This disclosure relates to pianos playable in both acoustic and silent modes.
The acoustic piano employs distinct and separate systems to transfer energy from a finger or actuator input force into an auditory, vibrational force. The transmission system, commonly called the action, is a network of levers, cushions and hammers which accept finger/actuator input force through a collection of pivotal levers, known as keys. The keys and action focus this input force into rotating hammers of proportional density which are positioned to strike against tensioned wire strings. Both hammers and their corresponding strings are carefully constructed to match their acoustic properties, resulting in a tapered or graduated “scale” of components which cumulatively produce a multiple note span of musical frequencies. The strings act as media through which vibrational energy is transferred into an amplifier such as a soundboard, or electric speaker, where it ultimately is converted into audible sound.
Pianos can produce a wide range of volume. Large pianos can further expand this range to include very loud sounds, as heard in concert pianos which are expected to broadcast over an orchestra without the assistance of electric amplification. Pianos are prevalent in many cultures worldwide. They are present in many households, schools, institutions etc. Inevitably, this proximity of volume producing instruments creates situations where sound control and reduction are necessary. Many piano manufacturers have provided muting mechanisms within the piano to selectively restrict its volume level. These mechanisms typically include a rotating rail which inserts an impact-absorbing material of varying density between the hammers and strings. One conventional (prior art) mute rail system 10, as shown in
Other conventional (prior art) systems, such as the mute rail system 20 shown in
Conventional mute rail systems often require ample space within the confined action cavity, in order to achieve their full rotation. The extra space is achieved along a vertical, horizontal, or depth axis, creating challenges for installation, structural stability, and long term performance consistency.
In one aspect, a piano, playable in an acoustic mode and a silent mode, includes a series of keys, a series of key actions, and a series of rotatable hammers. Each key action is actuated by depression of a corresponding key. Each hammer defines a forward throw direction and has a corresponding string. The hammers are driven by corresponding key actions transferring forces from corresponding keys. The piano includes a hammer stopper system that has a blocking rail slidably disposed forward of the hammers. A linear actuator moves the blocking rail along a substantially linear path between a first position, allowing unobstructed movement of the hammers, and a second position blocking at least one hammer from striking its corresponding string. The linear actuator moves the blocking rail to the first position for acoustic play and to the second position for silent play.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the linear actuator includes an actuator rail rotatably disposed behind the hammers and at least one linkage assembly coupled to the actuator rail and the blocking rail for moving the blocking rail between the first position, allowing unobstructed movement of hammers of the piano, and the second position blocking at least one hammer from striking a corresponding string. The actuator rail is rotatable between a first position and a second position. In some examples, the linkage assembly includes a first link attached to the actuator rail and a second link pivotally coupled to the first link and to the blocking rail. In some implementations, the linear actuator includes at least one linear guide guiding movement of the blocking rail and an actuator rail rotatably disposed behind the hammers. The actuator rail is rotatable among a first position and a second position. At least one leash attaches the actuator rail to the blocking rail. The leash is arranged to translate rotation of the actuator rail to the blocking rail for moving the blocking rail between its first and second positions. The linear guide may include a telescoping guide having first and second ends. The first end of the telescoping guide is rotatably attached to the actuator rail, and the second end is attached to the blocking rail. Rotation of the actuator rail from its first position to its second position moves the attached leash about the actuator rail, pulling the blocking rail towards the actuator rail. In some examples, the leash passes between the blocking rail and the actuator rail through a passageway defined through the telescoping guide. In some implementations, the leash is a strap or a cord having several strands braided, twisted, or woven together.
In some implementations, the linear actuator includes first and second counteracting rail actuators. The first rail actuator moves the blocking rail to its first position, and the second rail actuator moves the blocking rail to its second position. A spring may be used to bias the blocking rail toward its first position. In other implementations, the linear actuator is a solenoid or a pneumatic actuator (e.g. with a spring actuated return stroke).
In another aspect, a piano, playable in an acoustic mode and a silent mode, includes a series of keys, a series of key actions, and a series of rotatable hammers. Each key action is actuated by depression of a corresponding key. Each hammer defines a forward throw direction and has a corresponding string. The hammers are driven by corresponding key actions transferring forces from corresponding keys. An actuator rail is rotatably disposed behind the hammers and is rotatable among a first position and a second position. At least one linear guide is rotatably attached over the actuator rail. A blocking rail is disposed forward of the hammers and is attached to the linear guide for moving along a substantially linear path among a first position, allowing unobstructed movement of the hammers, and a second position blocking at least one hammer from striking its corresponding string. At least one leash attaches the actuator rail to the blocking rail. The leash is arranged to translate rotation of the actuator rail to the blocking rail for moving the blocking rail between its first and second positions. The actuator rail is rotated to its first position for acoustic play and its second position for silent play.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the linear guide includes a telescoping guide having first and second ends. The first end of the telescoping guide is rotatably attached to the actuator rail, and the second end is attached to the blocking rail. Rotation of the actuator rail from its first position to its second position moves the attached leash about the actuator rail, pulling the blocking rail towards the actuator rail. A spring may be used to bias the blocking rail toward its first position. In some examples, the leash passes between the blocking rail and the actuator rail through a passageway defined through the telescoping guide. In some implementations, the leash is a strap or a cord having several strands braided, twisted, or woven together.
In some implementations, the piano includes a rail rotator configured to rotate the actuator rail between its first and second positions. In some examples, the rail rotator includes a lever attached to the actuator rail and a link attaching the lever to a pedal of the piano. Actuation of the piano pedal toggles the actuator rail among the first and second positions. In other examples, the rail rotator includes at least one solenoid driving a linkage attached to the actuator rail, or a motor coupled to the actuator rail.
In yet another aspect, a piano, playable in an acoustic mode and a silent mode, includes a series of keys, a series of key actions, and a series of rotatable hammers. Each key action is actuated by depression of a corresponding key. Each hammer defines a forward throw direction and has a corresponding string. The hammers are driven by corresponding key actions transferring forces from corresponding keys. The piano includes a hammer stopper system which includes an actuator rail rotatably disposed behind the hammers and a blocking rail rotatably disposed forward of the hammers. The actuator rail and the blocking rail are each rotatable among a first position and a second position. One or more leashes are secured to the actuator rail. Each leash is arranged to translate rotation of the actuator rail to the blocking rail. The blocking rail stops at least one hammer from striking a corresponding string when the blocking rail is rotated from the first position to the second position. The actuator rail is rotated to its first position for acoustic play and its second position for silent play.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the leash has first and second ends both secured to the actuator rail with the leash looping around the blocking rail. In other examples, the leash has first and second ends, where the first end of the leash is secured to the actuator rail and the second end of the leash is secured to the blocking rail. The leash may be a cord having several strands braided, twisted, or woven together. The piano may include at least one leash adjustment screw disposed on the actuator rail and configured to adjust a length of the associated leash.
The piano includes a rail rotator configured to rotate the actuator rail between its first and second positions. In some examples, the rail rotator includes a lever attached to the actuator rail and a link attaching the lever to a pedal of the piano. Actuation of the piano pedal toggles the actuator rail among the first and second positions. In other examples, the rail rotator includes at least one solenoid driving a linkage attached to the actuator rail, or a motor coupled to the actuator rail.
Implementations of the above aspects of the disclosure may include one or more of the following features. The piano, in some examples, includes a mode selection switch in communication with the linear actuator and controlling movement of the blocking rail among the first and second positions. A pedal of the piano engages the mode selection switch.
In some implementations, the piano includes a controller in communication with the linear actuator for controlling switching among the acoustic play mode and the silent play mode. The controller includes a controller housing, circuitry carried by the controller housing, and a display in communication with the circuitry. The controller may also include a disk drive. The controller housing is slidably attached below a keyboard portion of the piano, such that the controller housing slides among a stowed position and a deployed position. In some examples, the display is a touch screen.
In another aspect, a hammer stopper system for a piano includes a blocking rail, at least one linear guide attached to the blocking rail, an actuator rail rotatably coupled to the linear guide, and at least one leash attaching the actuator rail to the blocking rail. The actuator rail is rotatable among a first position and a second position. The leash is arranged to translate rotation of the actuator rail to the blocking rail for moving the blocking rail between a first position, allowing unobstructed movement of hammers of the piano, and a second position blocking at least one hammer from striking a corresponding string.
Implementations of this aspect of the disclosure may include one or more of the following features. In some implementations, the at least one linear guide includes a telescoping guide having first and second ends. The first end of the telescoping guide is rotatably attached to the actuator rail, the second end is attached to the blocking rail. Rotation of the actuator rail from its first position to its second position winds the attached leash about the actuator rail, pulling the blocking rail towards the actuator rail. In some examples, the leash passes between the blocking rail and the actuator rail through a passageway defined through the telescoping guide. A spring may bias the blocking rail toward its first position. In some implementations, the leash is a strap or a cord having several strands braided, twisted, or woven together.
In another aspect, a hammer stopper system for a piano including a blocking rail, and a linear actuator configured to move the blocking rail between a first position, allowing unobstructed movement of piano hammers, and a second position blocking at least one hammer from striking its corresponding string. The linear actuator including an actuator rail being rotatable between a first position and a second position, and at least one linkage assembly coupled to the actuator rail and the blocking rail for moving the blocking rail between the first position, allowing unobstructed movement of piano hammers, and the second position blocking at least one hammer from striking a corresponding string. The linear actuator moves the blocking rail to the first position for acoustic play and to the second position for silent play. In some implementations, the linkage assembly includes a first link attached to the actuator rail and a second link pivotally coupled to the first link and to the blocking rail. In some examples, the hammer stopper system includes a spring that biases the blocking rail toward its first position.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
The present disclosure provides a hammer stopper system that may be incorporated in upright and horizontal pianos. In some configurations, as described below, the hammer stopper system can be retrofit into existing pianos, and/or removed for ease of maintenance.
Referring to
Each hammer 130 includes a hammer shank 132, a butt 134 attached to a first end 131 of the shank 132, and a hammer head 136 attached to an opposite, second end 133 of the shank 132. A depressed or actuated key 110 causes a jack 122 of the associated key action 120 to kick the butt 134 of the hammer 130. When the jack 122 kicks the butt 134, the butt 134 and the hammer shank 132 are driven for rotation toward the associated strings 140. The hammer head 136 strikes the string(s) 140, producing an acoustic sound. When the keys 110 are in a rest position (e.g. when a player is not pressing the keys 110), the hammers 130 remain in home positions, resting on a hammer resting rail 138.
A hammer stopper system 200, an example of which is shown in
In some implementations, the linear actuator includes at least one linear guide 230 guiding movement of the blocking rail 210, and an actuator rail 240 rotatably disposed behind the hammers 130 and substantially perpendicular to the throw direction T of the hammers 130. The actuator rail 240 is rotatable among a first position and a second position. At least one leash 250 attaches the actuator rail 240 to the blocking rail 210. The leash 250 is arranged to translate rotation of the actuator rail 240 to the blocking rail 210 for moving the blocking rail 210 between its first and second positions. Multiple actuator rails 240 may be disposed in the piano 100, where each actuator rail 240 stops only a certain number of hammers 130 of piano 100. In some implementations, the actuator rail 240 is located proximate the hammer resting rail 138. In one example, the actuator rail 240 is located above the hammer resting rail 138 and in the vicinity of the resting hammer heads 136. The actuator rail 240 is rotated among a first position for acoustic play and at least one second position for silent play by a rotator or actuator 260 coupled to the actuator rail 240. The rotator 260 may be a linear or rotary solenoid, stepper or servo motor, thumb lever, linked piano pedal, or other suitable means. In some implementations, the rotator 260 is bi-directionally rotatable. In one example, the rotator 260 is an ultrasonic motor, which is capable of maintaining the actuator rail 240 at any rotational position without a current to the ultrasonic motor and quickly rotating without backlash.
In the examples illustrated in
The hammer stopper system 200 can be configured to be removably installed in both upright and horizontal pianos 100. In the example illustrated in
Referring to
One or more leashes 220 are secured to the actuator rail 240. In some implementations, the leash 250 has first and second ends 251 and 253, respectively, both secured to the actuator rail 240, and loops around the blocking rail 210. In other implementations, the first end 221 of the leash 250 is secured to the actuator rail 240 and the opposite, second end 223 is secured to the blocking rail 210. In one example, the leash 250 is a cord or strap having several strands braided, twisted, or woven together. In another example, the leash 250 is a single mono-filament. In yet another example, the leash 250 is a molded strap.
In the example illustrated in
Referring to
Referring to
The leash 250 is secured to a flange 246, in some examples, which aids assembly/service by holding the leash 250 in a correct position and prevents leash slippage during piano use. In some implementations, the actuator rail 240 includes a leash adjustment screw 246 attached to an associated leash 250. Adjustment of the leash adjustment screw 246 varies a leash length, which varies a stopping position of the associated blocking rail 210. Adjusting the hammer stopping position to be as close as possible to the strings 140 without touching the strings 140 minimizes degradation of piano key touch. In the example shown, an outer cap 248 disposed over the leash 250 and the actuator rail 240 stiffens the actuator rail 240 against impact forces and clamps the leash 250 in place by one or more screws 249 spaced at regular intervals along the actuator rail 240. In some implementations, leash servicing can also be done by sections, by moving an entire actuator rail 240. This can be done by inserting (or removing) shims between the action bracket 126 and the rail mounting bracket 280, thereby moving the entire actuator rail 240 toward or away from the hammers 130.
After a period of use, the leash(es) 250 may stretch, thereby potentially allowing the hammers 130 to strike the strings 140 during the silent play mode. Servicing the leash 250 entails loosening the outer cap 248, repositioning the leash 250 to the appropriate length, and re-securing the outer cap 248 to the actuator rail 240. If the actuator rail 240 includes a leash adjustment screw 246, the leash adjustment screw 246 is rotated to change the effective length of the associated leash 250.
Another method of altering the leash length is by adding a length altering leash accessory 300, as illustrated in
During piano play, the key actions 120 drive associated hammers 130 for rotation as the jack 122 kicks the hammer 130. The hammers 130 travel from resting positions on the hammer resting rail 138 toward strike positions at the associated strings 140. During the acoustic play mode, the actuator rail 240 is rotated to the first rail position, which unwinds the leash 250 from the actuate rail 250, thereby effectively lengthening the leash 250 and allowing the hammers 130 to strike the strings 140. During silent play mode, the actuator rail 240 is rotated to the second rail position, winding the leash 250 about the actuator rail 240 and effectively shortening the leash 250. The shortened leash 250 pulls the blocking rail 210 toward the actuator rail 240 to block and thereby prevent the hammers 130 from striking the strings 140.
In some implementations, the piano 100 includes a mode switch 150 in communication with the rail actuator or rotator 260. A user may toggle the mode switch 150 to alter the play mode between acoustic play and silent play, and the actuator rail 240 is rotated to the corresponding position of the play mode.
Referring to
The pedal assembly 160 of the piano 100, in some examples, includes three pedals 161, 162, 163. The pedal assembly 160 includes a left pedal 161, which typically moves a hammer rail closer to the strings 140, in an upright piano, and moves the key frame sideways so that the hammers 130 strike two strings 140 instead of three strings 140, in a grand (horizontal) piano. The pedal assembly 160 includes a middle pedal 162 which may typically: 1) actuate a mute rail (e.g. via felt that drops between the hammers 130 and the strings 140); 2) actuate a bass sustain; 3) actuate a Sostenuto, which enables selected notes to be sustained independently from the others; or 4) non-exist, but is added for this assembly 160. In a grand piano, the middle pedal 162 is typically a Sostenuto pedal. The pedal assembly 160 includes a right pedal 163, which is typically a damper pedal. In some implementations, one of the pedals 161, 162, 163, preferably the middle pedal 162, is configured to control the piano play mode, e.g., switching between silent play mode and acoustic play mode. The mode selection pedal 162 may function as described above and/or as a play mode selector.
Referring to
Referring to
Referring to
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.
This U.S. patent claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application 61/031,862, filed Feb. 27, 2008. The disclosure of the prior application is considered part of and is hereby incorporated by reference in the disclosure of this application.
Number | Date | Country | |
---|---|---|---|
61031862 | Feb 2008 | US |