Formation degradation, such as pavement milling, mining, or excavating, may result in wear on impact resistant picks. Consequently, many efforts have been made to extend the working life of these picks by optimizing the shape of the picks or the materials with which they are made. Examples of such efforts are disclosed in U.S. Pat. No. 4,944,559 to Sionnet et al., U.S. Pat. No. 5,837,071 to Andersson et al., U.S. Pat. No. 5,417,475 to Graham et al., U.S. Pat. No. 6.051,079 to Andersson et al., and U.S. Pat. No. 4,725,098 to Beach, all of which are herein incorporated by reference for all that they contain.
In one aspect of the invention, a pick comprises a front portion with an impact tip brazed to a carbide bolster. The carbide bolster comprises a cavity which is formed in the bolster's base end and which is adapted to interlock with a rear portion of the pick. The rear portion is adapted to be retained within a bore of a holder that is attached to a driving mechanism. The rear portion comprises a locking mechanism adapted to lock its first end within the cavity. The locking mechanism comprises a radially extending catch that is formed in the first end of the rear portion. The locking mechanism may comprise a wedge.
An inside surface of the carbide bolster may comprise a uniform inward taper. In some embodiments the cavity may comprises an inwardly protruding catch. The inwardly protruding catch may be adapted to interlock with the radially extending catch of the first end. An insert may be disposed intermediate the inwardly protruding catch and the radially extending catch. The insert may be a ring, a snap ring, a split ring, or a flexible ring. In some embodiments the insert may be a plurality of balls, wedges, shims or combinations thereof. The inwardly protruding catch may be a hook or a taper. The inwardly protruding catch may form a slot. The radially extending catch may be a hook or a taper. The radially extending catch may form a slot.
The rear portion of the pick may be generally cylindrical. In some embodiments the first end of the rear portion may be a lug. The rear portion may comprise a tensioning mechanism adapted to apply a rear ward force on the first end of the rear portion. The tensioning mechanism may comprise a press fit, a taper, and/or a nut.
The impact tip may comprise a diamond bonded to a carbide substrate. The diamond may comprise a generally conical shape with an apex. A thickness of the diamond at the apex may be 0.100 to 0.500 inches. The diamond may comprise a volume of 75% to 175% of the carbide substrate.
a is a cross-sectional diagram of another embodiment of a pick.
Referring now to
An outer surface of the holder 102 may comprise hard- facing in order to provide better wear protection for the holder 102. The hard-facing may comprise ridges after it is applied, though the ridges may be machined down afterward. In the present embodiment a sleeve 228 is disposed intermediate the pick 101 and the holder 102. In some embodiments the base end 204 of the bolster 205 may be in direct contact with an upper face 213 of the holder 102, and may overhang the holder 102 and hard-facing, which may prevent debris from collecting on the upper face 213. The bore 209 of the holder 102 may comprise hard-facing. One method of hard-facing the bore is case-hardening, during which process the bore is enriched with carbon and/or nitrogen and then heat treated, which hardens the bore and provides wear protection, although other methods of hard-facing the bore may also be used. The rear portion 200 is adapted to be retained within the bore 209.
The rear portion 200 may comprise a hard material such as steel, stainless steel, hardened steel, or other materials of similar hardness. The bolster 205 may comprise tungsten, titanium, tantalum, molybdenum, niobium, cobalt and/or combinations thereof. The super hard material 206 may be a material selected from the group consisting of diamond, monocrystalline diamond, polycrystalline diamond, sintered diamond, chemical deposited diamond, physically deposited diamond, natural diamond, infiltrated diamond, layered diamond, thermally stable diamond, silicon-bonded diamond, metal-bonded diamond, silicon carbide, cubic boron nitride, and combinations thereof.
The rear portion 200 may be work-hardened or cold-worked in order to provide resistance to cracking or stress fractures due to forces exerted on the pick by the paved surface 104 or the holder 102. The rear portion 200 may be work-hardened by shot-peening or by other methods of work-hardening. The rear portion 200 may also be rotatably held into the holder 102, such that the pick 101 is allowed to rotate within the holder 102. At least a portion of the rear portion may also be work-hardened by stretching it during the manufacturing process.
The first end 201 of the rear portion 200 protrudes into the cavity 203 in the base end 204 of the bolster 205 and also comprises a locking mechanism 214. The locking mechanism 214 is adapted to lock the first end 201 of the rear portion 200 within the cavity 203. The locking mechanism 214 may attach the rear portion 200 to the carbide bolster 205 and restrict movement of the rear portion 200 with respect to the carbide bolster 205. The locking mechanism comprises a radially extending catch 236 that is formed in the first end 201 of the rear portion 200. The rear portion 200 may be prevented by the locking mechanism 214 from moving in a direction parallel to a central axis 403 of the pick 101. In some embodiments the rear portion 200 may be prevented by the locking mechanism 214 from rotating about the central axis 403.
In
When the first end 201 of the rear portion 200 is inserted into the cavity 203, the locking head 241 may be extended away from the constricted inner diameter 242 of the rear portion 200. The insert 238 may be disposed around the locking shaft 240 and be intermediate the locking head 241 and the constricted inner diameter 242. The insert 238 may comprise stainless steel. In some embodiments the insert 238 may comprise an elastomeric material and may be flexible. The insert 238 may be a ring, a snap ring, a split ring, a coiled ring, a rigid ring, segments, balls, shims, or combinations thereof
Referring now to
Once the nut is threaded tightly onto the locking shaft 240, the locking head 241 and insert 238 are together too wide to exit the opening 243. In some embodiments the contact between the locking head 241 and the bolster 205 via the insert 238 may be sufficient to prevent both rotation of the rear portion 200 about its central axis 403 and movement of the rear portion in a direction parallel to its central axis 403. In the present embodiment the locking mechanism 214 is also adapted to inducibly release the rear portion 200 from attachment with the carbide bolster 205 by removing the nut 245 from the locking shaft 240.
In the present embodiment the insert 238 may be a snap ring. The insert may comprise stainless steel and may be deformed by the pressure of the locking head 241 being pulled towards the second end 202 of the rear portion 200. As the insert 238 deforms is may become harder. The deformation may also cause the insert 238 to be complementary to both the inwardly protruding catch 237 and the radially extending catch 236. This dually complementary insert 238 may avoid point loading or uneven loading, thereby equally distributing contact stresses. In such embodiments the insert 238 may be inserted when it is comparatively soft, and then may be work hardened while in place proximate the catches 236, 237.
In some embodiments at least part of the rear portion 200 of the pick 101 may also be cold worked. The rear portion 200 may be stretched to a critical point just before the strength of the rear portion 200 is compromised. In the present embodiment, the locking shaft 240, locking head 241, and insert 238 may all be cold worked by tightening the nut 245 until the locking shaft and head 240, 241, and the insert 238, reach a stretching critical point. During this stretching the insert 238, and the locking shaft and head 240, 241, may all deform to create a complementary engagement, and may then be hardened in that complementary engagement. In some embodiments the complementary engagement may result in an interlocking between the radially extending catch 236 and the inwardly protruding catch 237.
In the embodiment of
The diamond is an embodiment of a superhard material 206 and comprises a generally conical shape with an apex 251. The thickness 249 of the diamond at the apex 251 may be 0.100 to 0.500 inches. The cemented metal carbide substrate 207 may comprise a height of 0.090 to 0.250 inches. The superhard material 206 bonded to the substrate 207 may comprise a substantially pointed geometry with an apex comprising a 0.050 to 0.160 inch radius. Preferably, the interface between the substrate 207 and the superhard material 206 is non-planar, which may help distribute loads on the tip 208 across a larger area of the interface. The side wall of the superhard material may form an included angle with a central axis of the tip between 30 to 60 degrees. In asphalt milling applications, the inventors have discovered that an optimal included angle is 45 degrees, whereas in mining applications the inventors have discovered that an optimal included angle is between 35 and 40 degrees. A tip that may be compatible with the present invention is disclosed in U.S. patent application Ser. No. 11/673,634 to Hall and is currently pending.
The impact tip 208 may be brazed onto the carbide bolster 205 at a braze interface. Braze material used to braze the tip 208 to the bolster 205 may comprise a melting temperature from 700 to 1200 degrees Celsius; preferably the melting temperature is from 800 to 970 degrees Celsius. The braze material may comprise silver, gold, copper nickel, palladium, boron, chromium, silicon, germanium, aluminum, iron, cobalt, manganese, titanium, tin, gallium, vanadium, phosphorus, molybdenum, platinum, or combinations thereof. The braze material may comprise 30 to 62 weight percent palladium, preferable 40 to 50 weight percent palladium. Additionally, the braze material may comprise 30 to 60 weight percent nickel, and 3 to 15 weight percent silicon; preferably the braze material may comprise 47.2 weight percent nickel, 46.7 weight percent palladium, and 6.1 weight percent silicon. Active cooling during brazing may be critical in some embodiments, since the heat from brazing may leave some residual stress in the bond between the carbide substrate 207 and the super hard material 206. The farther away the super hard material is from the braze interface, the less thermal damage is likely to occur during brazing. Increasing the distance between the brazing interface and the super hard material 206, however, may increase the moment on the carbide substrate 207 and increase stresses at the brazing interface upon impact. The rear portion 200 may be press fitted into the bolster 205 before or after the tip 208 is brazed onto the bolster 205.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In
The pick 101 may be lubricated by inserting a lubricant into the reservoir 223 through the bore 209 of the holder 102 and through the one-way valve 221. The piston assembly 222 may be disposed within the bore 209 such that as more lubricant is inserted into the bore 209, the piston assembly 222 may compress to allow the lubricant to be inserted. After the lubricant is inserted into the bore 209, the piston assembly 222 may apply pressure on the lubricant, which may force it up around the rear portion 200 and out of the holder 102. This may allow the pick 101 to rotate more easily and may decrease friction while the pick rotates for better wear protection of areas in contact with the holder 102, such as the base end 204 of the bolster 205 and the rear portion 200.
A weeping seal may be disposed around the rear portion 200 such that it is in contact with the rear portion 200, the bolster 205, and the holder 102, which may limit the rate at which the lubricant is expelled from the bore 209. The lubricant may also be provided from the driving mechanism. In embodiments, where the driving mechanism is a drum, the drum may comprise a lubrication reservoir and a port may be formed in the drum which leads to the lubrication reservoir. In some embodiments a spiral groove may be formed in the rear portion 200 or the bore 209 of the holder 102 to aid in exposing the surfaces of the rear portion 200 and the holder bore to the lubricant. In some embodiments, the lubricant is added to the bore 209 of the holder 102 prior to securing the rear portion 200 within the holder 102. In such an embodiment, the insertion of the rear portion 200 may penetrate the volume of the lubricant forcing a portion of the volume to flow around the rear portion 200 and also compressing the lubricant within the bore.
Dimensions of the rear portion 200 and bolster 205 may be important to the function and efficiency of the pick 101. A ratio of a length 219 of the rear portion 200 to a length 225 of the bolster 205 may be from 1.75:1 to 2.5: 1. A ratio of a maximum width of the bolster 205 to the outer diameter 217 of the rear portion 200 may be from 1.5:1 to 2.5:1. The first end 201 of the rear portion 200 may be fitted into the cavity 203 of the bolster 205 to a depth of 0.300 to 0.700 inches. The cavity 203 of the bolster 205 may comprise a depth from 0.600 to 1 inch. The rear portion 200 may or may not extend into a full depth of the cavity 203. The rear portion 200 and bolster 205 may also comprise an interference fit from 0.0005 to 0.005 inches. The bolster may comprise a minimum cross-sectional thickness between the internal surface 405 of the cavity 203 and an outside surface of the bolster 205 of 0.200 inches, preferable at least 0.210 inches. Reducing the volume of the bolster 205 may advantageously reduce the cost of the pick 101.
Referring now to
Referring now to
Referring now to
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/947,644 filed on Nov. 29, 2007, which was a continuation-in-part of U.S. patent application Ser. No. 11/844,586 filed on Aug. 24, 2007. U.S. patent application Ser. No. 11/844,586 is a continuation-in-part of U.S. patent application Ser. No. 11/829,761, which was filed on Jul. 27, 2007. U.S. patent application Ser. No. 11/829,761 is a continuation-in-part of U.S. patent application Ser. No. 11/773,271 which was filed on Jul. 3, 2007. U.S. patent application Ser. No. 11/773,271 is a continuation-in-part of U.S. patent application Ser. No. 11/766,903 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,903 is a continuation of U.S. patent application Ser. No. 11/766,865 filed on Jun. 22, 2007. U.S. patent application Ser. No. 11/766,865 is a continuation-in-part of U.S. patent application Ser. No. 11/742,304 which was filed on Apr. 30, 2007. U.S. patent application Ser. No. 11/742,304 is a continuation of U.S. patent application Ser. No. 11/742,261 which was filed on Apr. 30, 2007. U.S. patent application Ser. No. 11/742,261 is a continuation-in-part of US. patent application Ser. No. 11/464,008 which was filed on Aug. 11, 2006. U.S. patent application Ser. No. 11/464,008 is a continuation-in-part of U.S. patent application Ser. No. 11/463,998 which was filed on Aug. 11, 2006. U.S. patent application Ser. No. 11/463,998 is a continuation-in-part of U.S. patent application Ser. No. 11/463,990 which was filed on Aug. 11, 2006. U.S. patent application Ser. No. 11/463,990 is a continuation-in-part of U.S. patent application Ser. No. 11/463,975 which was filed on Aug. 11, 2006. U.S. patent application Ser. No. 11/463,975 is a continuation-in-part of U.S. patent application Ser. No. 11/463,962 which was filed on Aug. 11, 2006. U.S. patent application Ser. No. 11/463,962 is a continuation-in-part of U.S. patent application Ser. No. 11/463,953, which was also filed on Aug. 11, 2006. The present application is also a continuation-in-part of U.S. patent application Ser. No. 11/695672 which was filed on Apr. 3, 2007. U.S. patent application Ser. No. 11/695672 is a continuation-in-part of U.S. patent application Ser. No. 11/686,831 filed on Mar. 15, 2007. All of these applications are herein incorporated by reference for all that they contain.
Number | Date | Country | |
---|---|---|---|
Parent | 11766865 | Jun 2007 | US |
Child | 11766903 | Jun 2007 | US |
Parent | 11742261 | Apr 2007 | US |
Child | 11742304 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11947644 | Nov 2007 | US |
Child | 11971965 | Jan 2008 | US |
Parent | 11844586 | Aug 2007 | US |
Child | 11947644 | Nov 2007 | US |
Parent | 11829761 | Jul 2007 | US |
Child | 11844586 | Aug 2007 | US |
Parent | 11773271 | Jul 2007 | US |
Child | 11829761 | Jul 2007 | US |
Parent | 11766903 | Jun 2007 | US |
Child | 11773271 | Jul 2007 | US |
Parent | 11742304 | Apr 2007 | US |
Child | 11766865 | Jun 2007 | US |
Parent | 11464008 | Aug 2006 | US |
Child | 11742261 | Apr 2007 | US |
Parent | 11463998 | Aug 2006 | US |
Child | 11464008 | Aug 2006 | US |
Parent | 11463990 | Aug 2006 | US |
Child | 11463998 | Aug 2006 | US |
Parent | 11463975 | Aug 2006 | US |
Child | 11463990 | Aug 2006 | US |
Parent | 11463962 | Aug 2006 | US |
Child | 11463975 | Aug 2006 | US |
Parent | 11463953 | Aug 2006 | US |
Child | 11463962 | Aug 2006 | US |
Parent | 11695672 | Apr 2007 | US |
Child | 11971965 | Jan 2008 | US |
Parent | 11686831 | Mar 2007 | US |
Child | 11695672 | Apr 2007 | US |