 5 Values Used with Fractional Pi Values Utilized in PEM.


Reference: Full Size PEMD Table 5, page 54 for example—values are used for Algorithm below. It should be noticed that the methods, PEM Methods, presented below, are valid for Tables 4, 5, 6, and 7. Although PEM method is simple, its algorithm, given by manual/word ‘steps’ below, can be readily programmed for software computer-decision-making and simulation of target results. Speed, expanded computation, and greater truncations of pi, allow extremely accurate precisions. PEM Software ‘targeting control’ are primarily intended for fractional PEM Devices that utilize PEM Math Process for finding micro-miniature target results. Manual calculations are initially given to illustrate pi estimating method and expected tolerances of estimated results within current machine industry art. Targets within atomic and subatomic scales have domain and range displacement estimates addressed by Table 8-1 and Table 8-1 Sample Calculations. Devices larger than Full-size PEMD are not discussed and are simply Full-size PEMD, or expanded PEMDs.


Starting with a Full-Size PEMD, Target (T) 1/64 Example, 1/64=0. 015625 using Pi Estimating Method (PEM), the following ‘word’ algorithm establishes PE Method (PEM) for PEMD:


Steps for Pi Estimating and Word/Manual Algorithm for Decisions:

















Locate the value of Y, using pi truncated 4 digits,
T 1/64
=
0. 0156 25


and just less than, or equal to, the first 4 digits





of Target Value. Locate Y value at Table 5-5,





Crank (C) 43 Value of Y, Value equals (0. 0129):





(1) A = First Partial of pi estimate
C 43
=
0. 0129




(minus)



(2) ‘Target Value’ (T) minus ‘Crank (C) Value’.
T − C Result
=

0.

00


27


25




(3) Take Result of T − C and find multiples of





“Average Precision per Crank (Avg ppc)”





(on Table 5-5: Y by fractional pi or degrees)





Avg. ppc corresponds to fractional Cranks of





1 Revolution (eg. C/4 = 90 deg, C/8 = 45 deg.,





360/# = deg.), where 1 Crank = 360 deg, or 2 pi





radians, such that, the multiple of the “average





displacement per crank (Avg ppc)” is closest





to T − C and selected just less than T − C Result:













At Table 5-5
½ pi
= C/4
Avg. ppc = 2 × 0.0012 or 0. 0024 < 0. 0027


Note:
¼ pi
= C/8
Avg. ppc = 4 × 0.0006 or 0. 0024 < 0. 00 27



⅙ pi
= C/12
Avg. ppc = 6 × 0.0004 or 0. 00 24 < 0. 00 27



1/18 pi
= C/36
Avg. ppc = 20 × 0.00013 or 0.0026 < 0.0027.











(4) Select C/36 = 0. 00013
C/36
=
0. 000130



(5) Find Multiples of C/36
20 Multiples
=
× 20











(6) B = Second Partial pi Estimate
=

0.

00


26










(7) Add both Partials (A + B) and subtract from Target (T):












A
=
0. 01 29
Target
=
0. 01 56 25


B
=
0. 00 26
(A + B)
=
0. 01 55


(A + B)
=
0. 01 55

(minus)












T − (A + B) Result
=
0. 000125.









(8) Compare T − (A + B) Result




to Table 5-5's C/360's “Avg. ppc




or 5th & 6th Digit Accuracy”:













T − (A + B) Result
=
0. 000125



Avg. ppc C/360
=

0.

00


00


13









(9) Determine how many multiples of C/360 are below or equal to T − (A + B)


Result which are closest to but less than or equal to Result:


Note: Find Multiples (M) times (×) [C/360 Avg. ppc] for values < T − (A + B):









(10) × [0.000013]
=
0. 00 01 30 > 0. 00 01 25.


(9) × [0. 00 00 13]
=

0.
00
01
17 < 0. 00. 01 25.












(10) Select. Multiple (9).
C/360
=

0.
00
00
13





M (9)
=
× 9











C = Third Partial pi Estimate
=

0.

00


01


17










(11) PEM Estimated Value for Target Value by sum of all partials are:












Partial A
(1st)

0. 01 29




Partial B
(2nd)

0. 00 26




Partial C
(3rd)
+
0. 00 01 17












PEM Value Equals:

0.

01


56


17


for
Target 0.015625











[pi Estimated (E)]

[actual/Target value (T)]









A note on Accuracy, Target Value Sought minus Estimated Value, using PEM, subtract ‘E’ from ‘T’: T−E=0.015625 minus 0.015617=0.00 00 08. This difference is much much less (<<) than ANSI machinery allowance <<0.000250. PEM's value allows accuracy 30 times more critical than a typical ANSI stringent of 25% of one one-thousands limit used in Standard Allowances and Tolerances.


Miscellaneous sample calculations, given for various Tables; will be given as required. When the foregoing algorithm is used, it will be provided without all descriptions but will be provided in the same format as above. Any confusion or need for further definitions will be provided for the specific Table; or, one must refer back to this initial PEM Scheme (Algorithm) and descriptions when necessary.









TABLE 6-2





Sample Calculation


½ Size PEM Example


















Half-Size PEMD, Target: 5/64 Example,
5/64
=
0. 078125


Using Pi Truncated to 5 Digits for Values of Y.





(1) A = First Partial of pi estimate Table 6-2:
C 40
=
0. 073910




(minus)



(2) ‘Target Value’ (T) minus ‘Crank (C) Value’
T − C Result
=

0.

00


42


15












(3) At Table 6-2
½ pi
= C/4
Avg. ppc = 3 × 0.0013 or 0. 00 39 < 0. 00 42



¼ pi
= C/8
Avg. ppc = 6 × 0.0007 or 0. 00 42 < 0. 00 42



⅙ pi
= C/12
Avg. ppc = 10 × 0.0004 or 0. 00 40 < 0. 00 42



1/18 pi
= C/36
Avg. ppc = 30 × 0.00014 or 0. 00 42 < 0. 00 42.











(4) Select C/8 = 0. 0007
C/8
=
0. 0007



(5) Find Multiples of C/36
6 Multiples
=
× 6











(6) B = Second Partial pi Estimate
=


0.


00


42










(7) Add both Partials (A + B) and subtract from Target (T):












A
=
0. 07 39 10
Target
=
0. 07 81 25


B
=
0. 00 42
(A + B)
=
0. 07 81 10


(A + B)
=
0. 07 81 10

(minus)












T − (A + B) Result
=
0. 000015.









(8) Compare T − (A + B) Result




to Table 6-2's C/360's “Avg. ppc




5th & 6th Digit Accuracy”:













T − (A + B) Result
=
0. 00 00 15



Avg. ppc C/360
=

0.
00
00
14










(9) (1) × [0.000014]
=
0. 00 00 14 < 0. 00 00 15.










(10) Select. Multiple M (1).
C = Third Partial pi Estimate
=

0.
00
00
14








(11) PEM Estimated Value for Target Value by sum of all partials:












Partial A
(1st)

0. 07 39 10




Partial B
(2nd)

0. 00 42




Partial C
(3rd)
+
0. 00 00 14












PEM Value Equals:

0.

0
7


81


24


for
Target 0.078125











[pi Estimated (E)]

[actual/Target value (T)]







T − E = 0.000001 << 0.000250.
















TABLE 7-2





Sample Calculation


¼ Size PEM Example


















Quarter-Size PEMD, Target: 3/64 Example,
3/64
=
0. 046875


Using Pi Truncated to 6 Digits for Values of Y.





(1) A = First Partial of pi estimate Table 7-2:
C 32
=
0. 044924




(minus)



(2) ‘Target Value’ (T) minus ‘Crank (C) Value’
T − C Result
=

0.

00


19


51












(3) At Table 7-2
½ pi
= C/4
Avg. ppc = 2 × 0.0009 or 0. 00 18 < 0. 00 19



¼ pi
= C/8
Avg. ppc = 4 × 0.0004 or 0. 00 16 < 0. 00 19



⅙ pi
= C/12
Avg. ppc = 6 × 0.0003 or 0. 00 18 < 0. 00 19



1/18 pi
= C/36
Avg. ppc = 19 × 0.00010 or 0. 00 19 < 0. 00 19.











(4) Select C/36 = 0. 0001
C/36
=
0. 0001



(5) Find Multiples of C/36
19 Multiples
=
× 19











(6) B = Second Partial pi Estimate
=

0.

00


19










(7) Add both Partials (A + B) and subtract from Target (T):












A
=
0. 04 49 24
Target
=
0. 04 68 75


B
=
0. 00 19
(A + B)
=
0. 04 68 24


(A + B)
=
0. 04 68 24

(minus)












T − (A + B) Result
=
0. 000051.









(8) Compare T − (A + B) Result




to Table 7-2's C/360's “Avg. ppc




5th & 6th Digit Accuracy”:













T − (A + B) Result
=
0. 00 00 51



Avg. ppc C/360
=
0. 00 00 10









(9) (5) × [0.000010]
=
0. 00 00 50 < 0. 00 00 51.










(10) Select. Multiple M (5).
C = Third Partial pi Estimate
=

0.
00
00
50.








(11) PEM Estimated Value for Target Value by sum of all partials:












Partial A
(1st)

0. 04 49 24




Partial B
(2nd)

0. 00 19




Partial C
(3rd)
+
0. 00 00 50













PEM Value Equals:


0.

0
4


68


74


for
Target 0.046875











[pi Estimated (E)]

[actual/Target value (T)]







T − E = 0.000001 << 0.000250.
















TABLE 1







Tabulated Yb Measured Displacements and


Calculated Yb Displacements for Prototype Device,


Face Height = 3″, 0.75-10 UNC,


Roller Dia. = 2″, Track L = 11″.





Table 1-1


Graph Measured Yb for Each Xb (Ref. FIG. 1)








Measured:
Verified by, FIG. 4,











Xb
Yb
Compare to:
m1
Yb





1
−¾″

−1.75
−0.75″


2
0

−0.50
0.00


3
 ¼

−0.25
0.25


4
 ½

−0.125
0.50


5
1

0.00
1.00


6
1 ½

0.083
1.50


7
2 ¾

0.25
2.75


8
4″

0.375
4.00










Table 1-2


Calculated Angles (degrees) from Graphical Results of Table 1-1.













θ2 = arctan [z]


Xb
Eq. 2 Yb
z = [Xb/Yb]
degrees





1
−0.750
−1.33333
−53.13


2
0.000

90.00




(see FIG. 2)



3
0.250
12
85.24


4
0.500
8
82.87


5
1.000
5
78.69


6
1.500
4
75.96


7
2.750
2.5454
68.55


8
4.000
2
63.44
















TABLE 1-1





Sample Calculations















Given PEMD's xa + xb = L and, Prototype Device's Length (L) = 11″,


for example, for xa = 3 and L = 11, xb is 11 − xa = 11 − 3, xb = 8″.


Select measured displacement (yb) from Graph, Ref. FIG. 1, yb = 4.0″,


and notice that Track B is tangent to the lift roller for xb at 8. Using


central angle equation, Eq. 1-1, for checking displacement (yb) resulting


from reverse motion of a roller moving up Track A, for


xb at 8 = 8 and yb = 4, yields a central angle slope of:


m1 = (y2 − y1)/(x2 − x1) and Eq. 1-2, m1 = (4 − 1)/(8 − 0) = 3/8 = 0.375.


Hence, for xb at 8, yb = m1 xb + 1 = (0.375) (8) + 1 = 4.00″.









This initial confidence check is to establish and verify, domain and range ‘Partition Values’ of restricted arc segments, traveled by Track B, controlled within Distinct Intervals (domain) of a lift roller movement, and result in distinct displacement values (range), for comparison to measured, initial graph results, such that, unquestioned boundaries are set. All PEMD are calibrated using ‘Intervals’, within restricted Partitions of initial arc segments, established initially by graph for ‘full’ restricted ‘binary’ domain and range displacements (See Legend on FIG. 1,). Graph Values provide initial confirmation, checked by equations, and then presented, hence forth, as ‘base values’ utilized for indisputable PEMD Base Values. Check Values will be used in upper and lower Interval Divisions for all pi estimating methods (PEM) and Algorithm Scheme. Infinitesimal Values derived within PEMD Scheme and PEM Process of Arc Segmenting (for pi estimation of fractional displacements) are consistently ‘keyed’ to initial and distinct PEMD Partitions & Intervals. By using initial range and domain base values of FIG. 1, calculations, utilizing restricted boundaries, subsequently provide indisputable, calculated precisions for end-goal-targets which produce PEM Devices (PEMD) to be fabricated obeying PEM Process and/or PEM Algorithm for precise control. PEM Algorithm and PEMD are integral to each other.









TABLE 1-2





Sample Calculations















A second equation utilizing established continuous trigonometric


relationships, for estimating arc-lengths, associated with yb displacements,


are detailed on FIG. 5 and FIG. 2. Angular Intervals that correspond to


displacement and xb increments are presented on Table 1-2 (Page 41).


By using triangles inscribed in a circle, Ref. FIG. 5, values for inscribed,


inverted/(mirror) tan (θ2), allow alternate calculations for yb displacement.








Eq. 2-1
yb = (xb)/tan (θ2)







Hence, for xb = 6, and tan (θ2) = (xb/yb) = (6)/(1.5) = 4 = (z), the


arctan (z) = arctan (4) = 75.96 degrees = θ2


for xb = 6, yb = (xb)/tan (θ2) = (6)/tan (75.96 deg) = (6)/(4) = 1.500,


and therefore, Eq. 2-1 Values compare to ‘measured’ & ‘Eq. 1-3’ values,


and subsequently, are utilized for incremental values of xb for Prototype


Device's tpi = 10 rotations (full revolutions) per inch and are tabulated


in groups of xb from:


Intervals (1-2], (2-3], (3-4], (4-5], (5-6], (6-7] and (7-8], in Table 2


(Pages 44 & 45).
















TABLE 2







TABLE 2: Calculated ‘Y’ Solutions per Crank, TPI = 10


Prototype: Face Ht. = 3″, ¾ - 10 UNC,


Roller Dia. = 2″, Track L = 11″















Calc.
Calc.






Y
Y
Graph Y



Xb
degree
(in.)
(mm)
notes










Table 2-1: Angles (−53.13 to −90 deg) x = 1.0 to 2.0














1


−53.13


−0.75

−19.1

¾




1.1
−56.820
−0.7193
−18.3
(below)



1.2
−60.500
−0.6789
−17.2




1.3
−64.190
−0.6287
−16




1.4
−67.880
−0.5691
−14.5




1.5
−71.570
−0.4999
−12.7
−½″



1.6
−75.250
−0.4212
−10.7
(below)



1.7
−78.940
−0.3323
−8.44




1.8
−82.630
−0.2328
−5.91




1.9
−86.310
−0.1225
−3.11





2


−90.00


−0

−0

0 at −90 deg








(ref. level)







Table 2-2: Angles (90 to 85.24 deg) x = 2.0 to 3.0














2


+90


+0

+0

level




2.1
89.524
0.0174
0.44




2.2
89.048
0.0366
0.93




2.3
88.572
0.0573
1.46




2.4
88.096
0.0798
2.03




2.5
87.620
0.1039
2.64




2.6
87.144
0.1297
3.29




2.7
86.668
0.1572
3.99




2.8
86.192
0.1864
4.73




2.9
85.716
0.2172
5.52





3


85.24


0.25

6.35
¼







(above ref.)







Table 2-3: Angles (85.24 to 82.87 deg) x = 3.0 to 4.0














3


85.24


0.25

6.35
¼



3.1
85.003
0.2711
6.88
(above ref.)



3.2
84.766
0.2931
7.45




3.3
84.529
0.3161
8.03




3.4
84.292
0.3398
8.63




3.5
84.055
0.3645
9.26




3.6
83.818
0.3899
9.9




3.7
83.581
0.4163
10.6




3.8
83.344
0.4434
11.3




3.9
83.107
0.4715
12





4


82.87


0.50

12.7
½







(above ref.)







Table 2-4: Angles (82.87 to 78.69 deg) x = 4.0 to 5.0














4


82.87


0.50

12.7
½



4.1
82.452
0.5433
13.8
(above ref,)



4.2
82.034
0.5877
14.9




4.3
81.616
0.6337
16.1




4.4
81.198
0.6813
17.3




4.5
80.780
0.7305
18.6




4.6
80.362
0.7812
19.8
.



4.7
79.944
0.8335
21.2




4.8
79.526
0.8874
22.5




4.9
79.108
0.9429
23.9





5


78.69


1.00

25.4

1″









(above ref.)








Table 2-5: Angles (78.69 to 75.96 deg) x = 5.0 to 6.0














5


78.69


1.00

25.4

1″




5.1
78.417
1.0453
26.6
(above ref.)



5.2
78.144
1.0916
27.7




5.3
77.871
1.1390
28.9




5.4
77.598
1.1875
30.2




5.5
77.325
1.2370
31.4




5.6
77.052
1.2875
32.7




5.7
76.779
1.3391
34




5.8
76.506
1.3918
35.4




5.9
76.233
1.4456
36.7





6


75.96


1.50

38.1

1.5″








(above ref.)







Table 2-6: Angles (75.96 to 68.55 deg) x = 6.0 to 7.0














6


75.96


1.50

38.1

1.5″




6.1
75.219
1.6095
40.9
(above ref.)



6.2
74.478
1.7220
43.7




6.3
73.737
1.8378
46.7




6.4
72.996
1.9572
49.7




6.5
72.255
2.0800
52.8




6.6
71.514
2.2065
56




6.7
70.773
2.3367
59.4




6.8
70.032
2.4707
62.8




6.9
69.291
2.6085
66.3





7


68.55


2.75

69.9

2.75″








(above ref.)







Table 2-7: Angles (68.55 to 63.44 deg) x = 7.0 to 8.0














7


68.55


2.75

69.9

2.75″




7.1
68.039
2.8630
72.7
(above ref.)



7.2
67.528
2.9782
75.6




7.3
67.017
3.0961
78.6




7.4
66.506
3.2167
81.7




7.5
65.995
3.3400
84.8




7.6
65.484
3.4661
88




7.7
64.973
3.5950
91.3




7.8
64.462
3.7268
94.7




7.9
63.951
3.8615
98.1





8


63.44


4.00

102

4.0″








(above ref.)





‘Y’ in Tables 2-1, 2-2, 2-3, & 2-4 are all: Yb


Y in Tables 2-5, 2-6, & 2-7 & Sample Calculations are all Yb













TABLE 2





Sample Calculations


Example: Table 2-5



















Crank (C)
Xb
Domain:
5.0 to 6.0
Key: 5-6













(6″ − 5″)/10 tpi = +0.1″ per Crank (C)



Xb=:
Interval:
(5.0, 5.1 to 6.0]



Pi
Range:
78.69 deg. to 75.96 deg



Interval









75.96 deg. − 78.69 deg./10 tpi = −2.73 deg./


10 = −0.273 deg. per Crank (C)





Yb=: Interval: (78.69 deg., 78.42 deg. to 75.96 deg.]












Pi




Xb
(Degree)
Yb





40
5.00
78.69
1.000


41
5.10
78.417
1.0453


42
5.20
78.144
1.0916


43
5.30
77.871
1.1390


44
5.40
77.598
1.1875


45
5.50
77.325
1.2370


46
5.60
77.052
1.2875


47
5.70
76.779
1.3391


48
5.80
76.506
1.3918


49
5.90
75.96
1.4456


50
6.00
75.96
1.500










Ref.: FIG. 2 & FIG. 5


For Example, Above, Select: Xb = 5 .6


Eq. 2-1: Yb (Xb) = (Xb)/[tan (degree)]


Yb (5.6) = (5.6)/[tan (77.052)] = 1.2875″
















TABLE 3





Crank Quadrants, Fractional (Frac.) Cranks in Each Quadrant and Increments


(Inc.) expressed in fractional Pi (& Degree Equivalent of fractional Pi)







Table 3-1: Overview: Fractional Crank (C) & Degree


Increments for One Revolution (Rev)









Crank (C):













¼ C
⅛ C
1/12 C
1/36 C
1/360 C





Inc. = deg. = pi:
90 deg.
45 deg.
30 deg.
10 deg.
1 deg.


# of Inc.:
×4
×8
×12
×36
×360


=1 Rev.:
360
360
360
360
360


(Deg. full C)



















Pi
Deg./
Quadrant
Quadrant (Q)


Crank (C)
Degree
Pi Frac.
Simplified
Frac. C
Deg. Range
(C within Q)










Table 3-2: ¼ C -- Degrees per fractions of 2 pi:














0 C
 0
0
(2 pi)
0
0
0
0
















¼ C


90

¼
(2 pi)
½
pi
1st 90
 0-90


1st

Q

















½ C


180

½
(2 pi)
pi
2nd 90
 91-180


2nd

Q


















¾ C


270

¾
(2 pi)
3/2
pi
3rd 90
181-270


3rd

Q






full

 C


360

2
pi
2
pi
4th 90
271-360


4th

Q









Table 3-3: ⅛ C -- Degrees per fractions of 2 pi:














0 C
 0
0
(2 pi)
0
0
0
0















⅛ C
45

(2 pi)
¼
pi
1st 45
 0-45
½ 1st



¼ C



90


2/8
(2 pi)
½
pi
2nd 45
46-90


1st

Q




⅜ C
135 

(2 pi)
¾
pi
3rd 45
 91-135
½ 2nd















½ C



180

4/8
(2 pi)
pi
4th 45
136-180


2nd

Q

















⅝ C
225 

(2 pi)
5/4
pi
5th 45
181-225
½ 3rd



¾ C



270

6/8
(2 pi)
3/2
pi
6th 45
226-270


3rd

Q




⅞ C
315 

(2 pi)
7/4
pi
7th 45
271-315
½ 4th




full

 C



360

8/8
(2 pi)
2
pi
8th 45
316-360


4th

Q









Table 3-4: 1/12 C -- Degrees per fractions of 2 pi:














0 C
 0
0
(2 pi)
0
0
0
0















1/12 C
30
1/12
(2 pi)

pi
1st 30
 0-30
⅓ 1st


⅙ C
60
2/12
(2 pi)

pi
2nd 30
31-60
⅔ 1st



¼ C



90


3/12
(2 pi)
½
pi
3rd 30
61-90


1st

Q




⅓ C
120 
4/12
(2 pi)

pi
4th 30
 91-120
⅓ 2nd


5/12 C
150 
5/12
(2 pi)

pi
5th 30
121-150
⅔ 2nd















½ C



180

6/12
(2 pi)
pi
6th 30
151-180


2nd

Q

















7/12 C
210 
7/12
(2 pi)
7/6
pi
7th 30
181-210
⅓ 3rd


⅔ C
240 
8/12
(2 pi)
4/3
pi
8th 30
211-240
⅔ 3rd



¾ C



270

9/12
(2 pi)
3/2
pi
9th 30
241-270


3rd

Q




⅚ C
300 
10/12
(2 pi)
5/3
pi
10th 30
271-300
⅓ 4th


11/12 C
330 
11/12
(2 pi)
(11)/6
pi
11th 30
301-330
⅔ 4th




full

 C



360

12/12
(2 pi)
2
pi
12th 30
331-360


4th

Q









Table 3-5: 1/36 C -- Degrees per fractions of pi:














0 C
 0
0
(2 pi)
0
0
0
0
















10
1/36
(2 pi)
1/18
pi
1st 10
 0-10
1st 10 of 1st



20
2/36
(2 pi)
1/9
pi
2nd 10
11-20
2nd 10 of 1st



30
3/36
(2 pi)

pi
3rd 10
21-30
3rd 10 of 1st



40
4/36
(2 pi)
2/9
pi
4th 10
31-40
4th 10 of 1st



50
5/36
(2 pi)
5/18
pi
5th 10
41-50
5th 10 of 1st



60
6/36
(2 pi)

pi
6th 10
51-60
6th 10 of 1st



70
7/36
(2 pi)
7/18
pi
7th 10
61-70
7th 10 of 1st



80
8/36
(2 pi)
4/9
pi
8th 10
71-80
8th 10 of 1st



¼ C



90


9/36
(2 pi)
½
pi
9th 10
81-90


1st

Q





100 
10/36
(2 pi)
5/9
pi
10th 10
 91-100
1st 10 of 2nd



110 
11/36
(2 pi)
11/18
pi
11th 10
101-110
2nd 10 of 2nd



120 
12/36
(2 pi)

pi
12th 10
111-120
3rd 10 of 2nd



130 
13/36
(2 pi)
13/18
pi
13th 10
121-130
4th 10 of 2nd



140 
14/36
(2 pi)
7/9
pi
14th 10
131-140
5th 10 of 2nd



150 
15/36
(2 pi)

pi
15th 10
141-150
6th 10 of 2nd



160 
16/36
(2 pi)
8/9
pi
16th 10
151-160
7th 10 of 2nd



170 
17/36
(2 pi)
17/18
pi
17th 10
161-170
8th 10 of 2nd















½ C



180

18/36
(2 pi)
pi
18th 10
171-180


2nd

Q


















190 
19/36
(2 pi)
19/18
pi
19th 10
181-190
1st 10 of 3rd



200 
20/36
(2 pi)
10/9
pi
20th 10
191-200
2nd 10 of 3rd



210 
21/36
(2 pi)
7/6
pi
21st 10
201-210
3rd 10 of 3rd



220 
22/36
(2 pi)
11/9
pi
22nd 10
211-220
4th 10 of 3rd



230 
23/36
(2 pi)
23/18
pi
23rd 10
221-230
5th 10 of 3rd



240 
24/36
(2 pi)
4/3
pi
24th 10
231-240
6th 10 of 3rd



250 
25/36
(2 pi)
25/18
pi
25th 10
241-250
7th 10 of 3rd



260 
26/36
(2 pi)
13/9
pi
26th 10
251-260
8th 10 of 3rd



¾ C



270

27/36
(2 pi)
3/2
pi
27th 10
261-270


3rd

Q





280 
28/36
(2 pi)
14/9
pi
28th 10
271-280
1st 10 of 4th



290 
29/36
(2 pi)
29/18
pi
29th 10
281-290
2nd 10 of 4th



300 
30/36
(2 pi)
5/3
pi
30th 10
291-300
3rd 10 of 4th



310 
31/36
(2 pi)
31/18
pi
31st 10
301-310
4th 10 of 4th



320 
32/36
(2 pi)
16/9
pi
32nd 10
311-320
5th 10 of 4th



330 
33/36
(2 pi)
11/6
pi
33rd 10
321-330
6th 10 of 4th



340 
34/36
(2 pi)
17/9
pi
34th 10
331-340
7th 10 of 4th



350 
35/36
(2 pi)
35/18
pi
35th 10
341-350
8th 10 of 4th




full

 C



360

36/36
(2 pi)
2
pi
36th 10
351-360


4th









Table 3-6: 1/360 C -- Degrees per fractions of pi:














0 C
 0
0
(2 pi)
0
0
0
0
















 1
1/360
(2 pi)
1/180
pi
1
0-1




 2
2/360
(2 pi)
1/90
pi
1
1-2




 3
3/360
(2 pi)
1/60
pi
1
2-3




 4
4/360
(2 pi)
1/45
pi
1
3-4




 5
5/360
(2 pi)
1/36
pi
1
4-5




 6
6/360
(2 pi)
1/30
pi
1
5-6




 7
7/360
(2 pi)
7/180
pi
1
6-7




 8
8/360
(2 pi)
2/45
pi
1
7-8




 9
9/360
(2 pi)
1/20
pi
1
8-9



1/36 C
10
10/360
(2 pi)
1/18
pi
1
 9-10


1st

10

of

1st

Q





11
11/360
(2 pi)
11/180
pi
1
10-11




12
12/360
(2 pi)
1/15
pi
1
11-12




13
13/360
(2 pi)
13/180
pi
1
12-13




14
14/360
(2 pi)
7/90
pi
1
13-14




15
15/360
(2 pi)
1/12
pi
1
14-15




16
16/360
(2 pi)
4/45
pi
1
15-16




17
17/360
(2 pi)
17/180
pi
1
16-17




18
18/360
(2 pi)
1/10
pi
1
17-18




19
19/360
(2 pi)
19/180
pi
1
18-19




20
20/360
(2 pi)
1/9
pi
1
19-20




21
21/360
(2 pi)
7/60
pi
1
20-21




22
22/360
(2 pi)
11/90
pi
1
21-22




23
23/360
(2 pi)
23/180
pi
1
22-23




24
24/360
(2 pi)
2/15
pi
1
23-24




25
25/360
(2 pi)
5/36
pi
1
24-25




26
26/360
(2 pi)
13/90
pi
1
25-26




27
27/360
(2 pi)
3/20
pi
1
26-27




28
28/360
(2 pi)
7/45
pi
1
27-28




29
29/360
(2 pi)
29/180
pi
1
28-29



1/12 C
30
30/360
(2 pi)

pi
1
29-30

⅓ 1st Q




31
31/360
(2 pi)
31/180
pi
1
30-31




32
32/360
(2 pi)
8/45
pi
1
31-32




33
33/360
(2 pi)
11/60
pi
1
32-33




34
34/360
(2 pi)
17/90
pi
1
33-34




35
35/360
(2 pi)
7/36
pi
1
34-35




36
36/360
(2 pi)

pi
1
35-36




37
37/360
(2 pi)
37/180
pi
1
36-37




38
38/360
(2 pi)
19/90
pi
1
37-38




39
39/360
(2 pi)
13/60
pi
1
38-39




40
40/360
(2 pi)
2/9
pi
1
39-40




41
41/360
(2 pi)
41/180
pi
1
40-41




42
42/360
(2 pi)
7/30
pi
1
41-42




43
43/360
(2 pi)
43/180
pi
1
42-43




44
44/360
(2 pi)
11/45
pi
1
43-44



⅛ C
45
45/360
(2 pi)
¼
pi
1
44-45

1/2  of 1st Q

















TABLE 4







Prototype Displacement Precision: Face Ht. = 3″. ¾ - 10 UNC, Roller Dia. = 2″. Track L = 11″


















Precision
Precision
Pecision
Precision
Precision
Precision


Crank (C)


Per Full C
Per ¼ C
Per ⅛ C
Per 1/12 C
Per 1/36 C
1/360 C


Full 360/C
Xb
Yb
(360 deg)
(90 deg)
(45 deg)
(30 deg)
(10 deg)
(1 degree)










Table 4-1: Xb = 1.0 to 2.0















0

1


−0.75

start
start
start
start
start
start


1
1.1
−0.72
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


2
1.2
−0.68
0.040
0.01000
0.00500
0.00333
0.00111
0.000111


3
1.3
−0.63
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


4
1.4
−0.57
0.060
0.01500
0.00750
0.00500
0.00167
0.000167


5
1.5
−0.50
0.070
0.01750
0.00875
0.00583
0.00194
0.000194


6
1.6
−0.42
0.080
0.02000
0.01000
0.00667
0.00222
0.000222


7
1.7
−0.33
0.090
0.02250
0.01125
0.00750
0.00250
0.000250


8
1.8
−0.23
0.100
0.02500
0.01250
0.00833
0.00278
0.000278


9
1.9
−0.12
0.110
0.02750
0.01375
0.00917
0.00306
0.000306


10

2


0

0.120
0.03000
0.01500
0.01000
0.00333
0.000333














Average Precision per Crank:


0.075


0.019


0.009


0.006


0.002


0.000208



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-2: Xb = 2.0 to 3.0















10

2


0

0
0.00000
0.00000
0.00000
0.00000
0.000000


11
2.1
0.02
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


12
2.2
0.04
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


13
2.3
0.06
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


14
2.4
0.08
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


15
2.5
0.10
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


16
2.6
0.13
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


17
2.7
0.16
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


18
2.8
0.19
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


19
2.9
0.22
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


20

3


0.25

0.030
0.00750
0.00375
0.00250
0.00083
0.000083














Average Precision per Crank:


0.025


0.006


0.003


0.002


0.0007


0.000069



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-3: Xb = 3.0 to 4.0















20

3


0.25

0.000
0.00000
0.00000
0.00000
0.00000
0.000000


21
3.1
0.27
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


22
3.2
0.29
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


23
3.3
0.32
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


24
3.4
0.34
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


25
3.5
0.36
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


26
3.6
0.39
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


27
3.7
0.42
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


28
3.8
0.44
0.020
0.00500
0.00250
0.00167
0.00056
0.000056


29
3.9
0.47
0.030
0.00750
0.00375
0.00250
0.00083
0.000083


30

4


0.5

0.030
0.00750
0.00375
0.00250
0.00083
0.000083














Average Precision per Crank:


0.025


0.006


0.003


0.002


0.0007


0.000069



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-4: Xb = 4.0 to 5.0















30

4


0.5

0.000
0.00000
0.00000
0.00000
0.00000
0.000000


31
4.1
0.54
0.040
0.01000
0.00500
0.00333
0.00111
0.000111


32
4.2
0.59
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


33
4.3
0.63
0.040
0.01000
0.00500
0.00333
0.00111
0.000111


34
4.4
0.68
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


35
4.5
0.73
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


36
4.6
0.78
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


37
4.7
0.83
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


38
4.8
0.89
0.060
0.01500
0.00750
0.00500
0.00167
0.000167


39
4.9
0.94
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


40

5


1

0.060
0.01500
0.00750
0.00500
0.00167
0.000167














Average Precision per Crank:


0.050


0.013


0.006


0.004


0.0014


0.000139



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-5: Xb = 5.0 to 6.0















40

5


1

0.000
0.00000
0.00000
0.00000
0.00000
0.000000


41
5.1
1.04
0.040
0.01000
0.00500
0.00333
0.00111
0.000111


42
5.2
1.09
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


43
5.3
1.14
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


44
5.4
1.19
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


45
5.5
1.24
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


46
5.6
1.29
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


47
5.7
1.34
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


48
5.8
1.39
0.050
0.01250
0.00625
0.00417
0.00139
0.000139


49
5.9
1.45
0.060
0.01500
0.00750
0.00500
0.00167
0.000167


50

6


1.5

0.050
0.01250
0.00625
0.00417
0.00139
0.000139














Average Precision per Crank:


0.050


0.013


0.006


0.004


0.0014


0.000139



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-6: Xb = 6.0 to 7.0















50

6


1.5

0.000
0.00000
0.00000
0.00000
0.00000
0.000000


51
6.1
1.61
0.110
0.02750
0.01375
0.00917
0.00306
0.000306


52
6.2
1.72
0.110
0.02750
0.01375
0.00917
0.00306
0.000306


53
6.3
1.84
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


54
6.4
1.96
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


55
6.5
2.08
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


56
6.6
2.21
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


57
6.7
2.34
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


58
6.8
2.47
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


59
6.9
2.61
0.140
0.03500
0.01750
0.01167
0.00389
0.000389


60

7


2.75

0.140
0.03500
0.01750
0.01167
0.00389
0.000389














Average Precision per Crank:


0.125


0.031


0.016


0.010


0.0035


0.000347



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 4-7: Xb = 7.0 to 8.0















60

7


2.75

0.070
0.01750
0.00875
0.00583
0.00194
0.000194


61
7.1
2.86
0.110
0.02750
0.01375
0.00917
0.00306
0.000306


62
7.2
2.98
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


63
7.3
3.10
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


64
7.4
3.22
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


65
7.5
3.34
0.120
0.03000
0.01500
0.01000
0.00333
0.000333


66
7.6
3.47
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


67
7.7
3.60
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


68
7.8
3.73
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


69
7.9
3.86
0.130
0.03250
0.01625
0.01083
0.00361
0.000361


70

8


4

0.140
0.03500
0.01750
0.01167
0.00389
0.000389














Average Precision per Crank:


0.125


0.031


0.016


0.010


0.0035


0.000347



(Avg. ppc)
(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)
















TABLE 5







Full Size PEMD Displacement Precision: Face Ht. = 3″, Special ¾-40 UNS, Roller Dia. = 2″. Track L = 11″


















Precision
Precision
Pecision
Precision
Precision
Precision


Crank (C)


Per Full C
Per ¼ C
Per ⅛ C
Per 1/12 C
Per 1/36 C
1/360 C


Full 360/C
Xb
Yb
(360 deg)
(90 deg)
(45 deg)
(30 deg)
(10 deg)
(1 degree)










Table 5-1: Xb = 1.0, 1.025, 1.050, to 1.25















0

1


−0.75

start
start
start
start
start
start


1
1.025
−0.7433
0.00670
0.00168
0.00084
0.00056
0.00019
0.000019


2
1.050
−0.7359
0.00740
0.00185
0.00092
0.00062
0.00021
0.000021


3
1.075
−0.7280
0.00790
0.00198
0.00099
0.00066
0.00022
0.000022


4
1.100
−0.7194
0.00860
0.00215
0.00107
0.00072
0.00024
0.000024


5
1.125
−0.7101
0.00930
0.00233
0.00116
0.00078
0.00026
0.000026


6
1.150
−0.7003
0.00980
0.00245
0.00122
0.00082
0.00027
0.000027


7
1.175
−0.6899
0.01040
0.00260
0.00130
0.00087
0.00029
0.000029


8
1.200
−0.6788
0.01110
0.00278
0.00139
0.00093
0.00031
0.000031


9
1.225
−0.6672
0.01160
0.00290
0.00145
0.00097
0.00032
0.000032


10
1.25
−0.6549
0.01230
0.00307
0.00154
0.00103
0.00034
0.000034














Average Precision per Crank:


0.010


0.0024


0.0012


0.0008


0.00026


0.000026




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-2: Xb = 1.25, 1.275, 1.300, to 1.5 key 1-2















10
1.25
−0.6549
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


11
1.275
−0.6421
0.01280
0.00320
0.00160
0.00107
0.00036
0.000036


12
1.300
−0.6287
0.01340
0.00335
0.00168
0.00112
0.00037
0.000037


13
1.325
−0.6147
0.01400
0.00350
0.00175
0.00117
0.00039
0.000039


14
1.350
−0.6001
0.01460
0.00365
0.00183
0.00122
0.00041
0.000041


15
1.375
−0.5849
0.01520
0.00380
0.00190
0.00127
0.00042
0.000042


16
1.400
−0.5691
0.01580
0.00395
0.00197
0.00132
0.00044
0.000044


17
1.425
−0.5527
0.01640
0.00410
0.00205
0.00137
0.00046
0.000046


18
1.450
−0.5358
0.01690
0.00422
0.00211
0.00141
0.00047
0.000047


19
1.475
−0.5182
0.01760
0.00440
0.00220
0.00147
0.00049
0.000049


20
1.5
−0.5000
0.01820
0.00455
0.00228
0.00152
0.00051
0.000051














Average Precision per Crank:


0.015


0.0039


0.0019


0.0013


0.00043


0.000043




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-3: Xb = 1.5, 1.525, 1.550, to 1.75















20
1.5
−0.5000
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


21
1.525
−0.4812
0.01880
0.00470
0.00235
0.00157
0.00052
0.000052


22
1.550
−0.4618
0.01940
0.00485
0.00243
0.00162
0.00054
0.000054


23
1.575
−0.4418
0.02000
0.00500
0.00250
0.00167
0.00056
0.000056


24
1.600
−0.4212
0.02060
0.00515
0.00258
0.00172
0.00057
0.000057


25
1.625
−0.4000
0.02120
0.00530
0.00265
0.00177
0.00059
0.000059


26
1.650
−0.3780
0.02200
0.00550
0.00275
0.00183
0.00061
0.000061


27
1.675
−0.3555
0.02250
0.00563
0.00281
0.00188
0.00063
0.000063


28
1.700
−0.3323
0.02320
0.00580
0.00290
0.00193
0.00064
0.000064


29
1.725
−0.3085
0.02380
0.00595
0.00298
0.00198
0.00066
0.000066


30
1.75
−0.2840
0.02450
0.00613
0.00306
0.00204
0.00068
0.000068














Average Precision per Crank:


0.022


0.0054


0.0027


0.0018


0.00060


0.000060




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-4: Xb = 1.75, 1.775, 1.800, to 2.0 key 1-2















30
1.75
−0.2840
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


31
1.775
−0.2588
0.02520
0.00630
0.00315
0.00210
0.00070
0.000070


32
1.800
−0.2329
0.02590
0.00647
0.00324
0.00216
0.00072
0.000072


33
1.825
−0.2064
0.02650
0.00663
0.00331
0.00221
0.00074
0.000074


34
1.850
−0.1791
0.02730
0.00683
0.00341
0.00228
0.00076
0.000076


35
1.875
−0.1512
0.02790
0.00698
0.00349
0.00233
0.00078
0.000078


36
1.900
−0.1224
0.02880
0.00720
0.00360
0.00240
0.00080
0.000080


37
1.925
−0.0930
0.02940
0.00735
0.00368
0.00245
0.00082
0.000082


38
1.950
−0.0628
0.03020
0.00755
0.00378
0.00252
0.00084
0.000084


39
1.975
−0.0318
0.03100
0.00775
0.00388
0.00258
0.00086
0.000086


40

2


0.0000

0.03180
0.00795
0.00398
0.00265
0.00088
0.000088














Average Precision per Crank:


0.028


0.0071


0.0036


0.0024


0.00079


0.000079




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-5: Xb = 2.0, 2.025, 2.050, to 2.25















40

2


0.0000

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


41
2.025
0.0042
0.00420
0.00105
0.00053
0.00035
0.00012
0.000012


42
2.050
0.0085
0.00430
0.00108
0.00054
0.00036
0.00012
0.000012


43
2.075
0.0129
0.00440
0.00110
0.00055
0.00037
0.00012
0.000012


44
2.100
0.0174
0.00450
0.00113
0.00056
0.00038
0.00013
0.000013


45
2.125
0.0221
0.00470
0.00118
0.00059
0.00039
0.00013
0.000013


46
2.150
0.0268
0.00470
0.00118
0.00059
0.00039
0.00013
0.000013


47
2.175
0.0316
0.00480
0.00120
0.00060
0.00040
0.00013
0.000013


48
2.200
0.0366
0.00500
0.00125
0.00063
0.00042
0.00014
0.000014


49
2.225
0.0416
0.00500
0.00125
0.00063
0.00042
0.00014
0.000014


50
2.25
0.0467
0.00510
0.00128
0.00064
0.00043
0.00014
0.000014














Average Precision per Crank:


0.005


0.0012


0.0006


0.0004


0.00013


0.000013




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-6: Xb = 2.25, 2.275, 2.300, to 2.5 key 2-3















50
2.25
0.0467
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


51
2.275
0.0520
0.00530
0.00133
0.00066
0.00044
0.00015
0.000015


52
2.300
0.0573
0.00530
0.00133
0.00066
0.00044
0.00015
0.000015


53
2.325
0.0628
0.00550
0.00138
0.00069
0.00046
0.00015
0.000015


54
2.350
0.0684
0.00560
0.00140
0.00070
0.00047
0.00016
0.000016


55
2.375
0.0740
0.00560
0.00140
0.00070
0.00047
0.00016
0.000016


56
2.400
0.0798
0.00580
0.00145
0.00073
0.00048
0.00016
0.000016


57
2.425
0.0857
0.00590
0.00148
0.00074
0.00049
0.00016
0.000016


58
2.450
0.0916
0.00590
0.00148
0.00074
0.00049
0.00016
0.000016


59
2.475
0.0977
0.00610
0.00153
0.00076
0.00051
0.00017
0.000017


60
2.5
0.1039
0.00620
0.00155
0.00078
0.00052
0.00017
0.000017














Average Precision per Crank:


0.006


0.0014


0.0007


0.0005


0.00016


0.000016




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-7: Xb = 2.5, 2.775, 2.800, to 2.75















60
2.5
0.1039
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


61
2.525
0.1102
0.00630
0.00158
0.00079
0.00053
0.00018
0.000018


62
2.550
0.1166
0.00640
0.00160
0.00080
0.00053
0.00018
0.000018


63
2.575
0.1231
0.00650
0.00163
0.00081
0.00054
0.00018
0.000018


64
2.600
0.1297
0.00660
0.00165
0.00083
0.00055
0.00018
0.000018


65
2.625
0.1364
0.00670
0.00168
0.00084
0.00056
0.00019
0.000019


66
2.650
0.1432
0.00680
0.00170
0.00085
0.00057
0.00019
0.000019


67
2.675
0.1502
0.00700
0.00175
0.00088
0.00058
0.00019
0.000019


68
2.700
0.1572
0.00700
0.00175
0.00088
0.00058
0.00019
0.000019


69
2.725
0.1643
0.00710
0.00178
0.00089
0.00059
0.00020
0.000020


70
2.75
0.1716
0.00730
0.00183
0.00091
0.00061
0.00020
0.000020














Average Precision per Crank:


0.007


0.0017


0.0008


0.0006


0.00019


0.000019




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-8: Xb = 2.75, 2.775, 2.80, to 3.0 key 2-3















70
2.75
0.1716
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


71
2.775
0.1789
0.00730
0.00183
0.00091
0.00061
0.00020
0.000020


72
2.800
0.1864
0.00750
0.00188
0.00094
0.00063
0.00021
0.000021


73
2.825
0.1939
0.00750
0.00187
0.00094
0.00062
0.00021
0.000021


74
2.850
0.2016
0.00770
0.00193
0.00096
0.00064
0.00021
0.000021


75
2.875
0.2094
0.00780
0.00195
0.00098
0.00065
0.00022
0.000022


76
2.900
0.2172
0.00780
0.00195
0.00098
0.00065
0.00022
0.000022


77
2.925
0.2252
0.00800
0.00200
0.00100
0.00067
0.00022
0.000022


78
2.950
0.2333
0.00810
0.00203
0.00101
0.00068
0.00023
0.000023


79
2.975
0.2415
0.00820
0.00205
0.00103
0.00068
0.00023
0.000023


80

3


0.250

0.00830
0.00208
0.00104
0.00069
0.00023
0.000023














Average Precision per Crank:


0.008


0.0020


0.0010


0.0007


0.00022


0.000022




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-9: Xb = 3.0, 1 + 81/40, 1 + 82/40, to 3.25















80

3


0.2500

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


81
3.025
0.2550
0.00500
0.00125
0.00063
0.00042
0.00014
0.000014


82
3.050
0.2603
0.00530
0.00132
0.00066
0.00044
0.00015
0.000015


83
3.075
0.2656
0.00530
0.00133
0.00066
0.00044
0.00015
0.000015


84
3.100
0.2710
0.00540
0.00135
0.00068
0.00045
0.00015
0.000015


85
3.125
0.2764
0.00540
0.00135
0.00067
0.00045
0.00015
0.000015


86
3.150
0.2819
0.00550
0.00138
0.00069
0.00046
0.00015
0.000015


87
3.175
0.2874
0.00550
0.00138
0.00069
0.00046
0.00015
0.000015


88
3.200
0.2930
0.00560
0.00140
0.00070
0.00047
0.00016
0.000016


89
3.225
0.2987
0.00570
0.00143
0.00071
0.00048
0.00016
0.000016


90
3.25
0.3044
0.00570
0.00143
0.00071
0.00047
0.00016
0.000016














Average Precision per Crank:


0.005


0.0014


0.0007


0.0005


0.00015


0.000015




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-10: Xb = 3.25, 1 + 91/40, 1 + 92/40, to 3.5 key 3-4















90
3.25
0.3044
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


91
3.275
0.3100
0.00560
0.00140
0.00070
0.00047
0.00016
0.000016


92
3.300
0.3159
0.00590
0.00148
0.00074
0.00049
0.00016
0.000016


93
3.325
0.3217
0.00580
0.00145
0.00072
0.00048
0.00016
0.000016


94
3.350
0.3276
0.00590
0.00148
0.00074
0.00049
0.00016
0.000016


95
3.375
0.3336
0.00600
0.00150
0.00075
0.00050
0.00017
0.000017


96
3.400
0.3396
0.00600
0.00150
0.00075
0.00050
0.00017
0.000017


97
2.425
0.3457
0.00610
0.00153
0.00076
0.00051
0.00017
0.000017


98
3.450
0.3518
0.00610
0.00153
0.00076
0.00051
0.00017
0.000017


99
3.475
0.3579
0.00610
0.00153
0.00076
0.00051
0.00017
0.000017


100
3.5
0.3642
0.00630
0.00158
0.00079
0.00053
0.00018
0.000018














Average Precision per Crank:


0.006


0.0015


0.0007


0.0005


0.00017


0.000017




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-11: Xb = 3.5, 1 + 101/40, 1 + 102/40, to 3.75















100
3.5
0.3642
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


101
3.525
0.3705
0.00630
0.00157
0.00079
0.00052
0.00017
0.000017


102
3.550
0.3768
0.00630
0.00158
0.00079
0.00053
0.00018
0.000018


103
3.575
0.3831
0.00630
0.00157
0.00079
0.00052
0.00017
0.000017


104
3.600
0.3896
0.00650
0.00163
0.00081
0.00054
0.00018
0.000018


105
3.625
0.3960
0.00640
0.00160
0.00080
0.00053
0.00018
0.000018


106
3.650
0.4026
0.00660
0.00165
0.00082
0.00055
0.00018
0.000018


107
3.675
0.4092
0.00660
0.00165
0.00082
0.00055
0.00018
0.000018


108
3.700
0.4158
0.00660
0.00165
0.00082
0.00055
0.00018
0.000018


109
3.725
0.4225
0.00670
0.00168
0.00084
0.00056
0.00019
0.000019


110
3.75
0.4292
0.00670
0.00168
0.00084
0.00056
0.00019
0.000019














Average Precision per Crank:


0.007


0.0016


0.0008


0.0005


0.00018


0.000018




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-12: Xb = 3.75, 1 + 111/40, 1 + 112/40, to 4.0 key 3-4















110
3.75
0.4292
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


111
3.775
0.4360
0.00680
0.00170
0.00085
0.00057
0.00019
0.000019


112
3.800
0.4429
0.00690
0.00173
0.00086
0.00058
0.00019
0.000019


113
3.825
0.4498
0.00690
0.00172
0.00086
0.00057
0.00019
0.000019


114
8.850
0.4568
0.00700
0.00175
0.00088
0.00058
0.00019
0.000019


115
3.875
0.4638
0.00700
0.00175
0.00088
0.00058
0.00019
0.000019


116
3.900
0.4708
0.00700
0.00175
0.00088
0.00058
0.00019
0.000019


117
3.925
0.4780
0.00720
0.00180
0.00090
0.00060
0.00020
0.000020


118
3.950
0.4851
0.00710
0.00178
0.00089
0.00059
0.00020
0.000020


119
3.975
0.4924
0.00730
0.00183
0.00091
0.00061
0.00020
0.000020


120

4


0.5000

0.00760
0.00190
0.00095
0.00063
0.00021
0.000021














Average Precision per Crank:


0.007


0.0018


0.0009


0.0006


0.00020


0.000020




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-13: Xb = 4.0, 1 + 121/40, 1 + 122/40, to 4.25















120

4


0.5000

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


121
4.025
0.5102
0.01020
0.00255
0.00128
0.00085
0.00028
0.000028


122
4.050
0.5209
0.01070
0.00268
0.00134
0.00089
0.00030
0.000030


123
4.075
0.5317
0.01080
0.00270
0.00135
0.00090
0.00030
0.000030


124
4.100
0.5425
0.01080
0.00270
0.00135
0.00090
0.00030
0.000030


125
4.125
0.5535
0.01100
0.00275
0.00138
0.00092
0.00031
0.000031


126
4.150
0.5646
0.01110
0.00278
0.00139
0.00093
0.00031
0.000031


127
4.175
0.5757
0.01110
0.00278
0.00139
0.00093
0.00031
0.000031


128
4.200
0.5870
0.01130
0.00282
0.00141
0.00094
0.00031
0.000031


129
4.225
0.5983
0.01130
0.00283
0.00141
0.00094
0.00031
0.000031


130
4.25
0.6098
0.01150
0.00287
0.00144
0.00096
0.00032
0.000032














Average Precision per Crank:


0.011


0.0027


0.0014


0.0009


0.00031


0.000031




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-14: Xb = 4.25, 1 + 131/40, 1 + 132/40, to 4.5 key 4-5















130
4.25
0.6098
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


131
4.275
0.6213
0.01150
0.00287
0.00144
0.00096
0.00032
0.000032


132
4.300
0.6330
0.01170
0.00293
0.00146
0.00098
0.00033
0.000033


133
4.325
0.6447
0.01170
0.00293
0.00146
0.00098
0.00033
0.000033


134
4.350
0.6566
0.01190
0.00297
0.00149
0.00099
0.00033
0.000033


135
4.375
0.6685
0.01190
0.00298
0.00149
0.00099
0.00033
0.000033


136
4.400
0.6805
0.01200
0.00300
0.00150
0.00100
0.00033
0.000033


137
4.425
0.6927
0.01220
0.00305
0.00153
0.00102
0.00034
0.000034


138
4.450
0.7049
0.01220
0.00305
0.00153
0.00102
0.00034
0.000034


139
4.475
0.7172
0.01230
0.00307
0.00154
0.00103
0.00034
0.000034


140
4.5
0.7296
0.01240
0.00310
0.00155
0.00103
0.00034
0.000034














Average Precision per Crank:


0.012


0.0030


0.0015


0.0010


0.00033


0.000033




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-15: Xb = 4.5, 1 + 141/40, 1 + 142/40, to 4.75















140
4.5
0.7296
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


141
4.525
0.7422
0.01260
0.00315
0.00157
0.00105
0.00035
0.000035


142
4.550
0.7548
0.01260
0.00315
0.00158
0.00105
0.00035
0.000035


143
4.575
0.7675
0.01270
0.00317
0.00159
0.00106
0.00035
0.000035


144
4.600
0.7803
0.01280
0.00320
0.00160
0.00107
0.00036
0.000036


145
4.625
0.7933
0.01300
0.00325
0.00163
0.00108
0.00036
0.000036


146
4.650
0.8063
0.01300
0.00325
0.00163
0.00108
0.00036
0.000036


147
4.675
0.8194
0.01310
0.00328
0.00164
0.00109
0.00036
0.000036


148
4.700
0.8326
0.01320
0.00330
0.00165
0.00110
0.00037
0.000037


149
4.725
0.8459
0.01330
0.00332
0.00166
0.00111
0.00037
0.000037


150
4.75
0.8594
0.01350
0.00338
0.00169
0.00113
0.00038
0.000038














Average Precision per Crank:


0.013


0.0032


0.0016


0.0011


0.00036


0.000036




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-16: Xb = 4.75, 1 + 151/40, 1 + 152/40, to 5.0 key 4-5















150
4.75
0.8594
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


151
4.775
0.8729
0.01350
0.00337
0.00169
0.00113
0.00037
0.000037


152
4.800
0.8865
0.01360
0.00340
0.00170
0.00113
0.00038
0.000038


153
4.825
0.9002
0.01370
0.00343
0.00171
0.00114
0.00038
0.000038


154
4.850
0.9141
0.01390
0.00348
0.00174
0.00116
0.00039
0.000039


155
4.875
0.9280
0.01390
0.00348
0.00174
0.00116
0.00039
0.000039


156
4.900
0.9420
0.01400
0.00350
0.00175
0.00117
0.00039
0.000039


157
4.925
0.9561
0.01410
0.00353
0.00176
0.00118
0.00039
0.000039


158
4.950
0.9703
0.01420
0.00355
0.00178
0.00118
0.00039
0.000039


159
4.975
0.9847
0.01440
0.00360
0.00180
0.00120
0.00040
0.000040


160

5


1.0000

0.01530
0.00383
0.00191
0.00128
0.00042
0.000042














Average Precision per Crank:


0.014


0.0035


0.0018


0.0012


0.00039


0.000039




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-17: Xb = 5.0, 1 + 161/40, 1 + 162/40, to 5.25















160

5


1.0000

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


161
5.025
1.0103
0.01030
0.00257
0.00129
0.00086
0.00029
0.000029


162
5.050
1.0216
0.01130
0.00283
0.00141
0.00094
0.00031
0.000031


163
5.075
1.0330
0.01140
0.00285
0.00142
0.00095
0.00032
0.000032


164
5.100
1.0444
0.01140
0.00285
0.00143
0.00095
0.00032
0.000032


165
6.125
1.0559
0.01150
0.00288
0.00144
0.00096
0.00032
0.000032


166
5.150
1.0674
0.01150
0.00287
0.00144
0.00096
0.00032
0.000032


167
5.175
1.0790
0.01160
0.00290
0.00145
0.00097
0.00032
0.000032


168
5.200
1.0907
0.01170
0.00293
0.00146
0.00098
0.00033
0.000033


169
5.225
1.1024
0.01170
0.00293
0.00146
0.00098
0.00033
0.000033


170
5.25
1.1142
0.01180
0.00295
0.00148
0.00098
0.00033
0.000033














Average Precision per Crank:


0.011


0.0029


0.0014


0.0010


0.00032


0.000032




(inch/Full C)
(inch/ ¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-18: Xb = 5.25, 1 + 171/40, 1 + 172/40, to 5.5 key 5-6















170
5.25
1.1142
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


171
5.275
1.1261
0.01190
0.00298
0.00149
0.00099
0.00033
0.000033


172
5.300
1.1381
0.01200
0.00300
0.00150
0.00100
0.00033
0.000033


173
5.325
1.1501
0.01200
0.00300
0.00150
0.00100
0.00033
0.000033


174
5.350
1.1621
0.01200
0.00300
0.00150
0.00100
0.00033
0.000033


175
5.375
1.1743
0.01220
0.00305
0.00153
0.00102
0.00034
0.000034


176
5.400
1.1865
0.01220
0.00305
0.00153
0.00102
0.00034
0.000034


177
5.425
1.1987
0.01220
0.00305
0.00153
0.00102
0.00034
0.000034


178
5.450
1.2111
0.01240
0.00310
0.00155
0.00103
0.00034
0.000034


179
5.475
1.2235
0.01240
0.00310
0.00155
0.00103
0.00034
0.000034


180
5.5
1.2359
0.01240
0.00310
0.00155
0.00103
0.00034
0.000034














Average Precision per Crank:


0.012


0.0030


0.0015


0.0010


0.00034


0.000034




(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-19: Xb = 5.5, 1 + 181/40, 1 + 182/40, to 5.75















180
5.5
1.2359
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


181
5.525
1.2485
0.01260
0.00315
0.00157
0.00105
0.00035
0.000035


182
5.550
1.2611
0.01260
0.00315
0.00158
0.00105
0.00035
0.000035


183
5.575
1.2737
0.01260
0.00315
0.00157
0.00105
0.00035
0.000035


184
5.600
1.2865
0.01280
0.00320
0.00160
0.00107
0.00036
0.000036


185
5.625
1.2993
0.01280
0.00320
0.00160
0.00107
0.00036
0.000036


186
5.650
1.3121
0.01280
0.00320
0.00160
0.00107
0.00036
0.000036


187
5.675
1.3251
0.01300
0.00325
0.00162
0.00108
0.00036
0.000036


188
5.700
1.3381
0.01300
0.00325
0.00163
0.00108
0.00036
0.000036


189
5.725
1.3511
0.01300
0.00325
0.00162
0.00108
0.00036
0.000036


190
5.75
1.3643
0.01320
0.00330
0.00165
0.00110
0.00037
0.000037














Average Precision per Crank:


0.013


0.0032


0.0016


0.0011


0.00036


0.000036




(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-20: Xb = 5.75, 1 + 191/40, 1 + 192/40, to 6.0 key 5-6















190
5.75
1.3643
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


191
5.775
1.3775
0.01320
0.00330
0.00165
0.00110
0.00037
0.000037


192
5.800
1.3907
0.01320
0.00330
0.00165
0.00110
0.00037
0.000037


193
5.825
1.4041
0.01340
0.00335
0.00167
0.00112
0.00037
0.000037


194
5.850
1.4175
0.01340
0.00335
0.00168
0.00112
0.00037
0.000037


195
5.875
1.4309
0.01340
0.00335
0.00168
0.00112
0.00037
0.000037


196
5.900
1.4445
0.01360
0.00340
0.00170
0.00113
0.00038
0.000038


197
5.925
1.4581
0.01360
0.00340
0.00170
0.00113
0.00038
0.000038


198
5.950
1.4718
0.01370
0.00343
0.00171
0.00114
0.00038
0.000038


199
5.975
1.4855
0.01370
0.00343
0.00171
0.00114
0.00038
0.000038


200

6


1.5000

0.01450
0.00362
0.00181
0.00121
0.00040
0.000040














Average Precision per Crank:


0.014


0.0034


0.0017


0.0011


0.00038


0.000038




(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-21: Xb = 6.0, 1 + 201/40, 1 + 202/40, to 6.25















200

6


1.5000

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


201
6.025
1.5263
0.02630
0.00658
0.00329
0.00219
0.00073
0.000073


202
6.050
1.5535
0.02720
0.00680
0.00340
0.00227
0.00076
0.000076


203
6.075
1.5809
0.02740
0.00685
0.00342
0.00228
0.00076
0.000076


204
6.100
1.6085
0.02760
0.00690
0.00345
0.00230
0.00077
0.000077


206
6.125
1.6363
0.02780
0.00695
0.00348
0.00232
0.00077
0.000077


206
6.150
1.6643
0.02800
0.00700
0.00350
0.00233
0.00078
0.000078


207
6.175
1.6926
0.02830
0.00708
0.00354
0.00236
0.00079
0.000079


208
6.200
1.7210
0.02840
0.00710
0.00355
0.00237
0.00079
0.000079


209
6.225
1.7497
0.02870
0.00717
0.00359
0.00239
0.00080
0.000080


210
6.25
1.7786
0.02890
0.00722
0.00361
0.00241
0.00080
0.000080














Average Precision per Crank:


0.028


0.0070


0.0035


0.0023


0.00077


0.000077




(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-22: Xb = 6.25, 1 + 211/40, 1 +212/40, to 6.5 key 6-7















210
6.25
1.7786
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


211
6.275
1.8080
0.02940
0.00735
0.00368
0.00245
0.00082
0.000082


212
6.300
1.8370
0.02900
0.00725
0.00362
0.00242
0.00081
0.000081


213
6.325
1.8665
0.02950
0.00738
0.00369
0.00246
0.00082
0.000082


214
6.350
1.8963
0.02980
0.00745
0.00373
0.00248
0.00083
0.000083


215
6.375
1.9262
0.02990
0.00747
0.00374
0.00249
0.00083
0.000083


216
6.400
1.9564
0.03020
0.00755
0.00378
0.00252
0.00084
0.000084


217
6.425
1.9868
0.03040
0.00760
0.00380
0.00253
0.00084
0.000084


218
6.450
2.0175
0.03070
0.00768
0.00384
0.00256
0.00085
0.000085


219
6.475
2.0483
0.03080
0.00770
0.00385
0.00257
0.00086
0.000086


220
6.5
2.0794
0.03110
0.00778
0.00389
0.00259
0.00086
0.000086














Average Precision per Crank:


0.030


0.0075


0.0038


0.0025


0.00084


0.000084




(inch/Full C)
(inch/¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-23: Xb = 6.5, 1 + 221/40, 1 + 222/40, to 6.75















220
6.5
2.0794
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


221
6.525
2.1107
0.03130
0.00782
0.00391
0.00261
0.00087
0.000087


222
6.550
2.1423
0.03160
0.00790
0.00395
0.00263
0.00088
0.000088


223
6.575
2.1740
0.03170
0.00792
0.00396
0.00264
0.00088
0.000088


224
6.600
2.2060
0.03200
0.00800
0.00400
0.00267
0.00089
0.000089


225
6.625
2.2383
0.03230
0.00808
0.00404
0.00269
0.00090
0.000090


226
6.650
2.2707
0.03240
0.00810
0.00405
0.00270
0.00090
0.000090


227
6.675
2.3034
0.03270
0.00817
0.00409
0.00272
0.00091
0.000091


228
6.700
2.3363
0.03290
0.00823
0.00411
0.00274
0.00091
0.000091


229
6.725
2.3695
0.03320
0.00830
0.00415
0.00277
0.00092
0.000092


230
6.75
2.4029
0.03340
0.00835
0.00417
0.00278
0.00093
0.000093














Average Precision per Crank:


0.032


0.0081


0.0040


0.0027


0.00090


0.000090




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-24: Xb = 6.75, 1 + 231/40, 1 + 232/40, to 7.0 key 6-7















230
6.75
2.4029
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


231
6.775
2.4365
0.03360
0.00840
0.00420
0.00280
0.00093
0.000093


232
6.800
2.4704
0.03390
0.00848
0.00424
0.00283
0.00094
0.000094


233
6.825
2.5046
0.03420
0.00855
0.00427
0.00285
0.00095
0.000095


234
6.850
2.5389
0.03430
0.00858
0.00429
0.00286
0.00095
0.000095


235
6.875
2.5735
0.03460
0.00865
0.00433
0.00288
0.00096
0.000096


236
6.900
2.6084
0.03490
0.00872
0.00436
0.00291
0.00097
0.000097


237
6.925
2.6435
0.03510
0.00877
0.00439
0.00292
0.00097
0.000097


238
6.950
2.6789
0.03540
0.00885
0.00443
0.00295
0.00098
0.000098


239
6.975
2.7145
0.03560
0.00890
0.00445
0.00297
0.00099
0.000099


240

7


2.7500

0.03550
0.00887
0.00444
0.00296
0.00099
0.000099














Average Precision per Crank:


0.035


0.0087


0.0043


0.0029


0.00096


0.000096




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-25: Xb = 7.0, 1 + 241/40, 1 + 242/40, to 7.25















240

7


2.7500

0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


241
7.025
2.7782
0.02820
0.00705
0.00353
0.00235
0.00078
0.000078


242
7.050
2.8063
0.02810
0.00702
0.00351
0.00234
0.00078
0.000078


243
7.075
2.8346
0.02830
0.00708
0.00354
0.00236
0.00079
0.000079


244
7.100
2.8630
0.02840
0.00710
0.00355
0.00237
0.00079
0.000079


245
7.125
2.8915
0.02850
0.00713
0.00356
0.00238
0.00079
0.000079


246
7.150
2.9203
0.02880
0.00720
0.00360
0.00240
0.00080
0.000080


247
7.175
2.9492
0.02890
0.00722
0.00361
0.00241
0.00080
0.000080


248
7.200
2.9782
0.02900
0.00725
0.00363
0.00242
0.00081
0.000081


249
7.225
3.0074
0.02920
0.00730
0.00365
0.00243
0.00081
0.000081


250
7.25
3.0368
0.02940
0.00735
0.00367
0.00245
0.00082
0.000082














Average Precision per Crank:


0.029


0.0072


0.0036


0.0024


0.00080


0.000080




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-26: Xb = 7.25, 1 + 251/40, 1 + 252/40, to 7.5 key 7-8















250
7.25
3.0368
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


251
7.275
3.0664
0.02960
0.00740
0.00370
0.00247
0.00082
0.000082


252
7.300
3.0961
0.02970
0.00743
0.00371
0.00248
0.00083
0.000083


253
7.325
3.1260
0.02990
0.00748
0.00374
0.00249
0.00083
0.000083


254
7.350
3.1561
0.03010
0.00753
0.00376
0.00251
0.00084
0.000084


255
7.375
3.1863
0.03020
0.00755
0.00378
0.00252
0.00084
0.000084


256
7.400
3.2167
0.03040
0.00760
0.00380
0.00253
0.00084
0.000084


257
7.425
3.2473
0.03060
0.00765
0.00383
0.00255
0.00085
0.000085


258
7.450
3.2780
0.03070
0.00767
0.00384
0.00256
0.00085
0.000085


259
7.475
3.3089
0.03090
0.00772
0.00386
0.00257
0.00086
0.000086


260
7.5
3.3400
0.03110
0.00777
0.00389
0.00259
0.00086
0.000086














Average Precision per Crank:


0.030


0.0076


0.0038


0.0025


0.00084


0.000084




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-27: Xb = 7.5, 1 + 261/40, 1 + 262/40, to 7.75















260
7.5
3.3400
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


261
7.525
3.3713
0.03130
0.00783
0.00391
0.00261
0.00087
0.000087


262
7.550
3.4027
0.03140
0.00785
0.00392
0.00262
0.00087
0.000087


263
7.575
3.4343
0.03160
0.00790
0.00395
0.00263
0.00088
0.000088


264
7.600
3.4661
0.03180
0.00795
0.00398
0.00265
0.00088
0.000088


265
7.625
3.4980
0.03190
0.00798
0.00399
0.00266
0.00089
0.000089


266
7.650
3.5302
0.03220
0.00805
0.00402
0.00268
0.00089
0.000089


267
7.675
3.5625
0.03230
0.00808
0.00404
0.00269
0.00090
0.000090


268
7.700
3.5950
0.03250
0.00813
0.00406
0.00271
0.00090
0.000090


269
7.725
3.6277
0.03270
0.00817
0.00409
0.00272
0.00091
0.000091


270
7.75
3.6605
0.03280
0.00820
0.00410
0.00273
0.00091
0.000091














Average Precision per Crank:


0.032


0.0080


0.0040


0.0027


0.00089


0.000089




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 5-28: Xb = 7.75, 1 + 271/40, 1 + 272/40, to 8.0 key 7-8















270
7.75
3.6605
0.00000
0.00000
0.00000
0.00000
0.00000
0.000000


271
7.775
3.6935
0.03300
0.00825
0.00412
0.00275
0.00092
0.000092


272
7.800
3.7268
0.03330
0.00833
0.00416
0.00278
0.00093
0.000093


273
7.825
3.7602
0.03340
0.00835
0.00418
0.00278
0.00093
0.000093


274
7.850
3.7937
0.03350
0.00837
0.00419
0.00279
0.00093
0.000093


275
7.875
3.8275
0.03380
0.00845
0.00423
0.00282
0.00094
0.000094


276
7.900
3.8615
0.03400
0.00850
0.00425
0.00283
0.00094
0.000094


277
7.925
3.8956
0.03410
0.00853
0.00426
0.00284
0.00095
0.000095


278
7.950
3.9300
0.03440
0.00860
0.00430
0.00287
0.00096
0.000096


279
7.975
3.9644
0.03440
0.00860
0.00430
0.00287
0.00096
0.000096


280

8


4.0000

0.03560
0.00890
0.00445
0.00297
0.00099
0.000099














Average Precision per Crank:


0.034


0.0085


0.0042


0.0028


0.00094


0.000094




(inch/Full C)
(inch/ ¼ C)
(inch/ ⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)
























TABLE 6








Precision
Precision
Pecision
Precision
Precision
Precision


Crank (C)


Per Full C
Per ¼ C
Per ⅛ C
Per 1/12 C
Per 1/36 C
1/360 C


Full 360/C
Xb
Yb
(360 deg)
(90 deg)
(45 deg)
(30 deg)
(10 deg)
(1 degree)















½ Size PEMD Displacement Precision: Face Ht. = 1.5″,


5/16 - 48 UNS, Roller Dia. = 1″. Track L = 5½″


Table 6-1: Xb = ½, ½ + 1/48, ½ + 2/48, to 1.0 key 1-2 equiv.















0

0.5


−0.3750

start
start
start
start
start
start


1
½ + 1/48 
−0.3692
0.006
0.0015
0.0007
0.0005
0.00016
0.000016


2
½ + 2/48 
−0.3626
0.007
0.0017
0.0008
0.0006
0.00018
0.000018


3
½ + 3/48 
−0.3551
0.007
0.0019
0.0009
0.0006
0.00021
0.000021


4
½ + 4/48 
−0.3467
0.008
0.0021
0.0011
0.0007
0.00023
0.000023


5
½ + 5/48 
−0.3375
0.009
0.0023
0.0012
0.0008
0.00026
0.000026


6
½ + 6/48 
−0.3275
0.010
0.0025
0.0013
0.0008
0.00028
0.000028


7
½ + 7/48 
−0.3166
0.011
0.0027
0.0014
0.0009
0.00030
0.000030


8
½ + 8/48 
−0.3050
0.012
0.0029
0.0015
0.0010
0.00032
0.000032


9
½ + 9/48 
−0.2924
0.013
0.0032
0.0016
0.0011
0.00035
0.000035


10
½ + 10/48
−0.2791
0.013
0.0033
0.0017
0.0011
0.00037
0.000037


11
½ + 11/48
−0.2686
0.011
0.0026
0.0013
0.0009
0.00029
0.000029


12
½ + 12/48
−0.2500
0.019
0.0047
0.0023
0.0016
0.00052
0.000052


13
½ + 13/48
−0.2342
0.016
0.0040
0.0020
0.0013
0.00044
0.000044


14
½ + 14/48
−0.2175
0.017
0.0042
0.0021
0.0014
0.00046
0.000046


15
½ + 15/48
−0.2000
0.018
0.0044
0.0022
0.0015
0.00049
0.000049


16
½ + 16/48
−0.1815
0.019
0.0046
0.0023
0.0015
0.00051
0.000051


17
½ + 17/48
−0.1622
0.019
0.0048
0.0024
0.0016
0.00054
0.000054


18
½ + 18/48
−0.1420
0.020
0.0051
0.0025
0.0017
0.00056
0.000056


19
½ + 19/48
−0.1208
0.021
0.0053
0.0027
0.0018
0.00059
0.000059


20
½ + 20/48
−0.0970
0.024
0.0060
0.0030
0.0020
0.00066
0.000066


21
½ + 21/48
−0.0756
0.021
0.0054
0.0027
0.0018
0.00059
0.000059


22
½ + 22/48
−0.0514
0.024
0.0061
0.0030
0.0020
0.00067
0.000067


23
½ + 23/48
−0.0263
0.025
0.0063
0.0031
0.0021
0.00070
0.000070


24

1  


0.0000

0.026
0.0066
0.0033
0.0022
0.00073
0.000073














Average Precision per Crank:


0.016


0.0039


0.0020


0.0013


0.00043


0.000043















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







5 Digit ½ Size PEMD Displacement Precision: Face Ht. = 1.5″,


5/16 - 48 UNS, Roller Dia. = 1″. Track L = 5½″


Table 6-2: Xb = 1.0, ½ + 25/48, ½ + 26/48, to 1.5 key 2-3 equiv.















24

1  


0.000

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


25
½ + 25/48
0.00353
0.004
0.0009
0.0004
0.0003
0.00010
0.000010


26
½ + 26/48
0.00721
0.004
0.0009
0.0005
0.0003
0.00010
0.000010


27
½ + 2748 
0.01103
0.004
0.0010
0.0005
0.0003
0.00011
0.000011


28
½ + 28/48
0.01500
0.004
0.0010
0.0005
0.0003
0.00011
0.000011


29
½ + 29/48
0.01911
0.004
0.0010
0.0005
0.0003
0.00011
0.000011


30
½ + 30/48
0.02337
0.004
0.0011
0.0005
0.0004
0.00012
0.000012


31
½ + 31/48
0.02776
0.004
0.0011
0.0005
0.0004
0.00012
0.000012


32
½ + 32/48
0.03231
0.005
0.0011
0.0006
0.0004
0.00013
0.000013


33
½ + 33/48
0.03700
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


34
½ + 34/48
0.04184
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


35
½ + 35/48
0.04682
0.005
0.0012
0.0006
0.0004
0.00014
0.000014


36
½ + 36/48
0.05195
0.005
0.0013
0.0006
0.0004
0.00014
0.000014


37
½ + 37/48
0.05722
0.005
0.0013
0.0007
0.0004
0.00015
0.000015


38
½ + 38/48
0.06264
0.005
0.0014
0.0007
0.0005
0.00015
0.000015


39
½ + 39/48
0.06813
0.005
0.0014
0.0007
0.0005
0.00015
0.000015


40
½ + 40/48
0.07391
0.006
0.0014
0.0007
0.0005
0.00016
0.000016


41
½ + 41/48
0.07977
0.006
0.0015
0.0007
0.0005
0.00016
0.000016


42
½ + 42/48
0.08421
0.004
0.0011
0.0006
0.0004
0.00012
0.000012


43
½ + 43/48
0.09192
0.008
0.0019
0.0010
0.0006
0.00021
0.000021


44
½ + 44/48
0.09822
0.006
0.0016
0.0008
0.0005
0.00018
0.000018


45
½ + 45/48
0.10466
0.006
0.0016
0.0008
0.0005
0.00018
0.000018


46
½ + 46/48
0.11125
0.007
0.0016
0.0008
0.0005
0.00018
0.000018


47
½ + 47/48
0.11800
0.007
0.0017
0.0008
0.0006
0.00019
0.000019


48

1.5


0.125

0.007
0.0017
0.0009
0.0006
0.00019
0.000019














Average Precision per Crank:


0.005


0.0013


0.0007


0.0004


0.00014

0.000014














(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







½ Size PEMD Displacement Precision: Face Ht. = 1.5″,


5/16 - 48 UNS, Roller Dia. = 1″. Track L = 5½″


Table 6-3: Xb = 1.5, ½ + 49/48, ½ + 50/48, to 2.0 key 3-4 equiv.















48

1.5


0.1250

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


49
½ + 49/48
0.1293
0.004
0.0011
0.0005
0.0004
0.00012
0.000012


50
½ + 50/48
0.1338
0.005
0.0011
0.0006
0.0004
0.00013
0.000013


51
½ + 5148 
0.1382
0.004
0.0011
0.0005
0.0004
0.00012
0.000012


52
½ + 52/48
0.1428
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


53
½ + 53/48
0.1474
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


54
½ + 54/48
0.1522
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


55
½ + 55/48
0.1570
0.005
0.0012
0.0006
0.0004
0.00013
0.000013


56
½ + 56/48
0.1619
0.005
0.0012
0.0006
0.0004
0.00014
0.000014


57
½ + 57/48
0.1668
0.005
0.0012
0.0006
0.0004
0.00014
0.000014


58
½ + 58/48
0.1718
0.005
0.0013
0.0006
0.0004
0.00014
0.000014


59
½ + 59/48
0.1769
0.005
0.0013
0.0006
0.0004
0.00014
0.000014


60
½ + 60/48
0.1821
0.005
0.0013
0.0007
0.0004
0.00014
0.000014


61
½ + 61/48
0.1886
0.006
0.0016
0.0008
0.0005
0.00018
0.000018


62
½ + 62/48
0.1926
0.004
0.0010
0.0005
0.0003
0.00011
0.000011


63
½ + 63/48
0.1980
0.005
0.0014
0.0007
0.0005
0.00015
0.000015


64
½ + 64/48
0.2035
0.005
0.0014
0.0007
0.0005
0.00015
0.000015


65
½ + 65/48
0.2090
0.006
0.0014
0.0007
0.0005
0.00015
0.000015


66
½ + 66/48
0.2146
0.006
0.0014
0.0007
0.0005
0.00016
0.000016


67
½ + 67/48
0.2203
0.006
0.0014
0.0007
0.0005
0.00016
0.000016


68
½ + 68/48
0.2260
0.006
0.0014
0.0007
0.0005
0.00016
0.000016


69
½ + 69/48
0.2319
0.006
0.0015
0.0007
0.0005
0.00016
0.000016


70
½ + 70/48
0.2378
0.006
0.0015
0.0007
0.0005
0.00016
0.000016


71
½ + 71/48
0.2437
0.006
0.0015
0.0007
0.0005
0.00016
0.000016


72

2  


0.2500

0.006
0.0016
0.0008
0.0005
0.00018
0.000018














Average Precision per Crank:


0.005


0.0013


0.0007


0.0004


0.00014


0.000014















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 6-4: Xb = 2.0, ½ + 73/48, ½ + 74/48, to 2.5 key 4-5 equiv.















72

2  


0.2500

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


73
½ + 73/48
0.2587
0.009
0.0022
0.0011
0.0007
0.00024
0.000024


74
½ + 74/48
0.2676
0.009
0.0022
0.0011
0.0007
0.00025
0.000025


75
½ + 75/48
0.2768
0.009
0.0023
0.0012
0.0008
0.00026
0.000026


76
½ + 76/48
0.2860
0.009
0.0023
0.0012
0.0008
0.00026
0.000026


77
½ + 77/48
0.2954
0.009
0.0024
0.0012
0.0008
0.00026
0.000026


78
½ + 78/48
0.3049
0.010
0.0024
0.0012
0.0008
0.00026
0.000026


79
½ + 79/48
0.3145
0.010
0.0024
0.0012
0.0008
0.00027
0.000027


80
½ + 80/48
0.3243
0.010
0.0024
0.0012
0.0008
0.00027
0.000027


81
½ + 81/48
0.3342
0.010
0.0025
0.0012
0.0008
0.00028
0.000028


82
½ + 82/48
0.3443
0.010
0.0025
0.0013
0.0008
0.00028
0.000028


83
½ + 83/48
0.3545
0.010
0.0026
0.0013
0.0008
0.00028
0.000028


84
½ + 84/48
0.3648
0.010
0.0026
0.0013
0.0009
0.00029
0.000029


85
½ + 85/48
0.3753
0.011
0.0026
0.0013
0.0009
0.00029
0.000029


86
½ + 86/48
0.3859
0.011
0.0027
0.0013
0.0009
0.00029
0.000029


87
½ + 87/48
0.3966
0.011
0.0027
0.0013
0.0009
0.00030
0.000030


88
½ + 88/48
0.4075
0.011
0.0027
0.0014
0.0009
0.00030
0.000030


89
½ + 89/48
0.4185
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


90
½ + 90/48
0.4297
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


91
½ + 91/48
0.4410
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


92
½ + 92/48
0.4524
0.011
0.0029
0.0014
0.0010
0.00032
0.000032


93
½ + 93/48
0.4640
0.012
0.0029
0.0015
0.0010
0.00032
0.000032


94
½ + 94/48
0.4747
0.011
0.0027
0.0013
0.0009
0.00030
0.000030


95
½ + 95/48
0.4876
0.013
0.0032
0.0016
0.0011
0.00036
0.000036


96

2.5


0.5000

0.012
0.0031
0.0016
0.0010
0.00034
0.000034














Average Precision per Crank:


0.010


0.0026


0.0013


0.0009


0.00029


0.000029















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 6-5: Xb = 2.5, ½ + 97/48, ½ + 98/48, to 3.0 key 5-6 equiv.















96

2.5


0.5000

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


97
½ + 97/48
0.5089
0.009
0.0022
0.0011
0.0007
0.00025
0.000025


98
½ + 98/48
0.5184
0.009
0.0024
0.0012
0.0008
0.00026
0.000026


99
½ + 99/48
0.5279
0.010
0.0024
0.0012
0.0008
0.00026
0.000026


100
 ½ + 100/48
0.5376
0.010
0.0024
0.0012
0.0008
0.00027
0.000027


101
 ½ + 101/48
0.5473
0.010
0.0024
0.0012
0.0008
0.00027
0.000027


102
 ½ + 102/48
0.5571
0.010
0.0025
0.0012
0.0008
0.00027
0.000027


103
 ½ + 103/48
0.5670
0.010
0.0025
0.0012
0.0008
0.00027
0.000027


104
 ½ + 104/48
0.5770
0.010
0.0025
0.0013
0.0008
0.00028
0.000028


105
 ½ + 105/48
0.5871
0.010
0.0025
0.0013
0.0008
0.00028
0.000028


106
 ½ + 106/48
0.5973
0.010
0.0026
0.0013
0.0009
0.00028
0.000028


107
 ½ + 107/48
0.6076
0.010
0.0026
0.0013
0.0009
0.00029
0.000029


108
 ½ + 108/48
0.6180
0.010
0.0026
0.0013
0.0009
0.00029
0.000029


109
 ½ + 109/48
0.6284
0.010
0.0026
0.0013
0.0009
0.00029
0.000029


110
 ½ + 110/48
0.6390
0.011
0.0027
0.0013
0.0009
0.00029
0.000029


111
 ½ + 111/48
0.6496
0.011
0.0026
0.0013
0.0009
0.00029
0.000029


112
 ½ + 112/48
0.6604
0.011
0.0027
0.0014
0.0009
0.00030
0.000030


113
 ½ + 113/48
0.6712
0.011
0.0027
0.0014
0.0009
0.00030
0.000030


114
 ½ + 114/48
0.6821
0.011
0.0027
0.0014
0.0009
0.00030
0.000030


115
 ½ + 115/48
0.6931
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


116
 ½ + 116/48
0.7043
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


117
 ½ + 117/48
0.7155
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


118
 ½ + 118/48
0.7268
0.011
0.0028
0.0014
0.0009
0.00031
0.000031


119
 ½ + 119/48
0.7382
0.011
0.0028
0.0014
0.0009
0.00032
0.000032


120

3  


0.7500

0.012
0.0030
0.0015
0.0010
0.00033
0.000033














Average Precision per Crank:


0.010


0.0026


0.0013


0.0009


0.00029


0.000029















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 6-6: Xb = 3.0, ½ + 121/48, ½ + 122/48, to 3.5 key 6-7 equiv.















120

3  


0.7500

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


121
 ½ + 121/48
0.7722
0.022
0.0056
0.0028
0.0019
0.00062
0.000062


122
 ½ + 122/48
0.7950
0.023
0.0057
0.0029
0.0019
0.00063
0.000063


123
 ½ + 123/48
0.8182
0.023
0.0058
0.0029
0.0019
0.00064
0.000064


124
 ½ + 124/48
0.8416
0.023
0.0058
0.0029
0.0020
0.00065
0.000065


125
 ½ + 125/48
0.8653
0.024
0.0059
0.0030
0.0020
0.00066
0.000066


126
 ½ + 126/48
0.8893
0.024
0.0060
0.0030
0.0020
0.00067
0.000067


127
 ½ + 127/48
0.9136
0.024
0.0061
0.0030
0.0020
0.00068
0.000068


128
 ½ + 128/48
0.9282
0.015
0.0037
0.0018
0.0012
0.00041
0.000041


129
 ½ + 129/48
0.9631
0.035
0.0087
0.0044
0.0029
0.00097
0.000097


130
 ½ + 130/48
0.9884
0.025
0.0063
0.0032
0.0021
0.00070
0.000070


131
 ½ + 131/48
1.0139
0.026
0.0064
0.0032
0.0021
0.00071
0.000071


132
 ½ + 132/48
1.0397
0.026
0.0065
0.0032
0.0022
0.00072
0.000072


133
 ½ + 133/48
1.0659
0.026
0.0066
0.0033
0.0022
0.00073
0.000073


134
 ½ + 134/48
1.0924
0.027
0.0066
0.0033
0.0022
0.00074
0.000074


135
 ½ + 135/48
1.1192
0.027
0.0067
0.0033
0.0022
0.00074
0.000074


136
 ½ + 136/48
1.1463
0.027
0.0068
0.0034
0.0023
0.00075
0.000075


137
 ½ + 137/48
1.1737
0.027
0.0068
0.0034
0.0023
0.00076
0.000076


138
 ½ + 138/48
1.2015
0.028
0.0070
0.0035
0.0023
0.00077
0.000077


139
 ½ + 139/48
1.2296
0.028
0.0070
0.0035
0.0023
0.00078
0.000078


140
 ½ + 140/48
1.2580
0.028
0.0071
0.0036
0.0024
0.00079
0.000079


141
 ½ + 141/48
1.2868
0.029
0.0072
0.0036
0.0024
0.00080
0.000080


142
 ½ + 142/48
1.3159
0.029
0.0073
0.0036
0.0024
0.00081
0.000081


143
 ½ + 143/48
1.3454
0.029
0.0074
0.0037
0.0025
0.00082
0.000082


144

3.5


1.3750

0.030
0.0074
0.0037
0.0025
0.00082
0.000082














Average Precision per Crank:


0.026


0.0065


0.0033


0.0022


0.00072


0.000072















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 6-7: Xb = 3.5, ½ + 145/48, ½ + 146/48, to 4.0 key 7-8 equiv.















144

3.5


1.3750

0.000
0.0000
0.0000
0.0000
0.00000
0.000000


145
 ½ + 145/48
1.3985
0.024
0.0059
0.0029
0.0020
0.00065
0.000065


146
 ½ + 146/48
1.4220
0.023
0.0059
0.0029
0.0020
0.00065
0.000065


147
 ½ + 147/48
1.4458
0.024
0.0060
0.0030
0.0020
0.00066
0.000066


148
 ½ + 148/48
1.4697
0.024
0.0060
0.0030
0.0020
0.00066
0.000066


149
 ½ + 149/48
1.4940
0.024
0.0061
0.0030
0.0020
0.00068
0.000068


150
 ½ + 150/48
1.5184
0.024
0.0061
0.0031
0.0020
0.00068
0.000068


151
 ½ + 151/48
1.5431
0.025
0.0062
0.0031
0.0021
0.00069
0.000069


152
 ½ + 152/48
1.5680
0.025
0.0062
0.0031
0.0021
0.00069
0.000069


153
 ½ + 153/48
1.5931
0.025
0.0063
0.0031
0.0021
0.00070
0.000070


154
 ½ + 154/48
1.6185
0.025
0.0064
0.0032
0.0021
0.00071
0.000071


155
 ½ + 155/48
1.6442
0.026
0.0064
0.0032
0.0021
0.00071
0.000071


156
 ½ + 156/48
1.6700
0.026
0.0064
0.0032
0.0021
0.00072
0.000072


157
 ½ + 157/48
1.6961
0.026
0.0065
0.0033
0.0022
0.00073
0.000073


158
 ½ + 158/48
1.7225
0.026
0.0066
0.0033
0.0022
0.00073
0.000073


159
 ½ + 159/48
1.7490
0.027
0.0066
0.0033
0.0022
0.00074
0.000074


160
 ½ + 160/48
1.7758
0.027
0.0067
0.0033
0.0022
0.00074
0.000074


161
 ½ + 161/48
1.8029
0.027
0.0068
0.0034
0.0023
0.00075
0.000075


162
 ½ + 162/48
1.8303
0.027
0.0069
0.0034
0.0023
0.00076
0.000076


163
 ½ + 163/48
1.8578
0.027
0.0069
0.0034
0.0023
0.00076
0.000076


164
 ½ + 164/48
1.8857
0.028
0.0070
0.0035
0.0023
0.00078
0.000078


165
 ½ + 165/48
1.9138
0.028
0.0070
0.0035
0.0023
0.00078
0.000078


166
 ½ + 166/48
1.9421
0.028
0.0071
0.0035
0.0024
0.00079
0.000079


167
 ½ + 167/48
1.9707
0.029
0.0071
0.0036
0.0024
0.00079
0.000079


168

4  


2.0000

0.029
0.0073
0.0037
0.0024
0.00081
0.000081














Average Precision per Crank:


0.026


0.0065


0.0033


0.0022


0.00072


0.000072















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)

























TABLE 7








Precision
Precision
Precision
Precision
Precision
Precision


Crank (C)


Per Full C
Per ¼ C
Per ⅛ C
Per 1/12 C
Per 1/36 C
1/360 C


Full 360/C
Xb
Yb
(360 deg)
(90 deg)
(45 deg)
(30 deg)
(10 deg)
(1 degree)















¼ Size PEMD Displacement Precision: Face Ht. = ¾″,


3/16 - 72 UNS, Roller Dia. = ½″. Track L = 2¾″


Table 7-1: Xb = ¼, ¼ + 1/72, ¼ + 2/72, to ½ key 1-2 equiv.














0

¼
−0.1875

start
start
start
start
start
start


1
¼ + 1/72 
−0.1836
0.0039
0.00097
0.00049
0.00032
0.00011
0.000011


2
¼ + 2/72 
−0.1788
0.0048
0.00120
0.00060
0.00040
0.00013
0.000013


3
¼ + 3/72 
−0.1734
0.0054
0.00135
0.00067
0.00045
0.00015
0.000015


4
¼ + 4/72 
−0.1672
0.0062
0.00155
0.00078
0.00052
0.00017
0.000017


5
¼ + 5/72 
−0.1601
0.0071
0.00178
0.00089
0.00059
0.00020
0.000020


6
¼ + 6/72 
−0.1525
0.0076
0.00190
0.00095
0.00063
0.00021
0.000021


7
¼ + 7/72 
−0.1440
0.0085
0.00213
0.00106
0.00071
0.00024
0.000024


8
¼ + 8/72 
−0.1349
0.0091
0.00228
0.00114
0.00076
0.00025
0.000025


9
¼ + 9/72 
−0.1250
0.0099
0.00248
0.00124
0.00082
0.00028
0.000028


10
¼ + 10/72
−0.1144
0.0106
0.00265
0.00133
0.00088
0.00029
0.000029


11
¼ + 11/72
−0.1030
0.0114
0.00285
0.00143
0.00095
0.00032
0.000032


12
¼ + 12/72
−0.0908
0.0122
0.00305
0.00153
0.00102
0.00034
0.000034


13
¼ + 13/72
−0.0778
0.0130
0.00325
0.00163
0.00108
0.00036
0.000036


14
¼ + 14/72
−0.0640
0.0138
0.00345
0.00173
0.00115
0.00038
0.000038


15
¼ + 15/72
−0.0493
0.0147
0.00368
0.00184
0.00123
0.00041
0.000041


16
¼ + 16/72
−0.0338
0.0155
0.00388
0.00194
0.00129
0.00043
0.000043


17
¼ + 17/72
−0.0174
0.0164
0.00410
0.00205
0.00137
0.00046
0.000046


18

½
0.0000

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000














Average Precision per Crank:


0.009


0.0024


0.0012


0.0008


0.00026


0.000026















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







6 Digit ¼ Size PEMD Displacement Precision: Face Ht. = ¾″,


3/16 - 72 UNS, Roller Dia. = ½″. Track L = 2¾″


Table 7-2: Xb = ½, ¼ + 19/72, ¼ + 20/72, to ¾ key 2-3 equiv.














18

½
0.0000

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


19
¼ + 19/72
0.002371
0.0024
0.00059
0.00030
0.00020
0.00007
0.000007


20
¼ + 20/72
0.004871
0.0025
0.00063
0.00031
0.00021
0.00007
0.000007


21
¼ + 21/72
0.007500
0.0026
0.00066
0.00033
0.00022
0.00007
0.000007


22
¼ + 22/72
0.010257
0.0028
0.00069
0.00034
0.00023
0.00008
0.000008


23
¼ + 23/72
0.013140
0.0029
0.00072
0.00036
0.00024
0.00008
0.000008


24
¼ + 24/72
0.016154
0.0030
0.00075
0.00038
0.00025
0.00008
0.000008


25
¼ + 25/72
0.019230
0.0031
0.00077
0.00038
0.00026
0.00009
0.000009


26
¼ + 26/72
0.022570
0.0033
0.00084
0.00042
0.00028
0.00009
0.000009


27
¼ + 27/72
0.025972
0.0034
0.00085
0.00043
0.00028
0.00009
0.000009


28
¼ + 28/72
0.029504
0.0035
0.00088
0.00044
0.00029
0.00010
0.000010


29
¼ + 29/72
0.033165
0.0037
0.00092
0.00046
0.00031
0.00010
0.000010


30
¼ + 30/72
0.036957
0.0038
0.00095
0.00047
0.00032
0.00011
0.000011


31
¼ + 31/72
0.040879
0.0039
0.00098
0.00049
0.00033
0.00011
0.000011


32
¼ + 32/72
0.044924
0.0040
0.00101
0.00051
0.00034
0.00011
0.000011


33
¼ + 33/72
0.049107
0.0042
0.00105
0.00052
0.00035
0.00012
0.000012


34
¼ + 34/72
0.053420
0.0043
0.00108
0.00054
0.00036
0.00012
0.000012


35
¼ + 35/72
0.057865
0.0044
0.00111
0.00056
0.00037
0.00012
0.000012


36

¾
0.0625

0.0046
0.00115
0.00057
0.00038
0.00013
0.000013














Average Precision per Crank:


0.003


0.0009


0.0004


0.0003


0.00010


0.000010















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







¼ Size PEMD Displacement Precision: Face Ht. = ¾″,


3/16 - 72 UNS, Roller Dia. = ½″. Track L = 2¾″


Table 7-3: Xb = ¾, ¼ + 37/72, ¼ + 38/72, to 1.0 key 3-4 equiv.














36

¾
0.0625

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


37
¼ + 37/72
0.0654
0.0029
0.00073
0.00036
0.00024
0.00008
0.000008


38
¼ + 38/72
0.0683
0.0029
0.00073
0.00036
0.00024
0.00008
0.000008


39
¼ + 39/72
0.0714
0.0031
0.00078
0.00039
0.00026
0.00009
0.000009


40
¼ + 40/72
0.0745
0.0031
0.00077
0.00039
0.00026
0.00009
0.000009


41
¼ + 41/72
0.0777
0.0032
0.00080
0.00040
0.00027
0.00009
0.000009


42
¼ + 42/72
0.0809
0.0032
0.00080
0.00040
0.00027
0.00009
0.000009


43
¼ + 43/72
0.0842
0.0033
0.00082
0.00041
0.00028
0.00009
0.000009


44
¼ + 44/72
0.0876
0.0034
0.00085
0.00043
0.00028
0.00009
0.000009


45
¼ + 45/72
0.0910
0.0034
0.00085
0.00043
0.00028
0.00009
0.000009


46
¼ + 46/72
0.0945
0.0035
0.00088
0.00044
0.00029
0.00010
0.000010


47
¼ + 47/72
0.0981
0.0036
0.00090
0.00045
0.00030
0.00010
0.000010


48
¼ + 48/72
0.1018
0.0037
0.00092
0.00046
0.00031
0.00010
0.000010


49
¼ + 49/72
0.1054
0.0036
0.00090
0.00045
0.00030
0.00010
0.000010


50
¼ + 50/72
0.1092
0.0038
0.00095
0.00048
0.00032
0.00011
0.000011


51
¼ + 51/72
0.1130
0.0038
0.00095
0.00048
0.00032
0.00011
0.000011


52
¼ + 52/72
0.1169
0.0039
0.00098
0.00049
0.00033
0.00011
0.000011


53
¼ + 53/72
0.1209
0.0040
0.00100
0.00050
0.00033
0.00011
0.000011


54

1


0.1250

0.0041
0.00103
0.00051
0.00034
0.00011
0.000011














Average Precision per Crank:


0.003


0.0009


0.0004


0.0003


0.00010


0.000010















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 7-4: Xb = 1.0, ¼ + 55/72, ¼ + 56/72, to 1.25 key 4-5 equiv.















54

1  


0.1250

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


55
¼ + 55/72
0.1308
0.0058
0.00145
0.00073
0.00048
0.00016
0.000016


56
¼ + 5672 
0.1369
0.0061
0.00153
0.00076
0.00051
0.00017
0.000017


57
¼ + 57/72
0.1430
0.0061
0.00153
0.00076
0.00051
0.00017
0.000017


58
¼ + 58/72
0.1493
0.0063
0.00158
0.00079
0.00053
0.00018
0.000018


59
¼ + 59/72
0.1556
0.0063
0.00158
0.00079
0.00053
0.00018
0.000018


60
¼ + 60/72
0.1622
0.0066
0.00165
0.00083
0.00055
0.00018
0.000018


61
¼ + 61/72
0.1688
0.0066
0.00165
0.00082
0.00055
0.00018
0.000018


62
¼ + 62/72
0.1755
0.0067
0.00168
0.00084
0.00056
0.00019
0.000019


63
¼ + 63/72
0.1824
0.0069
0.00173
0.00086
0.00058
0.00019
0.000019


64
¼ + 64/72
0.1894
0.0070
0.00175
0.00088
0.00058
0.00019
0.000019


65
¼ + 65/72
0.1965
0.0071
0.00178
0.00089
0.00059
0.00020
0.000020


66
¼ + 66/72
0.2038
0.0073
0.00183
0.00091
0.00061
0.00020
0.000020


67
¼ + 67/72
0.2111
0.0073
0.00183
0.00091
0.00061
0.00020
0.000020


68
¼ + 68/72
0.2186
0.0075
0.00187
0.00094
0.00062
0.00021
0.000021


69
¼ + 69/72
0.2262
0.0076
0.00190
0.00095
0.00063
0.00021
0.000021


70
¼ + 70/72
0.2339
0.0077
0.00193
0.00096
0.00064
0.00021
0.000021


71
¼ + 71/72
0.2418
0.0079
0.00198
0.00099
0.00066
0.00022
0.000022


72

1.25


0.2500

0.0082
0.00205
0.00103
0.00068
0.00023
0.000023














Average Precision per Crank:


0.007


0.0017


0.0009


0.0006


0.00019


0.000019















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 7-5: Xb = 1.25, ¼ + 73/72, ¼ + 74/72, to 1.5 key 5-6 equiv.















72

1.25


0.2500

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


73
¼ + 73/72
0.2560
0.0060
0.00150
0.00075
0.00050
0.00017
0.000017


74
¼ + 7472 
0.2624
0.0064
0.00160
0.00080
0.00053
0.00018
0.000018


75
¼ + 75/72
0.2688
0.0064
0.00160
0.00080
0.00053
0.00018
0.000018


76
¼ + 76/72
0.2753
0.0065
0.00163
0.00081
0.00054
0.00018
0.000018


77
¼ + 77/72
0.2819
0.0066
0.00165
0.00082
0.00055
0.00018
0.000018


78
¼ + 78/72
0.2885
0.0066
0.00165
0.00082
0.00055
0.00018
0.000018


79
¼ + 79/72
0.2953
0.0068
0.00170
0.00085
0.00057
0.00019
0.000019


80
¼ + 80/72
0.3021
0.0068
0.00170
0.00085
0.00057
0.00019
0.000019


81
¼ + 81/72
0.3090
0.0069
0.00173
0.00086
0.00058
0.00019
0.000019


82
¼ + 82/72
0.3160
0.0070
0.00175
0.00088
0.00058
0.00019
0.000019


83
¼ + 83/72
0.3231
0.0071
0.00178
0.00089
0.00059
0.00020
0.000020


84
¼ + 84/72
0.3302
0.0071
0.00178
0.00089
0.00059
0.00020
0.000020


85
¼ + 85/72
0.3374
0.0072
0.00180
0.00090
0.00060
0.00020
0.000020


86
¼ + 86/72
0.3447
0.0073
0.00183
0.00091
0.00061
0.00020
0.000020


87
¼ + 87/72
0.3521
0.0074
0.00185
0.00093
0.00062
0.00021
0.000021


88
¼ + 88/72
0.3596
0.0075
0.00187
0.00094
0.00062
0.00021
0.000021


89
¼ + 89/72
0.3672
0.0076
0.00190
0.00095
0.00063
0.00021
0.000021


90

1.5


0.3750

0.0078
0.00195
0.00097
0.00065
0.00022
0.000022














Average Precision per Crank:


0.007


0.0017


0.0009


0.0006


0.00019


0.000019















(inch/Full C)
(inch/¼ C)
(inch/⅛C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 7-6: Xb = 1.5, ¼ + 91/72, ¼ + 92/72, to 1.75 key 6-7 equiv.















90

1.5


0.3750

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


91
¼ + 91/72
0.3899
0.0149
0.00373
0.00186
0.00124
0.00041
0.000041


92
¼ + 9272 
0.4052
0.0153
0.00383
0.00191
0.00128
0.00042
0.000042


93
¼ + 93/72
0.4208
0.0156
0.00390
0.00195
0.00130
0.00043
0.000043


94
¼ + 94/72
0.4366
0.0158
0.00395
0.00198
0.00132
0.00044
0.000044


95
¼ + 95/72
0.4516
0.0150
0.00375
0.00188
0.00125
0.00042
0.000042


96
¼ + 96/72
0.4691
0.0175
0.00438
0.00219
0.00146
0.00049
0.000049


97
¼ + 97/72
0.4857
0.0166
0.00415
0.00208
0.00138
0.00046
0.000046


98
¼ + 98/72
0.5026
0.0169
0.00423
0.00211
0.00141
0.00047
0.000047


99
¼ + 99/72
0.5198
0.0172
0.00430
0.00215
0.00143
0.00048
0.000048


100
 ¼ + 100/72
0.5373
0.0175
0.00437
0.00219
0.00146
0.00049
0.000049


101
 ¼ + 101/72
0.5550
0.0177
0.00443
0.00221
0.00148
0.00049
0.000049


102
 ¼ + 102/72
0.5730
0.0180
0.00450
0.00225
0.00150
0.00050
0.000050


103
 ¼ + 103/72
0.5914
0.0184
0.00460
0.00230
0.00153
0.00051
0.000051


104
 ¼ + 104/72
0.6100
0.0186
0.00465
0.00232
0.00155
0.00052
0.000052


105
 ¼ + 105/72
0.6289
0.0189
0.00473
0.00236
0.00158
0.00053
0.000053


106
 ¼ + 106/72
0.6481
0.0192
0.00480
0.00240
0.00160
0.00053
0.000053


107
 ¼ + 107/72
0.6676
0.0195
0.00487
0.00244
0.00163
0.00054
0.000054


108

1.75


0.6875

0.0199
0.00498
0.00249
0.00166
0.00055
0.000055














Average Precision per Crank:


0.017


0.0043


0.0022


0.0014


0.00048


0.000048















(inch/Full C)
(inch/¼ C)
(inch/⅛C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)







Table 7-7: Xb = 1.75, ¼ + 109/72, ¼ + 110/72, to 2.0 key 7-8 equiv.















108

1.75


0.6875

0.0000
0.00000
0.00000
0.00000
0.00000
0.000000


109
¼ + 91/72
0.7032
0.0157
0.00393
0.00196
0.00131
0.00044
0.000044


110
¼ + 9272 
0.7189
0.0157
0.00392
0.00196
0.00131
0.00044
0.000044


111
¼ + 93/72
0.7349
0.0160
0.00400
0.00200
0.00133
0.00044
0.000044


112
¼ + 94/72
0.7511
0.0162
0.00405
0.00203
0.00135
0.00045
0.000045


113
¼ + 95/72
0.7674
0.0163
0.00408
0.00204
0.00136
0.00045
0.000045


114
¼ + 96/72
0.7840
0.0166
0.00415
0.00208
0.00138
0.00046
0.000046


115
¼ + 97/72
0.8008
0.0168
0.00420
0.00210
0.00140
0.00047
0.000047


116
¼ + 98/72
0.8178
0.0170
0.00425
0.00213
0.00142
0.00047
0.000047


117
¼ + 99/72
0.8350
0.0172
0.00430
0.00215
0.00143
0.00048
0.000048


118
 ¼ + 100/72
0.8524
0.0174
0.00435
0.00218
0.00145
0.00048
0.000048


119
 ¼ + 101/72
0.8701
0.0177
0.00442
0.00221
0.00147
0.00049
0.000049


120
 ¼ + 102/72
0.8879
0.0178
0.00445
0.00223
0.00148
0.00049
0.000049


121
 ¼ + 103/72
0.9060
0.0181
0.00453
0.00226
0.00151
0.00050
0.000050


122
 ¼ + 104/72
0.9243
0.0183
0.00458
0.00229
0.00153
0.00051
0.000051


123
 ¼ + 105/72
0.9428
0.0185
0.00462
0.00231
0.00154
0.00051
0.000051


124
 ¼ + 106/72
0.9616
0.0188
0.00470
0.00235
0.00157
0.00052
0.000052


125
 ¼ + 107/72
0.9806
0.0190
0.00475
0.00238
0.00158
0.00053
0.000053


126

2  


1.0000

0.0194
0.00485
0.00243
0.00162
0.00054
0.000054














Average Precision per Crank:


0.017


0.0043


0.0022


0.0014


0.00048


0.000048















(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)

















TABLE 8-1





PEMD Domain and Range Values in Binary Format







PEMD Size Equal to or Larger Than Prototype (Full-Size):












Size


Binary

Binary


nX

PEMD
Domain
PEMD
Range


Value

Domain
Equiv.
Range
Equiv.





nX


2n to 2n+2

0 to 2n+1














.


.
.

.
.


.


.
.

.
.


.


.
.

.
.












5X
5 X Full
32 to 128
25 to 2(5)+2
0 to 64
0 to 2(5)+1


4X
4 X Full
16 to 64 
24 to 2(4)+2
0 to 32
0 to 2(4)+1


3X
3 X Full
8 to 32
23 to 2(3)+2
0 to 16
0 to 2(3)+1


2X
2 X Full
4 to 16
21 to 2(2)+2
0 to 8 
0 to 2(2)+1


1X
Full-Size
2 to 8 
21 to 2(1)+2
0 to 4 
0 to 2(1)+1










PEMD Sizes Smaller Than Full-Size (also referred to as Fractional PEMD):












Size
Binary






n
Size
PEMD
Binary
PEMD
Binary


Value
Value
Domain
Domain Equiv.
Range
Range Equiv.




















DL
DU

RL
RU





.
.

.
.





.
.

.
.





.
.

.
.












n
1/(2n+1)

1/(2n) to 1/(2n−2)

0 to 1/[2 (2n−2)]]














.
.

.
.

.
.


.
.

.
.

.
.


.
.

.
.

.
.












0
1/2 1/2(0)+1
1 to 4
1/[2(0)] to 1/[2(0)−2]
0 to 2
0 to 1/{2 [2(0)−2]}


1
1/4 1/2(1)+1
1/2 to 2
1/[2(1)] to 1/[2(1)−2]
0 to 1
0 to 1/{2 [2(1)−2]}


2
1/8 1/2(2)+1
1/4 to 1
1/[2(2)] to 1/[2(2)−2]
0 to 1/2
0 to 1/{2 [2(2)−2]}


3
1/16 1/2(3)+1
1/8 to 1/2
1/[2(3)] to 1/[2(3)−2]
0 to 1/4
0 to 1/{2 [2(3)−2]}


4
1/32 1/2(4)+1
1/16 to 1/4
1/[2(4)] to 1/[2(4)−2]
0 to 1/8
0 to 1/{2(4)−2]}


5
1/64 1/2(5)+1
1/32 to 1/8
1/[2(5)] to 1/[2(5)−2]
0 to 1/16
0 to 1/{2(5)−2]}


6
1/128
1/64 to 1/16
1/[2(6)] to 1/[2(6)−2]
0 to 1/32
0 to 1/{2(6)−2]}



1/2(6)+1






7
1/256
1/128 to 1/32
1/[2(7)] to 1/[2(7)−2]
0 to 1/64
0 to 1/{2(7)−2]}















1/2(7)+1









.

.
.

.
.



.

.
.

.
.



.

.
.

.
.












n
1/2n+1

1/(2n) to 1/(2n−2)

0 to 1/[2 (2n−2)]
















TABLE 8-2







PEMD Key Scheme & PEM Algorithm Most Significant Digit (MSD) Real


Numbers of Avg. ppc expressed in Power of 10 in Standard Form.









MSD



















Domain
Range
Range
360
90
45
30
10
1



Crank
Lower-Upper
Lower
Upper
2 pi
pi/2
pi/4
pi/6
pi/18
pi/180











Prototype (Full Size) (tpi = 10)

















Key












1-2
 0-10
1-2
−0.75
0.00
−2
−2
−3
−3
−3
−4



2-3

10-20

2-3


0.00

0.25

−2


−3


−3


−3


−4


−5




3-4

20-30

3-4

0.25
0.50

−2


−3


−3


−3


−4


−5




4-5

30-40

4-5

0.50

1.00


−2


−2


−3


−3


−3


−4



5-6
40-50
5-6
1.00
1.50
−2
−2
−2
−3
−3
−4


6-7
50-60
6-7
1.50
2.75
−1
−2
−2
−2
−3
−4


7-8
60-70
7-8
2.75

4.00

−1
−2
−2
−2
−3
−4







Exp.:


−2


−2.67


−3


−3


−3.67


−4.67








PEMD Full Size (tpi = 40)

















1-2
 0-10
1.00-1.25
−0.75
−0.6549
−2
−3
−3
−3
−4
−5


1-2
10-20
1.25-1.50
−0.6549
−0.5
−2
−3
−3
−3
−4
−5


1-2
20-30
1.50-1.75
−0.5
−0.284
−2
−3
−3
−3
−4
−5


1-2
30-40
1.75-2.00
−0.284
0
−2
−3
−3
−3
−4
−5



2-3

40-50
2.00-2.25

0

0.0467

−3


−3


−4


−4


−4


−5




2-3

50-60
2.25-2.50
0.0467
0.1039

−3


−3


−4


−4


−4


−5




2-3

60-70
2.50-2.75
−0.1039
0.1716

−3


−3


−4


−4


−4


−5




2-3

70-80
2.75-3.00
0.1716
0.25

−3


−3


−3


−4


−4


−5




3-4

80-90
3.00-3.25
0.25
0.3044

−3


−3


−4


−4


−4


−5




3-4

 90-100
3.25-3.50
0.3044
0.3642

−3


−3


−4


−4


−4


−5




3-4

100-110
3.50-3.75
0.3642
0.4292

−3


−3


−4


−4


−4


−5




3-4

110-120
3.75-4.00
0.4292
0.5

−3


−3


−4


−4


−4


−5




4-5

120-130
4.00-4.25
0.5
0.6098

−2


−3


−3


−4


−4


−5




4-5

130-140
4.25-4.50
0.6098
0.7296

−2


−3


−3


−3


−4


−5




4-5

140-150
4.50-4.75
0.7296
0.8594

−2


−3


−3


−3


−4


−5




4-5

150-160
4.75-5.00
0.8594
1

−2


−3


−3


−3


−4


−5



5-6
160-170
5.00-5.25

1

1.1142
−2
−3
−3
−3
−4
−5


5-6
170-180
5.25-5.50
1.1142
1.2359
−2
−3
−3
−3
−4
−5


5-6
180-190
5.50-5.75
1.2359
1.3643
−2
−3
−3
−3
−4
−5


5-6
190-200
5.75-6.00
1.3643
1.5
−2
−3
−3
−3
−4
−5


6-7
200-210
6.00-6.25
1.5
1.7786
−2
−3
−3
−3
−4
−5


6-7
210-220
6.25-6.50
1.7786
2.0794
−2
−3
−3
−3
−4
−5


6-7
220-230
6.50-6.75
2.0794
2.4029
−2
−3
−3
−3
−4
−5


6-7
230-240
6.75-7.00
2.4029
2.75
−2
−3
−3
−3
−4
−5


7-8
240-250
7.00-7.25
2.75
3.0368
−2
−3
−3
−3
−4
−5


7-8
250-260
7.25-7.50
3.0368
3.43
−2
−3
−3
−3
−4
−5


7-8
260-270
7.50-7.75
3.34
3.6605
−2
−3
−3
−3
−4
−5


7-8
270-280
7.75-8.00
3.6605

4

−2
−3
−3
−3
−4
−5







Exp.:


−2.67


−3


−3.58


−3.75


−4


−5








½ Size PEMD (tpi = 48)

















Equiv.












Key (to Full)


1-2 eq.
 0-24
0.5-1.0
−0.3750
0.0000
−2
−3
−3
−3
−4
−5



2-3 eq.

24-48
1.0-1.5

0.0000

0.1250

−3


−3


−4


−4


−4


−5




3-4 eq.

48-72
1.5-2.0
0.1250
0.2500

−3


−3


−4


−4


−4


−5




4-5 eq.

72-96
2.0-2.5
0.2500
0.5000

−2


−3


−3


−3


−4


−5




5-6 eq.

 96-120
2.5-3.0
0.5000
0.7500

−2


−3


−3


−3


−4


−5




6-7 eq.

120-144
3.0-3.5
0.7500
1.3750

−2


−3


−3

−3
−4
−5


7-8 eq.
144-168
 3.5-4.0 
1.3750

2.0000

−2
−3
−3
−3
−4
−5







Exp.:


−2.4


−3


−3.4


−3.5


−4


−5








¼ Size PEMD (tpi = 72)

















Equiv.












Key


1-2 eq.
 0-18
¼-½

−0.1875


0.0000

−2
−3
−3
−3
−4
−5



2-3 eq.

18-36
½-¾

0.0000

0.0625

−3


−3


−4


−4


−4


−5




3-4 eq.

36-54
 ¾-1.0
0.0625
0.1250

−3


−3


−4


−4


−4


−5




4-5 eq.

54-72

1.0-1¼

0.1250
0.2500

−3


−3


−3


−4


−4


−5




5-6 eq.

72-90
1¼-1½
0.2500
0.3750

−3


−3


−4


−4


−4


−5




6-7 eq.

 90-108
1½-1¾
0.3750
0.6875

−2


−3


−3


−3


−4


−5




7-8 eq.

108-126
1¾-2.0
0.6875

1.0000


−2


−3


−3


−3


−4


−5








Exp.:


−2.67


−3


−3.5


−3.67


−4


−5

















TABLE 8-3







Binary Fraction and it's Power of 10 Arranged for First (Most)


Significant Digit (MSD) to be First Digit Right of the Decimal


Point for: PEM's Form for Domain & Range (vs. Standard Form)



















PEM


PEMD
Binary
(A): Decimal
(Std.)
A × B =
PEM
Form


n
Fraction
Fraction
B: ×10
(Std. Form)
C: ×10
A × C =
















0
½
0.5000000
−1
5.0000000
0
0.5000000


1
¼
0.2500000
−1
2.5000000
0
0.2500000


2

0.1250000
−1
1.2500000
0
0.1250000


3
1/16
0.0625000
−2
6.2500000
−1
0.6250000


4
1/32
0.0312500
−2
3.1250000
−1
0.3125000


5
1/64
0.0156250
−2
1.5625000
−1
0.1562500


6
1/128
0.0078125
−3
7.8125000
−2
0.7812500


7
1/256
0.0039063
−3
3.9063000
−2
0.3906300


8
1/512
0.0019531
−3
1.9531000
−2
0.1953100


9
1/1024
0.0009766
−4
9.7660000
−3
0.9766000


10
1/2048
0.0004883
−4
4.8830000
−3
0.4883000


11
1/4096
0.0002441
−4
2.4410000
−3
0.2441000


12
1/8192
0.0001221
−4
1.2210000
−3
0.1221000


13
1/16384
0.0000610
−5
6.1000000

−4

0.6100000


14
1/32768
0.0000305
−5
3.0500000

−4

0.3050000


15
1/65536
0.0000153
−5
1.5300000

−4

0.1530000


16
1/131072
0.0000076
−6
7.6000000
−5
0.7600000


17
1/262144
0.0000038
−6
3.8000000
−5
0.3800000


18
1/524288
0.0000019
−6
1.9000000
−5
0.1900000


19
1/1048576
0.0000010
−6
1.0000000
−5
0.1000000


20
1/2097152
0.0000005
−7
5.0000000

−6

0.5000000


21
1/4194304
0.0000002
−7
2.0000000
−6
0.2000000


22
1/8388608
0.0000001
−7
1.0000000
−6
0.1000000










23
1/16777216
0.0000001
Error:





n = 23 exceeds spreadsheet's accumulator
















TABLE 8-4





Sample Calculation for Hydrogen (H2):


Find Niels Bohr's H2 Electron Orbital Radius (R) Value Using PEM















H2 Radius = 5.29 × 10−11 meters or H2 Radius = Target (T) = 0 . 20 86 61 ×


10−8 in inches.


Using Table 8-3 to convert H2 to PEM Binary Fraction Size from PEM


Size in Power of 10 using PEM Form, select a convenient/known PEMD


“n” value and known exponent value for “Binary-Sizing & Finding H2


PEMD ‘n’ Value” by simple ratio calculation:


On Table 8-3 (Page 85), select PEMD “n” Column for n = 20 and


exponent = −6 fromPEM Form Column “C” for MSD just right of the


decimal:











20

-
6


=



n



-
8



,

use





inch





value





for





Bohr





Radius






exponent
.











(−6) “n” = 20(−8)


“n” = 27, use rounded whole number of ratio result.









Hydrogen PEMD “n” value=27. Using Table 8-1, General Expression for Equivalent Binary Domain and Binary Range, and using H2 Radius Value as an Example Target (T) Value, Bohr's H2 infinitesimal Radius Value is estimated using PEM Algorithm to to demonstrate and set-up pi estimating math scheme for atomic, Subatomic and beyond. Fractional PEMD uses the following PEM Math Process for effecting a PEM Computer Control Unit (See FIG. 6) which obeys PEM Algorithm for micro-miniature targets. Fractional PEM (See Table 8-1 for Fractional Meaning, Page 82) Computer Interface and Fractional PEM Displacement Device are not discussed but are within current industry art. Computer Methods will require super-computing for unbounded expressions but methods permit repeatable techniques for estimating (e.g.) quantum strings and beyond. Using Binary Domain and Range, coupled with PEM Algorithm for estimating displacements, allow ‘repeating’ a Target's quantum space with greater probability and lessens uncertainty that particles will occur within a PEMD's Target domain and range. Owing to PEM's truncated pi displacement operations, estimates reach very close to actual values. Although Fractional PEM Interface and Device exceed the scope of this Utility Application, PEM Algorithm which are integral to Quarter, Half, and Full-Size PEMD (and greater) are actually essential for ‘all’ PEMD. Software control presented in word algorithm format and basic diagram only (FIG. 6) for Fractional PEMD (mainly <Quarter-Size PEMD) are essential for PEM Process and are integral to this Utility Application. The following Math Process uses pi estimating method (PEM) which essentially integrates PEM Algorithm and Avg. ppc Tables for the H2 Example given. Methods supplement and are submitted equally with, PEM and Device (PEMD) for precision displacement approximations.


Lower Boundary (DL) of H2's Binary Domain (D), n=27, is:







1

(

2
n

)


=


1

(

2
27

)


=

1

1.34







(
10
)

8












D
L

=

0.74





62





69







(
10
)


-
8




,

PEM





Form

,


Ref
.




Table






8


-


3.





Upper Boundary (DU) of H2's Binary Domain (D), n=27, is:







1

(

2

n
-
2


)


=


1

(

2
25

)


=

1

3.36







(
10
)

7












D
U

=

0.29





76





19







(
10
)


-
7




,

Table





8


-


1





for





Format





Lower Boundary (RL) of H2's Binary Range (R) is =“0”. Value is zero owing to PEMD being ‘leveled or plumb’ for starting displacements. Hence equivalents to Prototype PEMD Domain ‘Key’ for “1 to 2” or (1-2 equiv.) are values omitted for finding Target Displacements.






R
L=0.0.


Upper Boundary (RU) of H2's Binary Range (R) from Table 8-1, n=27, is:







1

[

2


(

2

n
-
2


)


]


=


1

2


(

2
25

)



=

1

2


(
3.36




)








(
10
)

7











R
U

=

0.14





88





10







(
10
)


-
7







Note: Confidence Check:

“Full” Range versus “Full” Domain Upper Values: RU are one half DU in all “Binary” PEM Key Schemes:










Hence







D
U

/
2


=




[

0.297619







(
10
)


-
7



]

/
2







=



0.148810







(
10
)


-
7









=




R
U

.








Check

Knowing Target Domain and Range ‘Boundary’ Values of Hydrogen (H2), and in a sense, working in reverse, in that, a PEMD's binary displacements used for atomic displacements are not governed by physical dimensions dictated by user packaging constraints, Average Displacement per Crank (C) becomes Average Displacement per Circumference (C) or 2 pi, without loss of meaning for fractional Crank (Key Scheme used with Full-Size PEMD).


A Table 8-4 is ‘set-up’ for working in reverse, using Binary H2, n=27 (PEM Math Equivalence), to estimate fractional displacement, and using Table 8-1 for finding DL, DU, RL, and RU Values above. By Prototype Key Scheme, PEM Calculations for “Average Precision per Circumference (C)” are made for H2's Avg. ppc Table. The result is Table 8-5, Page 96. H2 Domain and Range Values are congruent with Key pi Intervals and Divisions for simulated ‘Full-Size’ pi estimated equivalency (outlined on Table 8-4 set-up).


From above upper range value (RU) repeated below, find Mid- and Qtr.-Range Values that fall in Prototype ‘KEY’ Domain Intervals: 2-3, 3-4, 4-5, 5-6, 6-7 or 7-8.






R
U=0.148810(10)−7, n=27.


Mid-range for RU=(RU−0)/2 locates pi angle 78.69 degrees, shown below. And RU/2=Mid-Range=0.074405(10)−7 or 0.74405(10)−8 (PEM Form, ref. Table 8-3). A PEM n=27 Mid-Range Value is near and >T. A PEM Mid-Range is at Key 4-5 and 5-6 boundary or at I3 and I4 Boundary, respectively. Hence, H2 Range Target (T) Value is <n=27 Mid-Range Value at Interval 3's (I3's) Upper Boundary, using upper boundary Range Reference and observing that T is Not in Domain Key 5-6.


Mid-Range of n=27 RU must be further divided to determine if T is less than or greater than another pi boundary. Mid-Range/2=¼ RU and recognizing proportionality of pi's Full-Size PEMD Equivalency (Yb), Mid-Range PEM Intervals are I1+I2+I3=I4+I5+I6. Obeying and following PEM Full-Size Scheme: I1+I2 and I3 (by itself) are ¼ RU—see Table 8-4 below. So that PEM Intervals divide according to arc length measurements using pi, ¼ RU is located at Pi Interval=82.87 degrees and is I3 lower boundary.


Therefore, relative to 6 pi intervals and RU, PEM Quarter-Range n=27 (relative to upper boundary value) is I3 (4-5 equiv.) in order to be equivalent to Pi Intervals and Boundary Pi Angles, that obey PEM. At 82.87 Degrees, find I3 lower ‘Domain’ boundary and at 78.69 Degrees, find I3 upper ‘Domain’ Boundary, discussed further in next paragraph.









TABLE 8-4





H2 Domain Intervals Using PEM Scheme









embedded image











Domain Interval that corresponds to the above Range Interval (I3) occurs between Pi Boundaries: 82.87 degrees and 78.69 degrees and shown below:








82.87






deg
.




78.69







deg
.






|



|



|

I





3

|



|



|



|





D
L


=



0.74





62





69







(
10
)


-
8







|



|



|



|





0.29





76





19







(
10
)


-
7




=


D
U





|



|



|









x
b

=



PEM





Intervals







=






(


D
U

-

D
L


)

/
6






Intervals

-










which





correspond





to





7





angles







(
Pi
)

/
#







above
.








=




2.97





62







(
10
)


-
8



-

0.74





63








(
10
)


-
8


/
6









=



2.22





99





21








(
10
)


-
8


/
6








=



0.37





16





54







(
10
)


-
8







per





pi





degree






interval
.










|

I





1

|

I





2

|

I





3

|

|

|

|






Domain Increments will correspond to the pi range increments. Divisions will be equal for all intervals and by example, are equal to 101 or 10. Therefore, each Xb change is [0.371654(10)−8]/10 or 0.037166(10)−8.


Note:

The nice part of Computer Simulation allows selection of divisions within Pi Intervals that do not have to obey threads per inch or TPI. Hence, for Math convenience, select power of 10 and initially select 101 or 10 divisions within Pi Intervals for Math ease. Therefore, Xb=0.371654(10)−8 will be divided 10 times or each increment=0.037165(10)−8. It should be noticed that unlimited 10n subdivisions are available for infinite increments of Xb used in Equation 2-1 calculations for pi estimated (PEM) displacements and are only limited by how close ‘estimate’ values are intended to approximate ‘target’ values.


Find the H2 Domain Values which identify fractional Pi (expressed in degrees) Increments (Inc.) used for calculating displacement (Yb), using Equation 2-1:






|

I





1

|

I





2

|

I





3

|

I





4

|

I





5

|

I





6

|





Interval


:






0





10





20





30





40





50





60







(

Crank





Equivalent

)







(
10
)

1










Inc
.

(
20
)


=




D
L

+

20




[

Increments






(

Inc
.

)


]








=




0.746269







(
10
)


-
8



+


20




[

0.037165







(
10
)


-
8



]






of





I





3.









=



1.48





95





69







(
10
)


-
8




,









value





is





the





domain





lower





boundry






(

D
L

)






of





I





3.














Inc
.





(
21
)


=




D
L

+

21
×

[

0.03





71





65







(
10
)


-
8



]









=



1.52





67





34







(
10
)


-
8







of





I





3.














Inc
.





(
22
)


=




D
L

+

22
×

[

0.03





71





65







(
10
)


-
8



]









=



1.56





38





99







(
10
)


-
8







of





I





3.














Inc
.





(
23
)


=




D
L

+

23
×

[

0.03





71





65







(
10
)


-
8



]









=



1.60





10





64







(
10
)


-
8







of





I





3.














Inc
.





(
24
)


=




D
L

+

24
×

[

0.03





71





65







(
10
)


-
8



]









=



1.63





82





29







(
10
)


-
8







of





I





3.














Inc
.





(
25
)


=




D
L

+

25
×

[

0.03





71





65







(
10
)


-
8



]









=



1.67





53





94







(
10
)


-
8







of





I





3.














Inc
.





(
26
)


=




D
L

+

26
×

[

0.03





71





65







(
10
)


-
8



]









=



1.71





55





59







(
10
)


-
8







of





I





3.














Inc
.





(
27
)


=




D
L

+

27
×

[

0.03





71





65







(
10
)


-
8



]









=



1.74





97





24







(
10
)


-
8







of





I





3.














Inc
.





(
28
)


=




D
L

+

28
×

[

0.03





71





65







(
10
)


-
8



]









=



1.78





68





89







(
10
)


-
8







of





I





3.














Inc
.





(
29
)


=




D
L

+

29
×

[

0.03





71





65







(
10
)


-
8



]









=



1.82





40





54







(
10
)


-
8







of





I





3.














Inc
.





(
30
)


=




D
L

+

30
×

[

0.03





71





65







(
10
)


-
8



]









=



1.86





12





19







(
10
)


-
8




D
U






of





I





3.








Range Interval that corresponds to the above Domain Increments occur between Equivalent Pi Boundaries: 82.87 degrees and 78.69 degrees. Domain Degree Intervals must be mathematically congruent with the same Increments used in Domain Intervals. For math ease, power of 10 was chosen, exponent=to 1, or 10 divisions. Therefore:








82.87
-
78.69


10
1


=

0.418





degrees





per





increment





for





I





3.





I3 Range Increments (Crank/Rev. equivalents) and corresponding pi increments are:












Increment vs. Pi (degree)








20/82.870



21/82.452


22/82.034


23/81.616


24/81.198


25/80.780


26/80.362


27/79.944


28/79.526


29/79.108



30/78.690










With Interval Xb Values and corresponding Interval Pi Values above, using Equation 2-1, Avg. ppc are calculated and listed on Table 8-5, Page 95, for PEM H2 Values. It should be realized that Avg. ppc Tables for all Key Interval Schemes could have been computed instead of the above method which locates the specific Avg. ppc Table for H2. By computing all Avg. ppc Tables for PEM (10)−8 and then searching for nearest value (less than) of H2 identifies which Key Interval contains Bohr's Value−Target (T) Value. The above method allows one to go directly to the Crank Number (Number of Circumferences) or Number of Revolutions to find a math equivalent displacement for further evaluation by PEM Algorithm's value approximation. On Table 8-5 Sample Calculations Page 96, using PEM Algorithm, Bohr's Radius is estimated.


Notice that T−E is 10 one-millionths accurate. By doubling pi truncation to 12 digits and expanding domain interval divisions for 102 increments, and expanding the methods of PEM Algorithm—for example: 7th & 8th digit Accuracy, 9th & 10th Digit Accuracy, and 11th & 12th Digit Accuracy using Partials ‘D’ for Fourth, ‘E’ for Fifth and ‘F’ for Sixth Partial pi Estimate Scheme (See PEM Algorithm, Page 33), respectively, to achieve 12 digit truncations, improves T−E error estimate. For even greater accuracy, more increments within Intervals are necessary. It should be noticed that a continuous set of real numbers can be used for 10n increments within Domain Intervals. As ‘n’ approaches a very large number (say toward ∞), and recognizing pi's irrational property of never ending (say pi truncations approaching ∞, and never repeating values), Equation 2, using PEM Key Scheme and pi estimating Methods, in general, can produce accurate, repeatable, approximations for displacement values that go beyond atomic, beyond subatomic, beyond quantum and beyond—beyond (e.g.: to the depths of the darkest black hole in space, and possibly, without ending). Exactness of Target Results become only limited by the computational capacity of super-computer use, and of course, cost.









TABLE 8-5





H2 Confidence Check







Refer to Table 8-4 Row entitled: Full-Size PEM “Yb”, find I3 Displacement


Values and other proportional equivalents in ‘binary magnitudes’ for each Equivalent Key Scheme,


for Binary Domain and Range Intervals, for PEM Device computer simulation using pi estimating:




embedded image











Rough estimates above are used to verify that PEM approximations will simulate Full-Size PEM device magnitudes in relative proportions to micro-miniature Fractional PEM and equally obey Full Size displacement proportionality. Rough Estimates are compared to Binary Yb calculated using PEM of Equation 2-1 and Key Scheme, Ref. Table 8-4.


For example: 6/16 times 4″ is 24/16 or 1.5″ Displacement for Full-Size PEMD. The fractional PEM ( 6/16) times the upper boundary—Full Range—of H2's RU, n=27, is compared to Yb calculation at Increment 40, Interval 4, Key Scheme Equivalent (5-6) for PEMD proportionality using pi estimating with PEM Key Scheme and simulated for equivalent results of math values compared to base values established by Prototype Device obeying PEM. Both rough and PEM Eq. 2-1 methods provide agreement. Scheme behavior in atomic space holds.









TABLE 8-5







Average Precision per Crank (Avg. ppc), All Values Multipied by Power of 10, Exponent = −8


















Precision
Precision
Pecision
Precision
Precision
Precision


(C)


Per Full C
Per ¼ C
Per ⅛ C
Per 1/12 C
Per 1/36 C
1/360 C


Full 360/C
Xb
Yb
(360 deg)
(90 deg)
(45 deg)
(30 deg)
(10 deg)
(1 degree)







Xb = 4.0 to 5.0 Equiv.


















20

1.489569


0.186329

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000


21
1.526734
0.202299
0.015971
0.003993
0.001996
0.001331
0.000444
0.000044


22
1.563899
0.218845
0.016546
0.004137
0.002068
0.001379
0.000460
0.000046


23
1.601064
0.235968
0.017123
0.004281
0.002140
0.001427
0.000476
0.000048


24
1.638229
0.253670
0.017702
0.004426
0.002213
0.001475
0.000492
0.000049


25
1.675394
0.271955
0.018285
0.004571
0.002286
0.001524
0.000508
0.000051


26
1.715559
0.291336
0.019381
0.004845
0.002423
0.001615
0.000538
0.000054


27
1.749724
0.310287
0.018951
0.004738
0.002369
0.001579
0.000526
0.000053


28
1.786889
0.330342
0.020055
0.005014
0.002507
0.001671
0.000557
0.000056


29
1.824054
0.350993
0.020651
0.005163
0.002581
0.001721
0.000574
0.000057


30

1.861219


0.372246

0.021253
0.005313
0.002657
0.001771
0.000590
0.000059














Average Precision per Crank:


0.018592


0.004648


0.002324


0.001549


0.000516


0.000052




(inch/Full C)
(inch/¼ C)
(inch/⅛ C)
(inch/ 1/12 C)
(inch/ 1/36 C)
(inch/ 1/360 C)
















TABLE 8-5





Sample Calculation


Find Hydrogen Radius by PEM Algorithm


















Hydrogen Target, All Values times Power of 10
R
=
0. 208661


with Exponents = −8 and Pi Truncated to 6 Digits





for Values of Y





(1) A = First Partial of pi estimate Tables 8-5:
C 21
=
0. 202299




(minus)



(2) ‘Target Value’ (T) minus ‘Crank (C) Value’
T − C Result
=

0.

00


63


62












(3) At Table 8-5
½ pi
= C/4
Avg. ppc = 1 × 0.004648 or 0. 004648 < 0. 0063



¼ pi
= C/8
Avg. ppc = 2 × 0.002324 or 0. 004648 < 0. 0063



⅙ pi
= C/12
Avg. ppc = 4 × 0.001549 or 0. 006196 < 0. 0063



1/18 pi
= C/36
Avg. ppc = 12 × 0.000516 or 0. 006192 < 0. 0063











(4) Select C/12 = 0. 001549
C/12
=
0. 001549



(5) Find Multiples of C/12
4 Multiples
=
× 4











(6) B = Second Partial pi Estimate
=

0.

00


61


96










(7) Add both Partials (A + B) and subtract from Target (T):












A
=
0. 20 22 99
Target
=
0. 20 86 61


B
=
0. 00 61 96
(A + B)
=
0. 20 84 95


(A + B)
=
0. 20 84 95

(minus)












T − (A + B) Result
=
0. 000166.









(8) Compare T − (A + B) Result




to Table 8-5's C/360's “Avg. ppc




or 5th & 6th Digit Accuracy”:













T − (A + B) Result
=
0. 00 01 66



Avg. ppc C/360
=

0.
00
00
52










(9) 3 × [0.000052]
=
0. 00 01 56 < 0. 00 01 66.










(10) Select. Multiple M (3).
C = Third Partial pi Estimate
=

0.
00
01
56








(11) Show PEM Estimated Value for Target Value by sum of all partials:












Partial A
(1st)

0. 20 22 99




Partial B
(2nd)

0. 00 61 96




Partial C
(3rd)
+
0. 00 01 56












PEM Value Equals:

0.

20


86


51


for
Target 0.208661











[pi Estimated (E)]

[actual/Target value (T)]







T − E = 0.000010









To avoid Specification Fragmentation, it is recommended that the ‘entire’ Specification (Pages 1 to 98) be read for complete Detailed Descriptions, in that, essential detail are intermingled throughout and further supplements methods used in PEM Algorithm of this utility application. Only when repetition occurs, emphasis or clarity are intended.







Postscript





for





Miscellaneous






Legend
:




Pi


=
Π






Truncation






(

10

-
n


)







n
=

:

1





2





3





4





5





6





7





8





9





10





11





12








Pi
=


(

3.



1





4

_








1





5

_








9





2

_








6





5

_








3





5

_








8





9

_


)

×

10
0






Standard





Form







Pi
=


(
0.314159265358
)

×

10
1






PEM





Form








Year


:







2011
10


=




1

2
10





1

2
9





1

2
8





1

2
7





1

2
6





0

2
5





1

2
4





1

2
3





0

2
2






1



2
1






1
2


2
0












(

base





10

)



(

base





2

)








Π
-

Day


:






3


-


14





symbolizes





March





14


,

Π
-

Day
.





Claims
  • 1. PEM Algorithm is an original and unique Math Process that utilizes the set of all real numbers in a bounded binary domain, and when combined with pi's ability for infinite truncations, without repeating values, original PEM Equation 2 allow computed binary range values in a restricted arc segment Partition, such that, User-defined Precisions for accurate (target) displacement approximations are integrally obtained by PEM Average Precision per Circumference or Crank (Avg. ppc) Tables specifically constructed for use with PEM Algorithm to either Control an external Device (D) or to support operation of PEM Device(D) or Hardware (PEMD) Operations.
  • 2. Once a PEMD's size is determined and its corresponding Average Precision per Crank (Avg. ppc) Table is constructed for an intended device's Target (T) Range(s), an ornamental PEMD can be fabricated for its intended PEM Tables, such that, a hardware device will be an original device functioning as a self-contained unit, a pi device, a binary device, which will pi estimate displacement by operation of its mechanism.
  • 3. PEM Algorithm can yield precise approximations for displacements within extremely small (>minus infinity) target/goal-value, binary ranges & domains, to extremely large (<positive infinity) target/goal-value, binary ranges & domains, using predetermined user specified precisions in Algorithm usage of pi estimating method (PEM) for results limited only by the arithmetic unit capacities of super-computers, by the concatenation of their links, and/or by budget restrictions.