BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional diagram of an embodiment of a degradation assembly.
FIG. 2 is a perspective diagram of an embodiment of a pick in a holder.
FIG. 2
a is a cross-sectional diagram of an embodiment of a pick in a holder.
FIG. 2
b is a cross-sectional diagram of another embodiment of a pick in a holder.
FIG. 3 is a cross-sectional diagram of another embodiment of a pick in a holder.
FIG. 4 is an exploded diagram of an embodiment of a pick and a holder.
FIG. 5 is a cross-sectional diagram of another embodiment of a pick in a holder.
FIG. 6 is a perspective diagram of an embodiment of a bearing assembly
FIG. 7 is a cross-sectional diagram of another embodiment of a pick in a holder.
FIG. 8 is a cross-sectional diagram of another embodiment of a pick in a holder.
FIG. 9 is a perspective diagram of an embodiment of a trenching machine.
FIG. 10 is an orthogonal diagram of an embodiment of a mining machine.
DETAILED DESCRIPTION OF THE INVENTION AND THE PREFERRED EMBODIMENT
FIG. 1 is a cross-sectional diagram of an embodiment of a plurality of degradation assemblies 101 attached to a rotating drum 102 connected to the underside of a pavement recycling machine 103. The recycling machine 103 may be a cold planer used to degrade man-made formations such as pavement 104 prior to the placement of a new layer of pavement. Degradation assemblies 101 may be attached to the drum 102 at an angle, thereby bringing the degradation assemblies 101 into engagement with the formation 104 at the desired level of aggressiveness. A holder, may be a block 105 or an extension 201 (see FIG. 2) adapted for attachment to a block 105, and is attached to the rotating drum 102, and a pick 106 is inserted into the holder.
FIG. 2 is a perspective diagram of an embodiment of a degradation assembly 101. The degradation assembly 101 comprises an extension 201. The extension 201 may be attached to the drum 102 through a block 105. The extension 201 comprises a longitudinal central bore 202, which may extend an entire length 203 of the extension 201. The extension 201 may comprise a slit 204 and/or a ledge 205 adapted to make the extension 201 complementary to the block 105. The degradation assembly 101 also comprises a pick 106 and a sacrificial washer 207. The pick 106 extends into a distal end 208 of the central bore 202 of the extension 201, thereby connecting the pick 106 and the extension 201.
FIG. 2
a, discloses a pick 106 disposed in the distal end 208 of an extension 201. As the degradation assembly 101 engages the formation 104, the pick 106 may be adapted to rotate within the extension 201. This is believed to cause the pick 106 to wear evenly and extend the life of the pick 106. If aggregate (not shown) accumulates between the pick 106 and the extension 201, this aggregate may increase friction between them and cause the pick 106 to cease rotation. A bushing 209 may be placed between the shank 302 and the extension 201 in order to allow for low-friction rotation of the shank 302 with respect to the extension 201. A lubricant 701 may be provided by a lubricating mechanism and may further facilitate low-friction rotation of the pick 106. The lubricant 701 may be substantially retained within the extension 201 with a seal assembly 404 by placing one or more O-rings 403 between the bushing 209 and the pick 106. The bushing 209 may comprise a cemented metal carbide material, a hardened steel, coated steel, metal bonded diamond particles, CVD or PVD diamond or cubic boron nitride. As disclosed in FIG. 2a, one or more grooves 904 may extend along the shank 302 in a spiral pattern. The spiral groove is believed to facilitate the transfer of lubricant 701 along the length 408 of the shank 302. The lubricating mechanism may comprise a reservoir, a spring, a port, a plunger or a combination thereof.
FIG. 2
b discloses an embodiment of the invention where the holder is a block 105 that is attached directly to the drum 102 using bolts 802. Because of the wear resistance of the pick 106, shank 302 and holders due to the superhard impact surface 304, the bearing element 801 and/or bearing assembly 401, degradation assemblies 101 according to the current invention are believed to have dramatically increased life spans. In FIG. 2b the drum 102 comprises a lubricant reservoir 702. The reservoir 702 may comprise a channel 803 that extends from the reservoir 702 into the bore 202 of the block 105 or extension 201. The channel 803 may be disposed in or around a spring-loaded protrusion 313 disposed in the bore 202 of the block 105. An o-ring 403 may be disposed intermediate the reservoir 702 and the block 105, and/or between the washer 207 and the shank 302.
FIG. 3 discloses the pick 106 comprising a body 301, which is generally made of steel. The steel may be selected from the group consisting of 4140, EN30B, S7, A2, tool steel, hardened steel, alloy steels, and combinations thereof. The body 301 comprises a shank 302 and is attached to an impact tip 303. The impact tip 303 comprises an impact surface 304 with a hardness greater than 4000 HK.
The impact surface 304 may comprise a material selected from the group consisting of diamond, polycrystalline diamond, cubic boron nitride, refractory metal bonded diamond, silicon bonded diamond, layered diamond, infiltrated diamond, thermally stable diamond, natural diamond, vapor deposited diamond, physically deposited diamond, diamond impregnated matrix, diamond impregnated carbide, cemented metal carbide, chromium, titanium, aluminum, tungsten, or combinations thereof. The material may comprise a polycrystalline structure with an average grain size of 10 to 100 microns and in some embodiments the material may be at least 0.100 inches thick. In embodiments, where the material comprises a ceramic, the surface 304 may comprise a region that is free of binder material. Infiltrated diamond is typically made by sintering the material adjacent a cemented metal carbide substrate 305 and allowing a metal (such as cobalt) to infiltrate into the material.
The material may be bonded to the carbide substrate 305 through a high temperature high pressure process. During high temperature high pressure (HTHP) processing, some of the cobalt from the carbide substrate may infiltrate into the material such that the substrate 305 comprises a slightly lower cobalt concentration than before the HTHP process. The impact surface 304 may preferably comprise a 1 to 5 percent cobalt concentration by weight after the cobalt or other binder infiltrates the material The material may also comprise a 1 to 5 percent concentration of tantalum by weight. Other binders that may be used with the present invention include iron, cobalt, tungsten, nickel, silicon, carbonates, hydroxide, hydride, hydrate, phosphorus-oxide, phosphoric acid, carbonate, lanthanide, actinide, phosphate hydrate, hydrogen phosphate, phosphorus carbonate, alkali metals, ruthenium, rhodium, niobium, palladium, chromium, molybdenum, manganese, tantalum or combinations thereof. In some embodiments, the binder is added directly to the material's mixture before the HTHP processing so that sintering does not rely on the binder migrating from the substrate into the mixture. In some embodiments the impact tip 303 may be connected to a core 306 before the core is press fit into the body 301. Typically the substrate 305 of the impact tip 303 is brazed to the core 307 at a planar interface. The tip 303 and the core 306 may be brazed together with a braze comprising a melting temperature from 700 to 1200 degrees Celsius. In FIG. 3 the carbide substrate 305 is brazed to a carbide core 306, which is press fit into a cavity 307 in the body 301 of the pick 106. A radius on a press fit end of the core 306 may comprise a smaller diameter than the majority of the core 306. In some embodiments of the invention the carbide core 306 may be brazed into the cavity 307. Some picks 106 may comprise a carbide bolster attached at one end to the body 301 and at a second end to the impact tip 303. The impact tip 303 may be bonded directly to the bolster or to the carbide core 306.
The impact surface 304 may comprise a substantially pointed geometry with a sharp apex comprising a radius of 0.050 to 0.200 inches. In some embodiments, the radius is 0.090 to 0.110 inches. It is believed that the apex may be adapted to distribute impact forces, which may help to prevent the impact surface 304 from chipping or breaking. The material may comprise a thickness of 0.100 to 0.500 inches from the apex to an interface with the substrate 305, preferably from 0.125 to 0.275 inches. The material and the substrate 305 may comprise a total thickness of 0.200 to 0.700 inches from the apex to the core 306. The sharp apex may allow the high impact resistant pick 106 to more easily cleave asphalt, rock, or other formations.
The degradation assembly 101 of FIG. 3 comprises a plurality of bearing elements 310 disposed within a bearing assembly 309. The bearing assembly is secured between a shank 302 and the bore 202 of the extension 201. The plurality of bearing elements 310 is disposed intermediate an outer race 317 and an inner race 318. The outer race 317 may be press fit into the bore 202 and may be stationary with respect to the bore 202. The inner race 318 may be stationary with respect to the shank 302. Each bearing element 310 is adapted for low-friction rotation with respect to both the inner and outer races 318, 317. The bearing assembly 309 as a whole facilitates low-friction rotation of the shank 302 with respect to an inner surface 311 of the bore 202. The bearing assembly 309 may accommodate radial forces, axial forces, forces perpendicular to a main axis 312 of the extension 201, or combinations thereof. FIG. 3 discloses a plurality of ball bearing elements 310 disposed intermediate the inner bore surface 311 and the shank 302 and disposed in a bearing assembly 309. As disclosed in FIG. 3, the bearing assembly 309 may comprise one or more lids 319 at either end of the races 317, 318 in order to substantially enclose the bearing assembly 309.
The shank 302 may be coated with a hard surface. The hard surface may comprise a cemented metal carbide, chromium, manganese, nickel, titanium, silicon, hard surfacing, diamond, cubic boron nitride, polycrystalline diamond, diamond impregnated carbide, diamond impregnated matrix, silicon bonded diamond, deposited diamond, aluminum oxide, zircon, silicon carbide, whisker reinforced ceramics, nitride, stellite, or combinations thereof The hard surface may be bonded to the shank 302 through the processes of electroplating, cladding, electroless plating, thermal spraying, annealing, hard facing, applying high pressure, hot dipping, brazing, or combinations thereof. The hard surface may comprise a thickness of 0.001 to 0.200 inches. The hard surface may be polished.
The washer 207 is disposed intermediate the pick 106 and a distal surface 308 of the extension 201. It is believed that rotation of the pick 106 within the extension 201 causes the pick 106 to wear evenly. In embodiments with a sacrificial washer 207, the washer 207 prevents the body 301 of the pick 106 from rubbing against the distal surface 308 of the extension 201, which is believed to extend the working life of the extension 201. FIG. 3 also discloses a spring-loaded protrusion 313 disposed in the bore 202 of the extension 201. The protrusion 313 may retract when a shank 302 is inserted into the extension 201 and then spring into a recess 314 in the shank 302 when the recess 314 is proximate the protrusion 313, thus retaining the shank 302 within the bore in the extension 201. In some embodiments of the invention the shank 302 may be retained in the extension 201 by a resilient keep ring or snap ring.
A reentrant 315 may be formed on the shank 302 near and/or at a junction 316 of the shank 302 and the body 301. It is believed that placing the reentrant 315 near the junction 316 may relieve strain on the junction 316 caused by impact forces. The reentrant 315 may increase the flexibility of the junction 316. In some embodiments of the invention a plurality of reentrants 315 may be formed near the junction 316.
Referring now to FIG. 4, an exploded view diagram discloses a bearing assembly 309 being fitted into an opening 402 of the bore 202 at the distal end 208 of the extension 201. A pick 106, a sacrificial washer 207, and an o-ring 403 make up a seal assembly 404 that is to be disposed proximate the opening 402 when the shank 302 is disposed within the bore 202. A cap 405 is press fit into a bore opening 406 proximate the driving mechanism (not shown). When the seal assembly 404 and bearing assembly 309 are fitted into the extension 201 at the distal end 208, and the cap is press fit into a proximal end 407, a length 408 of the shank 302 within the bore 202 is substantially sealed from degradation debris. By substantially sealing the length 408 of the shank 302 from degradation material, the degradation material may be substantially excluded from contact with the bearing element 310 or bearing assembly 309. In FIG. 4 a seal assembly 404 encloses the distal end 208 of the extension. A bearing assembly 309 may be disposed intermediate the seal assembly 404, and a proximal seal assembly 411. In the present embodiment the proximal seal assembly 411 comprises a cap 405. In some embodiments the proximal seal assembly 411 may comprise one or more O-rings 403. The contact of degradation material with the shank 302, bearing element 310, bearing assembly 309, or inner surface 311 of the bore 202 is believed to both increase the wear on these components and limit the rotation of the pick 106. The o-ring 403 or a flexible elastomeric substance may restrict the washer 207 from movement around a central axis 409 of the pick 106, thereby reducing wear on the distal surface 308 of the extension 201. In some embodiments of the invention the bearing assembly 309 may be press fit into the bore 202.
FIG. 5 discloses a degradation assembly 101 which comprises a taper bearing assembly 501. The assembly 501 comprises a taper 502 proximate a tapered junction 503 of the shank 302 and the body 301 of the pick 106. The extension 201 comprises a central bore 202 with a closed end 504 proximate the driving mechanism (not shown). In some embodiments, the closed end is formed in the holder, but in other embodiments a cap 1050 may be fitted in the bore. In the embodiment of FIG. 5, the cap comprises a pocket 1051, which provides a lubricant reservoir with a greater volume for providing more lubricant. FIG. 6 is a perspective diagram of a taper bearing assembly 501. The bearing assembly 501 comprises a plurality of roller bearing elements 505 disposed intermediate an outer diameter 506 and an inner diameter 507. The plurality of roller bearing elements 505 may be disposed intermediate outer and inner races 317, 318. Other types of bearing assemblies 309 may comprise a plurality of bearing elements 310 disposed intermediate outer and inner diameters 506, 507.
Referring now to FIG. 7, a bearing assembly 401 comprises a plurality of roller bearing elements 706. The bearing assembly 401 may comprise a lubricant 701. A supply of lubricant 701 may be replenished in and around the bearing assembly 401 and the shank 302 using a lubricant reservoir 702. The lubricant reservoir 702 may be pressurized in order to maintain a sufficient amount of lubricant 701 around the bearing assembly 401 and the shank 302. A resilient spring 703 attached to a plunger 704 may help to maintain the pressure in the reservoir 702 by pressurizing the lubricant 701 with a substantially constant force. The lubricant may be added to the reservoir through the bore retaining the shank prior to installation of the pick into the holder. The addition of the shank decreases the reservoir's volume and thereby increases the pressure in the reservoir. The lubricant 701 may be substantially retained around the shank 302 and bearing assembly 401 by being disposed intermediate the sealing assemblies 404, 411. An o-ring 403 disposed intermediate the bearing assembly 401 and the shank 302 near the distal end 208 of the extension 201 may substantially retain the lubricant 701 within the bearing assembly 401.
Referring now to FIG. 8, a bushing 901 is press fit into the bore 202 and is disposed between the shank 302 and the internal surface 311 of the bore 202. The proximal end 407 of the extension 201 is closed. The bushing 901 acts as a bearing element 310 to facilitate low-friction rotation between itself and the inner surface 311 and the shank 302. The seal assembly 404 comprises an o-ring 403 that is partially disposed in a reentrant 315 at the junction 316 of the body 301 and the shank 302 of the pick 106 at the distal end 208 of the extension 201. The seal assembly 404 may substantially limit the movement of the lubricant 701 that is disposed between the bushing 901 and the shank 302. In embodiments of the invention wherein a seal assembly 404 substantially retains the lubricant 701 within the bore 202, some lubricant 701 may pass through the seal assembly 404 and slowly extrude out the distal end 208 of the extension 201. The lubricant 701 may extrude between the washer 207 and the extension 201, and it may extrude between the body 301 of the pick 106 and the washer 207. A pin 902 may extend from the washer 207 into a recess in the distal end 208 of the extension 201. The pin 902 may reduce rotation of the washer 207 with respect to the extension 201, thereby reducing wear on the distal surface 308 of the extension 201. In some embodiments of the invention a lower surface 903 of the washer 207 may face the distal surface 308 of the extension and may comprise a rough surface. This rough surface may also reduce rotation of the washer 207.
In some embodiments of the invention, the lubrication mechanism is a bushing with graphite, or a laminated graphite, such as Graphfoil®.
Degradation assemblies 101 may be used in various applications. Degradation assemblies 101 may be disposed in an asphalt milling machine 103, as in the embodiment of FIG. 1. FIGS. 9 and 10 disclose other high-wear applications that may incorporate the present invention. Degradation assemblies 101 may be used in a trenching machine 1001, as is disclosed in FIG. 9. The degradation assemblies 101 may be placed on a chain 1003 that rotates around an arm 1002 of a chain trenching machine 1001. The degradation assemblies 101 may be disposed in a V-pattern on the chain, but other patterns may be used. Degradation assemblies 101 may also be disposed on a rock wheel trenching machine, or other type of trenching machine. FIG. 10 discloses a mining machine 1101 incorporated with degradation assemblies 101. Other applications that involve intense wear of machinery may also benefit from the incorporation of the present invention Milling machines, for example, may experience wear as they are used to reduce the size of material such as rocks, grain, trash, natural resources, chalk, wood, tires, metal, cars, tables, couches, coal, minerals, chemicals, or other natural resources. Various mills that may incorporate the composite material include mulchers, vertical shaft mills, hammermills, cone crushers, chisels, jaw crushers, or combinations thereof.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.