This application is the US national phase of international application PCT/IL2003/000523 filed 19 Jun. 2003 which designated the U.S. and claims benefit of Israel Patent Application No. 150,362 filed 20 Jun. 2002, the entire contents of both of which applications are incorporated by reference.
The present invention relates to locks generally and more particularly to cylinder locks having telescopic pins.
The following US Patents are believed to represent the current state of the art:
U.S. Pat. Nos. 4,142,389; 5,123,268; 5,520,035 and 5,839,308.
The present invention seeks to provide an improved cylinder lock having telescopic pins.
There is thus provided in accordance with a preferred embodiment of the present invention, an anti-picking cylinder lock including a lock body defining a bore for rotatably accommodating a plug, the lock body having formed therein a plurality of body pin bores, a plug rotatably disposed in the bore, the plug defining a keyway which is adapted to receive a key, the plug having formed therein a plurality of plug pin bores arranged to correspond with the plurality of body pin bores, a plurality of telescopic body pin assemblies disposed at least partially in the plurality of body pin bores, each of the telescopic body pin assemblies including an outer body pin and an inner body pin disposed in a bore formed in the outer body pin and a plurality of telescopic plug pin assemblies disposed at least partially in the plurality of plug pin bores, each of the telescopic plug pin assemblies including an outer plug pin and an inner plug pin disposed in a bore formed in the outer plug pin, characterized in that at least one of the outer plug pins and the outer body pins is formed with at least one inner facing recess configured and arranged such that upon attempted picking of the lock, a portion of at least one of the inner plug pins and the inner body pins tends to engage the at least one recess, thus causing at least one of the inner plug pins and the inner body pins to move together in at least one direction.
Preferably, the at least one recess is formed on an outer plug pin. Alternatively, the at least one recess is formed on an outer body pin.
In accordance with another preferred embodiment, the at least one recess includes a plurality of mutually spaced recesses. Preferably, the at least one recess includes an annular recess defining at least one inner pin engagement shoulder.
In accordance with another preferred embodiment, the portion of at least one of the inner plug pins and the inner body pins includes a protrusion. Alternatively, the portion of at least one of the inner plug pins and the inner body pins includes an annular protrusion. Additionally, the protrusion defines at least one inner recess engagement shoulder.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As seen in
Disposed in body pin bores 18 are telescopic body pin assemblies 22, each of which preferably comprises an outer body pin 24, which is spring loaded by a compression coil spring 26, which is seated on a spring seat 28. Disposed interiorly of outer body pin 24 and being linearly displaceable with respect thereto is an inner body pin 30, which is spring loaded relative to outer body pin 24 by a compression coil spring 32, which is seated on a neck portion 34 of the outer body pin 24.
Disposed in plug pin bores 20 are telescopic plug pin assemblies 42, each of which preferably comprises an outer plug pin 44 and, disposed interiorly of outer plug pin 44 and linearly displaceable with respect thereto, an inner plug pin 46. Outer body pin 24 and outer plug pin 44 preferably define respective normally touching engagement surfaces 48 and 49.
As seen in the enlargement of
On the opposite side of enlarged cylindrical portion 54 from shank portion 50 is a truncated conical portion 58 which terminates in a narrowed cylindrical portion 60. Adjacent to narrowed cylindrical portion 60 is a second enlarged cylindrical portion 62 typically having the same radius of enlarged cylindrical portion 54 but a thickness which is substantially smaller than enlarged cylindrical portion 54. Inner body pin 30 terminates in a truncated conical portion 64 defining a plug pin engagement surface 66.
The inner plug pin 46 preferably comprises a shank portion 70 having a truncated conical head 72 at one end thereof facing keyway 16. Formed at an opposite end of shank portion 70 is an enlarged cylindrical portion 74 having a radius which is only slightly less than that of an interior bore 76 in outer plug pin 44. On the opposite side of enlarged cylindrical portion 74 from shank portion 70 is a truncated conical portion 78, defining a body pin engagement surface 80.
In accordance with a preferred embodiment of the present invention, an annular recess 90 is formed in an inwardly facing wall of bore 76 adjacent to but not aligned with enlarged cylindrical portion 74. As will be described in detail hereinbelow, this recess is operative to increase the difficulty of picking the telescopic plug pin assembly 42.
In the illustration of
Reference is now made to
As seen in
Reference is now made to
Telescopic pin assembly 300 preferably includes a telescopic body pin assembly 322, which preferably comprises an outer body pin 324, having a partially conical outer configuration. Outer body pin 324 is spring loaded by a compression coil spring 326, which is seated on a spring seat 328. Disposed interiorly of outer body pin 324 and being linearly displaceable with respect thereto is an inner body pin 330, which is spring loaded relative to outer body pin 324 by a compression coil spring 332, which is seated on a neck portion 334 of the outer body pin 324.
Disposed in plug pin bore 320 is a telescopic plug pin assembly 342, which preferably comprises an outer plug pin 344 and, disposed interiorly of outer plug pin 344 and linearly displaceable with respect thereto, an inner plug pin 346. Outer body pin 324 and outer plug pin 344 preferably define respective normally touching engagement surfaces 348 and 349.
The inner body pin 330 preferably comprises a shank portion 350 having a truncated conical head 352 at one end thereof which is sized so as to have a diameter larger than a corresponding shoulder 353 of outer body pin 324. Formed at an opposite end of shank portion 350 is an enlarged cylindrical portion 354 having a radius which is only slightly less than that of an interior bore 356 in outer body pin 324.
On the opposite side of enlarged cylindrical portion 354 from shank portion 350 is a truncated conical portion 358 which terminates in a narrowed cylindrical portion 360. Adjacent to narrowed cylindrical portion 360 is a second enlarged cylindrical portion 362 typically having the same radius of enlarged cylindrical portion 354 but a thickness which is substantially smaller than enlarged cylindrical portion 354. Inner body pin 330 terminates in a truncated conical portion 364 defining a plug pin engagement surface 366.
The inner plug pin 346 preferably comprises a shank portion 370 having a truncated conical head 372 at one end thereof facing keyway 16. Formed at an opposite end of shank portion 370 is an enlarged cylindrical portion 374 having a radius which is only slightly less than that of an interior bore 376 in outer plug pin 344. On the opposite side of enlarged cylindrical portion 374 from shank portion 370 is a truncated conical portion 378, defining a body pin engagement surface 380.
In accordance with a preferred embodiment of the present invention, an annular recess 390 is formed in an inwardly facing wall of bore 376 adjacent to but not aligned with enlarged cylindrical portion 374. As will be described in detail hereinbelow, this recess is operative to increase the difficulty of picking the telescopic plug pin assembly 342.
It is seen in
Skewing of outer body pin 324 relative to bore 318 causes the inner body pin 330 to be skewed with respect to interior bore 356. Simultaneous raising of outer plug pin 344 causes second enlarged cylindrical portion 362 and truncated conical portion 364 to be aligned with recess 390. As seen in
It is seen in
It is seen in
Furthermore, as seen in
Reference is now made to
Telescopic pin assembly 400 preferably includes a telescopic body pin assembly 422, which preferably comprises an outer body pin 424, having a partially conical outer configuration. Outer body pin 424 is spring loaded by a compression coil spring 426, which is seated on a spring seat 428. Disposed interiorly of outer body pin 424 and being linearly displaceable with respect thereto is an inner body pin 430, which is spring loaded relative to outer body pin 424 by a compression coil spring 432, which is seated on a neck portion 434 of the outer body pin 424.
Disposed in plug pin bore 420 is a telescopic plug pin assembly 442, which preferably comprises an outer plug pin 444 and, disposed interiorly of outer plug pin 444 and linearly displaceable with respect thereto, an inner plug pin 446. Outer body pin 424 and outer plug pin 444 preferably define respective normally touching engagement surfaces 448 and 449.
The inner body pin 430 preferably comprises a shank portion 450 having a truncated conical head 452 at one end thereof which is sized so as to have a diameter larger than a corresponding shoulder 453 of outer body pin 424. Formed at an opposite end of shank portion 450 is an enlarged cylindrical portion 454 having a radius which is only slightly less than that of an interior bore 456 in outer body pin 424.
On the opposite side of enlarged cylindrical portion 454 from shank portion 450 is a truncated conical portion 458 which terminates in a narrowed cylindrical portion 460. Adjacent to narrowed cylindrical portion 460 is a second enlarged cylindrical portion 462 typically having the same radius of enlarged cylindrical portion 454 but a thickness which is substantially smaller than enlarged cylindrical portion 454. Inner body pin 430 terminates in a truncated conical portion 464 defining a plug pin engagement surface 466.
The inner plug pin 446 preferably comprises a shank portion 470 having a truncated conical head 472 at one end thereof facing keyway 16. Formed at an opposite end of shank portion 470 is an enlarged cylindrical portion 474 having a radius which is only slightly less than that of an interior bore 476 in outer plug pin 444. On the opposite side of enlarged cylindrical portion 474 from shank portion 470 is a truncated conical portion 478, defining a body pin engagement surface 480.
In accordance with a preferred embodiment of the present invention, a pair of mutually spaced annular recesses 490 is formed in an inwardly facing wall of bore 476 adjacent to but not aligned with enlarged cylindrical portion 474. As will be described in detail hereinbelow, these recesses are operative to increase the difficulty of picking the telescopic plug pin assembly 442.
It is seen in
Skewing of outer body pin 424 relative to bore 418 causes the inner body pin 430 to be skewed with respect to interior bore 456. Simultaneous raising of outer plug pin 444 causes second enlarged cylindrical portion 462 and truncated conical portion 464 to be aligned with one or the other of recesses 490 depending on the relative positions of the outer plug pin 444 and the inner body pin 430. As seen in
It is seen in
It is seen in
Furthermore, as seen in
Reference is now made to
Telescopic pin assembly 500 preferably includes a telescopic body pin assembly 522, which preferably comprises an outer body pin 524, having a partially conical outer configuration. Outer body pin 524 is spring loaded by a compression coil spring 526, which is seated on a spring seat 528. Disposed interiorly of outer body pin 524 and being linearly displaceable with respect thereto is an inner body pin 530, which is spring loaded relative to outer body pin 524 by a compression coil spring 532, which is seated on a neck portion 534 of the outer body pin 524.
Disposed in plug pin bore 520 is a telescopic plug pin assembly 542, which preferably comprises an outer plug pin 544 and, disposed interiorly of outer plug pin 544 and linearly displaceable with respect thereto, an inner plug pin 546. Outer body pin 524 and outer plug pin 544 preferably define respective normally touching engagement surfaces 548 and 549.
The inner body pin 530 preferably comprises a shank portion 550 having a truncated conical head 552 at one end thereof which is sized so as to have a diameter larger than a corresponding shoulder 553 of outer body pin 524. Formed at an opposite end of shank portion 550 is an enlarged cylindrical portion 554 having a radius which is only slightly less than that of an interior bore 556 in outer body pin 524.
On the opposite side of enlarged cylindrical portion 554 from shank portion 550 is a truncated conical portion 558 which terminates in a narrowed cylindrical portion 560. Adjacent to narrowed cylindrical portion 560 is a second enlarged cylindrical portion 562 typically having the same radius of enlarged cylindrical portion 554 but a thickness which is substantially smaller than enlarged cylindrical portion 554. Inner body pin 530 terminates in a truncated conical portion 564 defining a plug pin engagement surface 566.
The inner plug pin 546 preferably comprises a shank portion 570 having a truncated conical head 572 at one end thereof facing keyway 16. Formed at an opposite end of shank portion 570 is an enlarged cylindrical portion 574 having a radius which is only slightly less than that of an interior bore 576 in outer plug pin 544. On the opposite side of enlarged cylindrical portion 574 from shank portion 570 is a truncated conical portion 578, defining a body pin engagement surface 580.
In accordance with a preferred embodiment of the present invention, an annular recess 590 is formed in an inwardly facing wall of bore 556 adjacent to but not aligned with enlarged cylindrical portion 574. As will be described in detail hereinbelow, this recess is operative to increase the difficulty of picking the telescopic plug pin assembly 542.
It is seen in
Skewing of outer body pin 524 relative to bore 518 causes the inner body pin 530 to be skewed with respect to interior bore 556. Simultaneous raising of inner plug pin 546 causes enlarged cylindrical portion 574 and truncated conical portion 578 to be aligned with recess 590. As seen in
It may be appreciated that lock picking can be done in various ways, is extremely dynamic and may result in any one of a variety of situations.
It is seen in
Furthermore, as seen in
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications which would occur to persons skilled in the art upon reading the specification and which are not in the prior art.
Number | Date | Country | Kind |
---|---|---|---|
150362 | Jun 2002 | IL | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL03/00523 | 6/19/2000 | WO | 00 | 12/15/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO04/001165 | 12/31/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2111515 | Rauh | Mar 1938 | A |
2158501 | Fitchburg | May 1939 | A |
2202329 | Braune | May 1940 | A |
2283489 | Crousore | May 1942 | A |
2629249 | Mendelsohn | Feb 1953 | A |
3762193 | Hucknall | Oct 1973 | A |
3869889 | Prahl | Mar 1975 | A |
4142389 | Bahry et al. | Mar 1979 | A |
4403486 | Miyake | Sep 1983 | A |
4577479 | Widen | Mar 1986 | A |
4856309 | Eizen | Aug 1989 | A |
5123268 | Eizen | Jun 1992 | A |
5222383 | Fann et al. | Jun 1993 | A |
5520035 | Eizen | May 1996 | A |
5839308 | Eizen et al. | Nov 1998 | A |
5894750 | Liaw | Apr 1999 | A |
5966971 | Keller | Oct 1999 | A |
20020189309 | Stemmerik | Dec 2002 | A1 |
20030140668 | Chao | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
633 753 | Aug 1936 | DE |
Number | Date | Country | |
---|---|---|---|
20050204788 A1 | Sep 2005 | US |