This application is a U.S. National Stage Filing under 35 U.S.C. § 371 from International Application No. PCT/IB2020/053783, filed on Apr. 22, 2020, and published as WO2020/217180 on Oct. 29, 2020, which claims the benefit of priority to Italian Application No. 102019000006234, filed on Apr. 23, 2019; the benefit of priority of each of which is hereby claimed herein, and which applications and publication are hereby incorporated herein by reference in their entireties.
The invention relates to a continuous pickling plant for the treatment of metal products in the form of a strip comprising a plurality of acid solution process tanks each divided into a plurality of turbulence cells; and an acid solution recirculation system in which preferably the solution discharged from the overflow of each process tank feeds an external recirculation tank through a discharge pipe from which the acid solution is returned by a pump through an inlet pipe to the process tank, optionally passing through a heat exchanger to be heated. The products treated are in particular hot rolled strips. Pickling is used to remove the layer of oxides present on both the upper and lower surfaces of these strips.
Hot rolled carbon steel strips (low, medium, high and high strength) are coated with a layer of oxides having different mechanical characteristics with respect to those of the base material, thus in cases where the strips must undergo subsequent deformation or coating with metal or organic coatings this layer of oxides must be eliminated.
The most commonly used technology is to remove oxides through chemical etching in so-called pickling tanks using an acid bath.
Usually the most used tanks are those of sulphuric acid H2SO4 or hydrochloric acid HCl. The latter is used most by manufacturers as it guarantees a high scale removal capacity and allows obtaining a shiny surface free of oxide residues.
Multiple tanks (three to four) are used in the art where the strip moves counter-current to the acid stream so that the oxidized strip first encounters a solution with more dissolved iron (Fe) and less free acid, vice versa at the end of the process when all the oxide is removed and the solution has more free acid and less dissolved Fe.
The kinetics of the chemical process are favoured by temperature: raising it increases the removal rate of the oxides, the time therein (process speed, i.e. time in the tanks), the concentration of acid and turbulence inside the acid bath (the higher the speed of the fluid, the greater the ability to dissolve the oxides).
The classic system (Deep Tank Pickling) involves the passage of the strip arranged according to a catenary in a very deep tank. To minimize the dragging of acid from one tank to another and therefore to allow the control of the concentration of acid, drag dams are inserted. The system does not guarantee optimization of the amount of acid. Shallow Tank Pickling tanks are a development of this type of tank, in which the coefficient of exchange on the lower face of the strip is increased thanks to a shorter distance between the lower face and the bottom of the tank. The tanks are separated from each other by squeezing belts. The tanks then developed to pass to Turbulent Pickling, in which the tanks are fed by acid sprayers and in which an acid recirculation system is provided. The turbulence is not only determined by the movement of the strip but also by the effect of the sprayers. The most advanced system is the so-called Turboflo system which involves dividing each tank into turbulence cells equipped with a shaped cover to increase the turbulence and therefore the heat exchange. Good heat exchange ensures homogeneous and fast heating of the acid to the operating temperature. In addition, high turbulence favours the pickling reaction.
The advanced systems provide a back-flow effect of the acid in the opposite direction with respect to the forwards direction of the strip. The back-flow effect, the hydraulic seal created by acid injectors at the entrance and exit of the tank, the provided squeeze rollers and a cascade tank arrangement facilitate controlling concentration in each tank. Turbulence cell tanks are for example described in documents EP 1 054 079 B1, U.S. Pat. Nos. 5,803,981 and 4,807,653. The latter document also describes a possible acid recirculation system in detail.
The design of the tanks in the above sense allows controlling the turbulence through the use of spray systems in the direction of travel or on the sides, moreover the turbulence can be favoured by the geometric arrangement of covers and tank bottoms that can create turbulence cells.
The turbulence effect of the acid solution is maximized by creating horizontal treatment tunnels inside which the strip flows and obtaining a hydraulic seal with acid jets at the entrance and exit; while being very effective, these systems have the disadvantage that as the strip speed increases, the seal pressure in output must increase to reach 4-5 bar for process speeds between 400 and 500 m/min. High pressures involve the use of expensive acid recirculation pipes for safety reasons: it must be ensured that under operating conditions no leakage of acidic solution under pressure can occur.
The state of the art employs special covers that force the strip to immerse itself under the free surface using small diameter rollers that are inserted in the upper covers. This system eliminates the need for hydraulic seals, but has a drawback related to the cost of rollers made of special materials adapted to resist the acidic solution in which they are completely immersed.
In addition to the above, in the state of the art the first pickling tank is used to heat the strip from the ambient temperature (−5 to +25° C.), which depends on the geographical location of the system, to the process temperature of the tanks from +70 to +85° C. This aspect, in addition to the fact that the first tank also has a low concentration of free acid, has a negative impact on the oxide removal capacity of the first tank that results close to zero.
The pickling systems described in documents U.S. Pat. Nos. 5,060,683 A and 4,996,998 A also provide for a pre-heating of the strip with a low concentration acidic solution.
The current performance of acid pickling tanks is also put to the test by the continuous development of steels, especially those for automotive and electrical applications. The presence in the chemical composition of these steels of elements such as manganese (Mn) or silicon (Si) is caused by the presence of oxides that are more difficult to eliminate than those of iron and this results in an increase in their time inside the tanks, usually equal to 1.5 times to 4 times the time a strip of equal size of low carbon steel remains inside. The time inside varies depending on the weight concentration of the problematic element in the chemical composition of the steel and the wrapping temperature of the hot train.
In addition, these steels have the particularity that the tough Mn and Si oxides are arranged at the interface between the oxide layer and the base material, while the surface oxide layer is composed of easily removable iron oxides; and in the last tank these tough oxides must be removed.
Considering the above, it is clear that there is a need to revise the pickling tanks in order to eliminate the drawbacks indicated above. An object of the invention is to propose a pickling plant and process that optimize pickling in terms of efficiency and speed. A further object of the invention is to propose a pickling plant in which the pickling in the first tank is not almost null. Another object of the invention is to provide a plant that does not require hydraulic sealing sprays at the entrance and exit of the tanks.
The object is achieved by a continuous pickling plant for the treatment of metal products in the form of a strip or tube, comprising
In a preferred embodiment of the invention, each pickling tank has a discharge pipe that feeds an external recirculation tank, from which the acid is re-pumped to the pickling tank by a pump or multiple pumps in which it is advantageously possible to obtain a pressure not exceeding one bar immediately upstream of the turbulence sprays.
Conveniently the recirculation pump(s) can operate at variable speed thanks to a controlled, variable frequency voltage electric motor in order to modulate the acid flow rate to the tank. Advantageously, the recirculation tank is connected with the other recirculation tanks present through a pipe that allows the acid to pass counterflow with respect to the direction of the strip.
Preferably, within the cycle, before feeding the pickling tank, i.e. before the acid returns to the tank, it is heated by a heat exchanger, usually steam/acid (but other exchangers are conceivable) that controls its temperature in a range from 65 to 85° C.
Preferably, the exchangers for each process tank are dimensioned only to maintain the predetermined temperature by compensating for heat losses in the environment and any heating necessary for the addition of acid or water at temperatures lower than the predetermined one.
The presence of heating devices relieves the first tank of the task of heating the strip, which thus becomes fully active for pickling purposes.
The mentioned heating devices can be used as alternatives or at the same time:
The first device is an induction heating system, the second a water spray tank. The induction heating device is preferred, which takes up less space inside the plant and is not complex but very effective.
The upstream heating of the pickling tanks increases the efficiency of the first pickling tank. Advantageously, the induction heating device is dimensioned for a temperature difference from +15° C. to +40° C., usually about +25° C. In the case of the water spray heating device, it is advantageously a heating spray tunnel for a temperature difference from +20° C. to +50° C., usually about +45° C.
Advantageously, the strip preheating system consisting, for example, of an induction heater and/or a water spray heating tank allows the strip to be preheated to a temperature between 65 and 75° C. so that in subsequent acid tanks only ambient leaks are taken into account and the exchangers must not be sized, particularly in the first tank, to also heat the strip.
An induction heating device allows a quick thermal response to each change in the size of the strip entering the pickling process. The inductor is advantageously sized for a partial thermal variation to minimize the power absorbed by the same, reducing the cost of runover and consumption of electrical power.
In advantageous embodiments of the invention, the spray tunnel allows effectively using the overflow rinse water, which is collected in a dedicated tank and sent with a dedicated spray pump with a pressure from 1 to 3 bar per nozzle (usually about 2 bar).
A suitable heat exchanger is preferably installed on the tunnel delivery pipe to control the temperature of the water sent to the sprays from +60° C. to +80° C., usually about +70° C.
The spray tunnel advantageously placed at the entrance of the first tank also performs the following additional functions:
In a preferred embodiment of the invention, the temperature of the strip exiting the heating device, for example exiting the induction heater and/or the spray heating tank, is measured by suitable temperature measuring devices. Advantageously, the signal generated therefrom is sent to a control unit to obtain closed loop temperature control in order to maintain the temperature deviation of the strip preferably in a tolerance range of ±2-5° C.
In a very advantageous embodiment of the invention, the plant comprises one or more devices to increase the turbulence in the acid solution. As initially illustrated, the increase in turbulence increases the pickling reaction rate and shortens the time the strip stays inside the tanks. Possible devices for this purpose, which may be used alone or in combination thereof are:
Preferably, each cell is divided by the passing strip into an upper part and a lower part. The submerged strip is processed in a horizontal tunnel consisting of a series of tanks having turbulence cells divided into an upper part located under the cover of the tanks and above the strip and a lower part located at the bottom of the tank below the strip. These cells are for example delimited by inlet and outlet granite thresholds coinciding for the upper and lower parts. The upper turbulence sprays are located at the upper part and the lower sprays at the lower part. These sprays are preferably immersed below the level of the free surface of the acid in the tank.
Not having a sealing function, the inlet and outlet sprays (in particular when immersion rollers are provided) can be designed for pressures usually lower than 1 bar with obvious repercussions on the dimensioning of the recirculation pipes, simplifying the choice of materials and design criteria and allowing a substantial benefit in cost.
Turbulence fins can be located in the most varied positions within the cell, such as at the bottom of the tank or on ramps inserted in the cells to create an acid recirculation within the cell, as described in EP 1 054 079 B1. In addition to the protection/separation granite thresholds, the upper, lower and side walls of each cell can have these fins that allow the increase of turbulence inside the cell.
The upper and lower spray bars are responsible for accelerating the pickling by increasing the turbulence. They can be found in the above mentioned upper and lower parts of the cell. The accelerators are useful with hard-to-pickle strips, such as Si or Mn steels.
Advantageously, spray bars are placed at the entrance and exit of the tunnel to increase the turbulence on both the upper and lower surface of the strip. In addition, to facilitate the removal of the oxides on the edge of the strip, side nozzles, usually but not necessarily four in number, are advantageously provided on the edge of the tank.
For cases where the pickling process must process steel strips with significant Si and/or Mn contents, in view of the peculiar characteristics of these oxides, it is useful to introduce this pickling accelerator concept in the process section, to be activated when these types of steels are treated.
From the considerations made above relating to the morphology of the oxides of these steels, it is appropriate to insert this system in the last pickling tank.
For this purpose, this system solution can provide for the insertion of different spray ramps located above and below the surfaces of the strip, depending on the type of materials to be treated and the designed process speed; the number of spray ramps can vary, for example from two to eight per surface, usually at least four will be installed.
These additional spray bars are advantageously fed by a dedicated pump located at the recirculation tank of the last pickling tank. This spray bar system is usually disconnected and only activates when process conditions require it.
As already explained above, advantageously, the presence of an external recirculation tank is maintained, into which the acid is discharged in the event of a tank stop, in the feed section to the tank with a maximum pressure of 1 bar at the nozzles. The heat exchanger for heating the solution is also advantageously inserted.
In a preferred embodiment of the invention, the pickling plant further comprises at the entrance and exit of each tank immersion rollers dimensioned such that the level of overflow of the free surface of the acid solution is lower than the central axis of the roller, where these rollers define the passage of the metal product in the turbulence cells by dividing them into an upper turbulence cell and a lower turbulence cell. Immersion rollers, also of small diameters, make the use of hydraulic seal sprays and high-seal pipes unnecessary.
The rollers are ideally inserted after a pair of inlet drying rollers or squeezers and before the outlet rollers. The diameter defined above, i.e. ensuring the position of the roller shaft above the overflow of the free surface of the tank, ensures that the bearings are never in contact with the acid solution.
In a further advantageous embodiment of the invention, the pickling plant further comprises upstream of the pump of the first process tank a pipe with a suitable regulation valve for adding fresh acid. The insertion of this additional equipment helps increase the efficiency of the first pickling tank. The fresh acid can in exemplary form have a concentration of HCl of from 150 to 200 g/L, usually about 180 g/L and an iron concentration from 0 to 40 g/L, usually about 20 g/L. The addition of iron serves to lower the concentration of the acid. The temperature of the fresh acid usually ranges from +10° C. to +50° C., usually around +40° C. To facilitate the effective action of the addition of fresh acid, the same is advantageously added immediately upstream of the delivery pump to have a complete mixing.
This further embodiment of the invention is therefore related to the possibility of increasing the concentration of acid in the first tank, in all cases where it is necessary to increase the ability to remove the pickling oxide. This system consists in the possibility of delivering fresh acid immediately upstream of the pump(s), using for example an automatic valve such as a controlled opening valve and a supply delivery tube of the first pickling tank.
In the case of customers characterized by low production volumes and a mix of easily pickled products (set of low toughness oxides and minimum thickness of the same), a solution suitable for the purpose based on only two pickling tanks has been devised.
In this way, the solution with three or four tanks can be reserved only for customers with medium-high needs both in terms of production volume and in terms of the amplitude of the mix to be treated.
In particular, in the case of only two process tanks, it is evident that appropriate modifications to the recirculation system are necessary to avoid an inadequate concentration of Fe in the spent solution discharged to the acid regeneration plant.
For this purpose, in a particularly advantageous embodiment of the invention, the system provides for the presence of only two process tanks where in the last tank there is provided, preferably on the bottom thereof, a first overflow drain with a low iron concentration and a second overflow drain at increased iron concentration, where the two drains feed a respective recirculation tank that for this purpose contains a first chamber for the solution at low iron concentration and a second chamber for the solution at increased iron concentration, separated by a wall of weir.
In other words, in order to obtain a gradual increase of the iron in solution, the following measures are therefore envisaged: the addition of an overflow drain placed at approximately one or two thirds of the length of the process tank in addition to the existing drain at the end of the tank and the division of the recirculation tank into two halves by inserting an overflow barrier in order to obtain a different concentration of Fe and acid in the two halves. The delivery pumps are advantageously dedicated to each half of the recirculation tank.
An embodiment of the invention thus allows hot rolled strips to be processed only with two pickling tanks. In order to avoid an incorrect use of the acid and to allow the production of spent acid with the correct amount of Fe, a modification of the recirculation system and pickling tank was necessary and resolved by the invention, and precisely the solution consists in an overflow drain at low concentration of Fe and one at increased concentration realized in the pickling tank placed as the last tank, in which the two drains pour the solution into the recirculation tank, where two chambers separated by a wall of weir are realized. In this way there will be a different concentration of Fe between the two chambers, thus obtaining a correct use of the acid solution.
It is understood that a last tank with the innovative acid recirculation system can be provided not only within a plant with a succession of only two process tanks, but also in plants containing three or more pickling tanks.
Considering that the audience of potential users of pickling plants according to the invention can be very heterogeneous both in terms of expected tons/hour or tons/month capacity of the plant and in terms of production mix, the above described applications are designed so as to be modular among themselves, allowing a simple definition of the plant, being constituted by a set of easily addable or removable modules.
Another aspect of the invention relates to a pickling process, preferably performed with a plant according to the invention, which comprises the following steps:
Advantageously, the metal product is immersed in the acid by means of immersion rollers as described above that define the passage of the strip in the turbulence cells. Advantageously, the scale removal capacity is controlled through the acid flow rate regulated by acid sprays entering and exiting the tanks.
Preferably, the descaling capacity of the first process tank is increased by introducing fresh acid into the first tank.
In an embodiment of the process according to the invention, the turbulence inside the tanks is increased by inserting into the tanks one or more of the devices (i) to (iii) of claim 2, in particular the devices with pickling acceleration capacity.
A further aspect of the invention relates to a pickling tank with multiple turbulence cells equipped with one or more of the devices for increasing turbulence according to claim 2. Optionally, this tank is further provided with an acid recirculation system and a system for adding fresh acid therein, within the meaning of the fourth claim.
A further aspect of the invention relates to a pickling tank which provides in the tank, preferably at the bottom thereof, a first overflow drain with a low iron Fe concentration and a second overflow drain at increased iron Fe concentration, where the two drains feed a respective recirculation tank connected to said tank which for this purpose contains a first chamber for low Fe concentration and a second chamber for increased Fe concentration, separated by a wall of weir.
In a preferred embodiment of the invention, the plant according to the invention comprises a tank of the type just described as the last tank. Upstream of this tank can be inserted one or more, advantageously only one, “traditional” tank(s) that do not provide drains at different concentrations of iron that feed two chambers inside a recirculation tank separated by a wall of weir. Advantageously, the plant comprises a strip pre-heating system upstream of all the tanks as described above.
The features described for one aspect of the invention may be transferred mutatis mutandis to the other aspects of the invention.
Referring to
Further features and advantages of the invention will become more apparent in light of the detailed description of the preferred, but not exclusive, embodiments of a pickling plant and process, illustrated by way of non-limiting example with the aid of the accompanying drawing tables wherein the same reference numbers in the figures identify the same elements or components and the last two identical digits of each reference number correspond to the same type of element in different embodiments.
During operation, further embodiment modifications or variants of the pickling plant and pickling process of the invention, not described herein, may be implemented. If such modifications or such variants should fall within the scope of the following claims, they should all be considered protected by the present patent.
Number | Date | Country | Kind |
---|---|---|---|
102019000006234 | Apr 2019 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/053783 | 4/22/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/217180 | 10/29/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4073301 | Mackinnon | Feb 1978 | A |
4807653 | Cipriano et al. | Feb 1989 | A |
4996998 | Seiz et al. | Mar 1991 | A |
5060683 | Seiz | Oct 1991 | A |
5466309 | Davene | Nov 1995 | A |
5803981 | Lordo | Sep 1998 | A |
6260563 | Lordo et al. | Jul 2001 | B1 |
20170268114 | Marx | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
1054079 | May 2004 | EP |
2701410 | Aug 1994 | FR |
2701493 | Aug 1994 | FR |
5920478 | Feb 1984 | JP |
2003277958 | Oct 2003 | JP |
2005138843 | Jun 2007 | RU |
2325965 | Jun 2008 | RU |
Entry |
---|
“Chinese Application Serial No. 202080031256.2 Non Final Office Action dated Feb. 10, 2023”, w English Translation, 10 pgs. |
“Russian Application Serial No. 2021133411 05, Office Action dated Jun. 7, 2022”, w English Translation, (Jun. 7, 2022), 16 pgs. |
“International Application Serial No. PCT/IB2020/053783, International Preliminary Report on Patentability dated Aug. 6, 2021”, (Aug. 6, 2021), 17 pgs. |
“International Application Serial No. PCT/IB2020/053783, International Search Report dated Jul. 21, 2020”, (Jul. 21, 2020), 4 pgs. |
“International Application Serial No. PCT/IB2020/053783, Written Opinion dated Jul. 21, 2020”, (Jul. 21, 2020), 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20230031905 A1 | Feb 2023 | US |