Picosecond optical radiation systems and methods of use

Information

  • Patent Grant
  • 10245107
  • Patent Number
    10,245,107
  • Date Filed
    Friday, July 25, 2014
    10 years ago
  • Date Issued
    Tuesday, April 2, 2019
    5 years ago
Abstract
Methods, systems and apparatus are disclosed for delivery of pulsed treatment radiation by employing a pump radiation source generating picosecond pulses at a first wavelength, and a frequency-shifting resonator having a lasing medium and resonant cavity configured to receive the picosecond pulses from the pump source at the first wavelength and to emit radiation at a second wavelength in response thereto, wherein the resonant cavity of the frequency-shifting resonator has a round trip time shorter than the duration of the picosecond pulses generated by the pump radiation source. Methods, systems and apparatus are also disclosed for providing beam uniformity and a sub-harmonic resonator.
Description
FIELD

The present disclosure relates generally to dermatological systems, methods, and devices and, in particular, to systems, methods, and devices for applying optical radiation, e.g. laser radiation in the visible and near infrared wavelengths, to treat tattoos, and other pigmentation disorders.


BACKGROUND

The use of lasers, as controllable sources of relatively monochromatic and coherent radiation, is becoming increasingly common in diverse fields such as telecommunications, data storage and retrieval, entertainment, research, and many others. In the area of medicine, for example, lasers have proven useful in surgical and cosmetic procedures in which a precise beam of high energy radiation can cause localized effects through photothermal processes (e.g., selective photothermolysis) and/or photomechanical processes (e.g., induction of cavitation bubbles and acoustic shock waves). In dermatology specifically, lasers have been used in a wide variety of procedures including hair removal, skin resurfacing, removal of unwanted veins, and the clearance of both naturally-occurring and artificial skin pigmentations (e.g., birthmarks, port wine stains, and tattoos).


Whereas early laser tattoo removal procedures often utilized non-selective ablation of tissue at the tattoo site with water serving as the target chromophore, recent procedures have instead utilized Q-switched lasers capable of producing high-powered, nanosecond pulses to induce photomechanical breakdown of the tattoo particles themselves. In addition to pulse duration and power, the wavelength of the radiation is also an important parameter in the efficacy of a treatment. For example, though alexandrite lasers emitting picosecond pulses at wavelengths between 750 and 760 nm have been found to be especially effective at treating black, blue, and green tattoo pigments (Brauer et al., “Successful and Rapid Treatment of Blue and Green Tattoo Pigment With a Novel Picosecond Laser,” Archives of Dermatology, 148(7):820-823 (2012)), radiation in the 750-760 nm range is not nearly as effective in removing red or orange tattoos due to the low absorption coefficient of orange and red tattoo pigments at such wavelengths.


Accordingly, there exists a need for improved methods and apparatus for producing ultra-short pulses of laser radiation at various wavelengths for the treatment of tattoos, pigmented lesions, and other skin disorders.


SUMMARY

Systems, methods, and devices for generating and delivering ultra-short pulses, e.g., picosecond pulses, of laser radiation at multiple wavelengths with low energy losses are provided herein. It has been found, for example, that the picosecond, high power pulses disclosed herein can be particularly effective in removing skin pigmentations, in part, because the pulses induce mechanical waves (e.g., shock waves and pressure waves) at the target sites that cause greater disruption and better clearance of pigment particles. In accordance with various aspects of the present teachings, the wavelength of the applied pulses can be selected to match the absorption spectrum of previously difficult-to-treat pigments (while nonetheless maintaining the ultra-short pulse durations) such that the naturally-occurring and artificial skin pigments can be cleared with a reduced number of treatments relative to known procedures, thereby providing a system that could satisfy a long-felt need in the art. By way of example, the methods and systems disclosed herein can improve the disruption and clearing efficacy of red and orange tattoos by delivering laser pulses having a wavelength between about 400 and about 550 nm, where these pigments exhibit much higher absorption coefficients.


In accordance with various aspects, certain embodiments of the applicants' teachings relate to an apparatus for delivery of pulsed treatment radiation. The apparatus can comprise a pump radiation source generating picosecond pulses at a first wavelength, and a wavelength-shifting resonator having a lasing medium and resonant cavity configured to receive the picosecond pulses from the pump radiation source at the first wavelength and to emit radiation at a second wavelength in response thereto. The resonant cavity of the wavelength-shifting resonator has a round trip time shorter than the duration of the picosecond pulses generated by the pump radiation source, and in some aspects, the wavelength-shifting resonator can have a round trip time at least 5 times shorter than the duration of the picosecond pulses generated by the pump radiation source (e.g., at least 10 times shorter).


In accordance with various aspects of the present teachings, the wavelength-shifting resonator can have a variety of configurations to produce the wavelength-shifted picosecond pulses provided herein. By way of example, the wavelength-shifting resonator can have a cavity length that is from about 0.1 millimeters to about 150 millimeters, or from about 60 millimeters to about 120 millimeters, or from about 80 millimeters to about 100 millimeters. However, in one example, the wavelength-shifting resonator can have a cavity length less than 10 millimeters (e.g., a cavity length between 0.1 and 10 millimeters). In various aspects, for example, the wavelength-shifting resonator has a cavity length between 1 and 8 millimeters. By way of non-limiting example, the resonator can comprise a neodymium-doped vanadate crystal (Nd:YVO4) crystal having a length between the input side and the output side of about 3 mm or a neodymium-doped yttrium-aluminum garnet crystal (Nd:YAG) having a length between the input side and output side of less than about 8 mm (e.g., about 6 mm).


As indicated above, the lasing medium can comprise a variety of materials for receiving the pump pulse from the pump radiation source. By way of example, the lasing medium of the wavelength-shifting resonator can comprise a neodymium-doped crystal, including, a solid state crystal medium selected from the group of neodymium-doped yttrium-aluminum garnet (Nd:YAG) crystals, neodymium-doped pervoskite (Nd:YAP or Nd:YAlO3) crystals, neodymium-doped yttrium-lithium-fluoride (Nd:YAF) crystals, and neodymium-doped, vanadate (Nd:YVO4) crystals. Moreover, in some aspects, the lasing medium can comprise between about 1 and about 3 percent neodymium.


In various aspects, the apparatus can produce polarized optical radiation. For example, the apparatus can comprise a polarizer configured to polarize optical radiation emitted by the wavelength-shifting resonator. Additionally or alternatively, the apparatus can comprise a polarizer embedded within the resonant cavity of the wavelength-shifting resonator. Additionally or alternatively, the lasing medium of the wavelength-shifting resonator can be a substantially polarizing medium.


In some aspects, the apparatus can further comprise a frequency-doubling waveguide. By way of example, the frequency-doubling waveguide can comprise a second harmonic generating, nonlinear crystal material that can receive the radiation emitted by the wavelength-shifting resonator to output a pulse having twice the frequency of the input pulse (i.e., half the wavelength). In various aspects, the frequency-doubling waveguide can comprise a lithium triborate (LiBO3O5) material. In a related aspect, an amplifier can be disposed between the wavelength-shifting resonator and the frequency-doubling waveguide.


The pump radiation source can in various embodiments have a variety of configurations. By way of example, the pump radiation source can be a mode-locked laser, that in some embodiments can comprise a resonator, a lasing medium, a Pockels cell and a controller, wherein the controller generates a mode-locked pulse by applying a periodic voltage waveform to the Pockels cell. In some aspects, the mode-locked laser can comprise an alexandrite laser configured to produce pulsed laser energy at about 755 nm having at least about 100 mJ/pulse (e.g., from about 200 to about 800 mJ/pulse). In various aspects, the mode-locked laser can generate pulsed laser energy having a pulse duration of less than 1000 picoseconds (e.g., about 860 picoseconds).


In accordance with various aspects of the present teachings, the apparatus can further comprise a treatment beam delivery system configured to apply a treatment beam to a patient's skin. In some aspects, the treatment beam can comprise at least one of picosecond pulses from the pump radiation source at the first wavelength, picosecond pulses emitted by the wavelength-shifting resonator at the second wavelength, and picosecond pulses at a third wavelength, wherein the picosecond pulses at the third wavelength are output by a frequency-doubling waveguide that receives the picosecond pulses at the second wavelength. In various embodiments, the first wavelength can be about 755 nm, the second wavelength can be about 1064 nm, and the third wavelength can be about 532 nm. Additionally, the apparatus can be operated so as to enable the selection of the wavelength of the pulse(s) to be applied to a patient's skin through the treatment beam delivery system. The apparatus can also control the wavelength-shifting resonator temperature.


In accordance with various aspects, certain embodiments of the applicants' teachings relate to a method for shifting the wavelength of a picosecond optical radiation pulse. The method can comprise generating a pulse of optical radiation at a first wavelength and having a duration less than 1000 picoseconds, pumping a wavelength-shifting resonator with the pulse of optical radiation at the first wavelength, the wavelength-shifting resonator comprising a laser crystal with a high absorption coefficient at the first wavelength, and extracting a pulse of radiation at a second wavelength emitted by the wavelength-shifting resonator, wherein the pulse at the second wavelength also has a duration of less than 1000 picoseconds. The round trip time of the wavelength-shifting resonator is shorter than the pumping laser pulse duration. For example, the wavelength-shifting resonator can have a round trip time at least 10 times shorter than the duration of the pumping pulse.


In various aspects, the method can further comprise one or more of polarizing, amplifying, and frequency-doubling the output of the wavelength-shifting resonator. For example, in some aspects, a polarizer can be configured to polarize optical radiation emitted by the wavelength-shifting resonator. Additionally or alternatively, a polarizer can be embedded within the resonant cavity of the wavelength-shifting resonator or the lasing medium of the wavelength-shifting resonator can be a substantially polarizing medium. In some aspects, the pulse of radiation at a second wavelength can be transmitted to a frequency doubling crystal so as to generate a pulse having twice the frequency of the input pulse (i.e., half the wavelength).


In accordance with various aspects, certain embodiments of the applicants' teachings relate to a method for treating tattoos or skin pigmentation disorder using a picosecond optical radiation source. The method can comprise employing a pump radiation source to generate a pulse of optical radiation at a first wavelength, wherein the pulse has a duration of less than 1000 picoseconds, and pumping a wavelength-shifting resonator with the pulse of optical radiation at the first wavelength, the wavelength-shifting resonator comprising a laser crystal with high absorption coefficient at the first wavelength, and extracting a pulse of radiation at a second wavelength emitted by the wavelength-shifting resonator, wherein the pulse at the second wavelength also has a duration of less than 1000 picoseconds. In accordance with the present teachings, the round trip time of the wavelength-shifting resonator can be shorter than the pumping laser pulse duration. The method can further comprise delivering the pulse of radiation at the second wavelength to a frequency-doubling waveguide so as to generate a pulse of radiation at a third wavelength, wherein the pulse at the third wavelength also has a duration of less than 1000 picoseconds, and directing the pulse at the third wavelength to a tattoo pigment or a skin pigmentation target to disrupt the target and promote clearance thereof. By way of example, the first wavelength can be about 755 nm, the second wavelength can be about 1064 nm, and the third wavelength can be about 532 nm, and the method can comprise selecting the wavelength of the pulse(s) to be applied to a patient's skin.


In accordance with various aspects, certain embodiments of the applicants' teachings relate to a method for removing a tattoo or treating a skin pigmentation disorder. The method comprises applying pulses having a duration less than 1000 picoseconds to an area of a patient's skin comprising a tattoo pigment or skin pigmentation so as to generate photomechanical disruption of the tattoo pigment or skin pigmentation, wherein the pulses have a wavelength in a range of about 400 nm to about 550 nm (e.g., about 532 nm). In some aspects, the method further comprises utilizing a Nd:YVO4 lasing medium to generate picosecond pulses of radiation having a wavelength of about 1064 nm, and frequency doubling the picosecond pulses having a wavelength of about 1064 nm to generate picosecond pulses having a wavelength of about 532 nm.


In one aspect, the disclosure relates to an apparatus for delivery of a pulsed treatment radiation such as a laser. The laser having a light source, a resonator having a mode lock element, and a lasing medium such as an active lasing medium. The lasing medium is impinged upon by the light source. An element is disposed between the light source and the lasing medium, the element enables a substantially uniform gain across the lasing medium. The laser can include a second light source. The first light source and/or the second light source can be a pumped radiation source such a flash lamp. In one embodiment, the lasing medium is an alexandrite crystal. The element can be, for example, an alumina rod having a diameter of about 0.063 inches. The element can be at least one of a deflector, a scattering element, a refractor, a reflector, an absorber, and a baffle. In one embodiment, element is equidistant from the flash lamp and the lasing media. In another embodiment, the element is disposed on the lasing medium, is disposed on the light source, or is disposed on both the lasing medium and the light source.


In another aspect, the disclosure relates to an apparatus for delivery of a pulsed treatment radiation such as a laser. The laser includes a light source and a resonator having a multimode output, a mode lock element and an astigmatic element disposed inside the resonator. The astigmatic element can prevent free space propagation modes such as Hermites within the multimode output from coupling together. In this way, beam uniformity is improved with the use of the astigmatic element compared to where the astigmatic element is absent. Suitable astigmatic elements can include, for example, at least one of a cylindrical lens, an angled spherical lens, and a prism (e.g., an anamorphic prism).


In another aspect, the disclosure relates to a resonator (e.g., an oscillator) for a mode locked laser having a fundamental frequency which is the speed of light divided by the round trip optical path length (2L) of the resonator and a mode locking element (e.g., a Pockels cell) that is modulated at a frequency that is less than the fundamental frequency. The frequency can be a sub-harmonic (l/n) of the speed of light (c) divided by the round trip optical path length (2L) where (n) is whole number greater than 1. The resonator can be employed in an apparatus for delivery of a pulsed treatment radiation, such as a laser, to treat tissue.


In another aspect, the disclosure relates to a resonator (e.g., an oscillator) for a mode locked laser that provides a frequency corresponding to a fundamental round trip optical path length (2L) in a mode locked resonator and selecting a sub-harmonic optical path length that is shortened by dividing the fundamental round trip optical path length (2L) by a sub-harmonic factor (n), which is a whole number greater than 1, and the sub-harmonic total path length has n round trip optical path lengths. The resonator can be employed in a laser to treat tissue.


These and other features of the applicants' teachings are set forth herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The skilled person in the art will understand that the drawings, described below, are for illustration purposes only. The drawings are not intended to limit the scope of the applicants' teachings in any way.



FIG. 1, in a schematic diagram, illustrates an exemplary system having a wavelength-shifting resonator for generating picosecond pulses in accordance with various aspects of the applicants' teachings.



FIG. 2, in a schematic diagram, illustrates an exemplary system having a wavelength-shifting resonator, the system for generating multiple wavelengths of picosecond pulses in accordance with various aspects of the applicants' teachings.



FIG. 3, in a schematic diagram, illustrates an exemplary wavelength-shifting resonator having an embedded polarizer for use in the systems of FIGS. 1 and 2 in accordance with various aspects of the applicants' teachings.



FIG. 4 depicts an exemplary output pulse of an Nd:YAG resonator operated in accordance with various aspects of the applicants' teachings.



FIG. 5 depicts an exemplary output pulse of an Nd:YVO4 resonator operated in accordance with various aspects of the applicants' teachings.



FIG. 6 illustrates an example of the output pulse shape of a short resonator Nd:YAG laser with a 70% output coupler.



FIG. 7 is a cross-section of a pump chamber in accordance with various aspects of the applicants' teachings.



FIG. 8 is an axial-view image of the fluorescence of a pumped laser rod in accordance with various aspects of the applicants' teachings.



FIG. 9 is a graph depicting the normalized gain distribution in an unmodified diffuse pump chamber.



FIG. 10 is an axial-view image of the fluorescence of a pumped laser rod in accordance with an embodiment of the present disclosure.



FIG. 11 is a graph depicting the normalized gain distribution in a modified diffuse pump chamber in accordance with an embodiment of the disclosure.



FIG. 12 is a laser beam profile image of a mode-locked laser using an unmodified pump chamber in accordance with various aspects of the applicants' teachings.



FIG. 13 is a laser beam profile image of a mode-locked laser using a modified pump chamber in accordance with an embodiment of the disclosure.



FIG. 14A shows a laser intensity profile that includes the free space propagation mode effects caused by two propagating Hermite fields that are in phase with one another in accordance with various aspects of the applicants' teachings.



FIG. 14B shows a laser intensity profile when an astigmatic element is introduced to decouple propagating Hermite fields such that they are not in phase with one another in accordance with various aspects of the applicants' teachings.



FIG. 15A shows the modulation signal applied to the Pockels cell in a picosecond resonator and the intensity that builds up in the resonator over time in accordance with various aspects of the applicants' teachings.



FIG. 15B shows the modulation signal applied to the Pockels cell in a sub-harmonic picosecond resonator and the intensity that builds up in the resonator over time in accordance with various aspects of the applicants' teachings.



FIG. 16, in a schematic diagram, illustrates an exemplary system for generating picosecond pulses in accordance with various aspects of the applicants' teachings.



FIG. 17 is a plot of the seed pulse generation with a laser capable of generating a sub-harmonic pulse group at 300 mV when the Pockels cell voltage was low and at 190 mV when the Pockels cell voltage was high in accordance with various aspects of the applicants' teachings.





DETAILED DESCRIPTION

All technical and scientific terms used herein, unless otherwise defined below, are intended to have the same meaning as commonly understood by one of ordinary skill in the art. References to techniques employed herein are intended to refer to the techniques as commonly understood in the art, including variations on those techniques or substitutions of equivalent or later-developed techniques which would be apparent to one of skill in the art. In addition, in order to more clearly and concisely describe the claimed subject matter, the following definitions are provided for certain terms which are used in the specification and appended claims.


The terms “picosecond” or “picosecond pulse,” as used herein, is intended to encompass pulses of optical radiation having durations ranging from 0.1 picoseconds to 1000 picoseconds, preferably less than 1000 picoseconds, e.g., less than 900 picoseconds, less than 800 picoseconds or less than 700 picoseconds. For non-square pulses, pulse durations are typically measured by the full width at half maximum (FWHM) technique.


As used herein, the recitation of a numerical range for a variable is intended to convey that the embodiments may be practiced using any of the values within that range, including the bounds of the range. Thus, for a variable which is inherently discrete, the variable can be equal to any integer value within the numerical range, including the end-points of the range. Similarly, for a variable which is inherently continuous, the variable can be equal to any real value within the numerical range, including the end-points of the range. As an example, and without limitation, a variable which is described as having values between 0 and 2 can take the values 0, 1 or 2 if the variable is inherently discrete, and can take the values 0.0, 0.1, 0.01, 0.001, or any other real values≥0 and ≤2 if the variable is inherently continuous. Finally, the variable can take multiple values in the range, including any sub-range of values within the cited range.


As used herein, unless specifically indicated otherwise, the word “or” is used in the inclusive sense of “and/or” and not the exclusive sense of “either/or.”


In accordance with various aspects of the applicants' teachings, the systems and methods described herein can be effective to deliver picosecond pulses of laser radiation for the treatment of naturally-occurring and artificial skin pigmentations utilizing wavelengths that match the pigmentations' absorption spectrum. The picosecond, high power pulses disclosed herein can be particularly effective in removing these previously-difficult to treat skin pigmentations, in part, because the pulses induce photomechanical shock waves at the target sites that cause greater disruption and better clearance of pigment particles. By way of example, the methods and systems disclosed herein can improve the clearing of red and orange tattoos with a reduced number of treatments by delivering picosecond laser pulses having a wavelength between 400 and 550 nm, where these pigments exhibit much higher absorption coefficients. Moreover, applicants have discovered that various embodiments of the wavelength-shifting resonators described herein can surprisingly generate particularly efficacious pulses exhibiting picosecond pulsewidths shorter than the input pumping pulses, with low energy losses and/or minimal pulse-shaping (e.g., without use of a modelocker, Q-switch, pulse picker or any similar device of active or passive type).


The present disclosure relates to laser systems having sub-nanosecond pulsing (e.g., picosecond pulsing). Exemplary systems are described in our U.S. Pat. Nos. 7,929,579 and 7,586,957, both incorporated herein by reference. These patents disclose picosecond laser apparatuses and methods for their operation and use. Herein we describe certain improvements to such systems.


With reference now to FIG. 1, an exemplary system 100 for the generation and delivery of picosecond-pulsed treatment radiation is schematically depicted. As shown in FIG. 1, the system generally includes a pump radiation source 110 for generating picosecond pulses at a first wavelength, a wavelength-shifting resonator 120 for receiving the picosecond pulses generated by the pump radiation source and emitting radiation at a second wavelength in response thereto, and a treatment beam delivery system 130 for delivering a pulsed treatment beam to the patient's skin.


The pump radiation source 110 generally generates one or more pulses at a first wavelength to be transmitted to the wavelength-shifting resonator 120, and can have a variety of configurations. For example, the pulses generated by the pump radiation source 110 can have a variety of wavelengths, pulse durations, and energies. In some aspects, as will be discussed in detail below, the pump radiation source 110 can be selected to emit substantially monochromatic optical radiation having a wavelength that can be efficiently absorbed by the wavelength-shifting resonator 120 in a minimum number of passes through the gain medium. Additionally, it will be appreciated by a person skilled in the art in light of the present teachings that the pump radiation source 110 can be operated so as to generate pulses at various energies, depending for example, on the amount of energy required to stimulate emission by the wavelength-shifting resonator 120 and the amount of energy required to perform a particular treatment in light of the efficiency of the system 100 as a whole.


In various aspects, the pump radiation source 110 can be configured to generate picosecond pulses of optical radiation. That is, the pump radiation source can generate pulsed radiation exhibiting a pulse duration less than about 1000 picoseconds (e.g., within a range of about 500 picoseconds to about 800 picoseconds). In an exemplary embodiment, the pump radiation source 110 for generating the pump pulse at a first wavelength can include a resonator (or laser cavity containing a lasing medium), an electro-optical device (e.g., a Pockels cell), and a polarizer (e.g., a thin-film polarizer), as described for example with reference to FIG. 2 of U.S. Pat. No. 7,586,957, issued on Sep. 8, 2009 and entitled “Picosecond Laser Apparatus and Methods for Its Operation and Use.” the contents of which are hereby incorporated by reference in its entirety.


In an exemplary embodiment, the lasing or gain medium of the pump radiation source 110 can be pumped by any conventional pumping device such as an optical pumping device (e.g., a flash lamp) or an electrical or injection pumping device. In an exemplary embodiment, the pump radiation source 110 comprises a solid state lasing medium and an optical pumping device. Exemplary solid state lasers include an alexandrite or a titanium doped sapphire (TIS) crystal, Nd:YAG lasers, Nd:YAP, Nd:YAlO3 lasers, Nd:YAF lasers, and other rare earth and transition metal ion dopants (e.g., erbium, chromium, and titanium) and other crystal and glass media hosts (e.g., vanadate crystals such as YVO4, fluoride glasses such as ZBLN, silica glasses, and other minerals such as ruby). At opposite ends of the optical axis of the resonator can be first and second mirrors having substantially complete reflectivity and/or being substantially totally reflective such that a laser pulse traveling from the lasing medium towards second mirror will first pass through the polarizer, then the Pockels cell, reflect at second mirror, traverse Pockels cell a second time, and finally pass through polarizer a second time before returning to the gain medium. The terms “substantially complete reflectivity” and/or “substantially totally reflective” are used to indicate that the mirrors completely reflect incident laser radiation of the type normally present during operation of the resonator, or reflect at least 90%, preferably at least 95%, and more preferably at least 99% of incident radiation.


Depending upon the bias voltage applied to the Pockels cell, some portion (or rejected fraction) of the energy in the pulse will be rejected at the polarizer and exit the resonator along an output path to be transmitted to the wavelength-shifting resonator 120. Once the laser energy, oscillating in the resonator of the pump radiation source 110 under amplification conditions, has reached a desired or maximum amplitude, it can thereafter be extracted for transmission to the wavelength-shifting resonator 120 by changing the bias voltage to the Pockels cell such that the effective reflectivity of the second mirror is selected to output laser radiation having the desired pulse duration and energy output.


The wavelength-shifting resonator 120 can also have a variety of configurations in accordance with the applicant's present teachings, but is generally configured to receive the pulses generated by the pump radiation source 110 and emit radiation at a second wavelength in response thereto. In an exemplary embodiment, the wavelength-shifting resonator 120 comprises a lasing medium and a resonant cavity extending between an input end and an output end, wherein the lasing medium absorbs the pulses of optical energy received from the pump radiation source 110 and, through a process of stimulated emission, emits one or more pulses of optical laser radiation exhibiting a second wavelength. As will be appreciated by a person skilled in the art in light of the present teachings, the lasing medium of the wavelength-shifting resonator can comprise a neodymium-doped crystal, including by way of non-limiting example solid state crystals of neodymium-doped yttrium-aluminum garnet (Nd:YAG), neodymium-doped pervoskite (Nd:YAP or Nd:YAlO3), neodymium-doped yttrium-lithium-fluoride (Nd:YAF), and neodymium-doped vanadate (Nd:YVO4) crystals. It will also be appreciated that other rare earth transition metal dopants (and in combination with other crystals and glass media hosts) can be used as the lasing medium in the wavelength-shifting resonator. Moreover, it will be appreciated that the solid state laser medium can be doped with various concentrations of the dopant so as to increase the absorption of the pump pulse within the lasing medium. By way of example, in some aspects the lasing medium can comprise between about 1 and about 3 percent neodymium.


The lasing medium of the wavelength-shifting resonator 120 can also have a variety of shapes (e.g., rods, slabs, cubes) but is generally long enough along the optical axis such that the lasing medium absorbs a substantial portion (e.g., most, greater than 80%, greater than 90%) of the pump pulse in two passes through the crystal. As such, it will be appreciated by a person skilled in the art that the wavelength of the pump pulse generated by the pump radiation source 110 and the absorption spectrum of the lasing medium of the resonator 120 can be matched to improve absorption. However, whereas prior art techniques tend to focus on maximizing absorption of the pump pulse by increasing crystal length, the resonator cavities disclosed can instead utilize a short crystal length such that the roundtrip time of optical radiation in the resonant cavity






(


i
.
e
.

,


t
roundtrip

=

2



L
resonator

c



,






where Lresonator is the optical path length of the resonator (the optical path length can account for differences due to the photons traveling through the lasing medium and/or the air in other parts of the path) and c is the speed of light) in some embodiments the optical path length is substantially less than the pulse duration of the input pulse (i.e., less than the pulse duration of the pulses generated by the pump radiation source 110). For example, in some aspects, the roundtrip time can be less than 5 times shorter than the duration of the picosecond pump pulses input into the resonant cavity (e.g., less than 10 times shorter). Without being bound by any particular theory, it is believed that by shortening the resonant cavity, the output pulse extracted from the resonant cavity can have an ultra-short duration without the need for additional pulse-shaping (e.g., without use of a modelocker, Q-switch, pulse picker or any similar device of active or passive type). For example, the pulses generated by the wavelength-shifting resonator can have a pulse duration less than 1000 picoseconds (e.g., about 500 picoseconds, about 750 picoseconds).


After the picosecond laser pulses are extracted from the wavelength-shifting resonator 120, they can be transmitted directly to the treatment beam delivery system 130 for application to the patient's skin, for example, or they can be further processed through one or more optional optical elements shown in phantom, such as an amplifier 140, frequency doubling waveguide 150, and/or filter (not shown). As will be appreciated by a person skilled in the art, any number of known downstream optical (e.g., lenses) electro-optical and/or acousto-optic elements modified in accordance with the present teachings can be used to focus, shape, and/or alter (e.g., amplify) the pulsed beam for ultimate delivery to the patient's skin to ensure a sufficient laser output, while nonetheless maintaining the ultrashort pulse duration generated in the wavelength-shifting resonator 120.


With reference now to FIG. 2, an exemplary system 200 is depicted that includes a wavelength-shifting resonator 220 as described for example in FIG. 1. As shown in FIG. 2, however, the system 200 can also be used to generate and selectively apply multiple wavelengths of picosecond pulses depending, for example, on the absorption spectrum of the target pigment or tissue. As shown in FIG. 2, the exemplary system generally includes a pump radiation source 210 for generating picosecond pulses at a first wavelength (e.g., an alexandrite source emitting 755 nm pulses having a duration less than 1000 picoseconds), at least one optical element (M1 and/or M2) configured to selectively divert the picosecond pulses at the first wavelength to a wavelength-shifting resonator 220 (e.g., a 1064 nm oscillator configured to receive the pump pulses and generate 1064 nm picosecond pulses of radiation in response thereto), at least one optical element (M3 and/or M4) and a treatment beam delivery system 230 that can deliver the picosecond pulses of one or more wavelengths to the treatment target. As shown in phantom, and discussed otherwise herein, the system 200 can additionally include, for example, an amplifier 240 and a second harmonic generator 250 (e.g., a lithium triborate (LBO) or potassium trianyl phosphate (KTP) frequency doubling crystal).


As discussed above, the wavelength-shifting resonator 220 can comprise a rare earth doped laser gain crystal. In some aspects, rare earth doped laser crystals that generate a polarized laser beam like Nd:YVO4 can be used to eliminate the need for an additional polarizing element. Crystals like Nd:YAG or Nd doped glasses can be used with an additional polarizing element in the resonator. In the exemplary embodiment, the input side of the Nd:YVO4 crystal can be AR coated for the alexandrite wavelength and HR coated for 1064 nm, while the output side of the crystal can be HR coated for the alexandrite wavelength and can exhibit approximately 20 to 70% reflectivity at 1064 nm. In an exemplary embodiment, the Nd:YVO4 crystal length can be selected such that it absorbs most (greater than 90%) of the alexandrite laser pulse in the two passes through the crystal. For example, with neodymium doping in the range 1 to 3%, the Nd:YVO4 crystal can be chosen to be around 3 mm long (with no other optical elements in the resonator, the resonator length is substantially equal to the crystal length of 3 mm). That means the resonator round-trip time is around 39 ps—substantially less than the pulse duration of the alexandrite pumping pulse (around 500 to 800 ps). The 1064 nm pulse generated in the very short round trip time Nd:YVO4 resonator may be slightly longer than the pumping alexandrite pulse and shorter than 1000 ps. The quantum defect will account for a 30% pulse energy loss and another 15% of the energy is likely to be lost due to coatings, crystal and geometry imperfection, for an overall energy conversion efficiency of around 50 to 60% such that 100 mJ pulse energy can be produced at 1064 nm, by way of non-limiting example. In the Second Harmonic Generator 250 the second harmonic conversion in the frequency-doubling crystal is around 50%, such that a 50 mJ pulse energy can therefore be produced at 532 nm. Given the high absorption at 532 nm of red and/or orange tattoo pigments, a 50 mJ, 532 nm pulse with a pulse duration less than 1000 picoseconds can be effective at disrupting, and eventually clearing, red and/or orange tattoo granules.


Though the above described example utilized an Nd:YVO4 crystal in the wavelength-shifting resonator 220 (and without the need for a polarizing element), Nd:YAG crystals or other Nd-doped glasses can alternatively be used as the short resonator to generate the picosecond pulses in response to stimulation from the pump radiation source. In such embodiments, a polarizing element as known in the art can be utilized external to the wavelength-shifting resonator or can be embedded therein. As shown in FIG. 3, for example, a short Nd:YAG resonator 322 can consist of two identically shaped crystals 322a,b with one face 324 cut at an angle that is AR coated for the alexandrite wavelength and polarized-coated for the stimulated emission wavelength (e.g., 1064 nm and high p transmission). The flat faces 326 of the two Nd:YAG crystals can have different coatings-one is AR coated at 755 nm and HR coated at 1064 nm and the other is HR coated for 755 nm and has an output coupler reflectivity around 50 to 80% for 1064 nm. The higher output coupler reflectivity for the Nd:YAG crystal compared to the Nd:YVO4 crystal is due to the lower gain cross-section in Nd:YAG.


With reference again to FIG. 2, it will be appreciated in light of the present teachings that utilizing a wavelength-shifting resonator 220 to generate picosecond pulses depends on the pulse duration of the pumping pulse (e.g., shorter pumping pulses will lead to shorter generated pulses at 1064 nm) and the roundtrip time determined by the length of the resonator cavity (e.g., shorter crystals lead to shorter roundtrip time, however the crystal has to be sufficiently long to absorb greater than 90% of the alexandrite energy). For example, an 8 mm long Nd:YAG resonator would have a 97 ps round trip time. Though such a roundtrip time is longer than the roundtrip time that can be achieved with a Nd:YVO4 resonator, it remains much shorter than the pumping Alexandrite laser pulse duration. It will be appreciated by a person skilled in the art in light of the present teaching that one possible way to shorten the crystal length is to tune the alexandrite laser in the range 750 to 760 nm for maximum absorption in the Nd doped crystal and use the minimum possible crystal length. In addition, by tuning the alexandrite laser in the range of 750 to 757 nm allows for the alexandrite wavelength to be set to avoid the excited state absorption bands in the Nd ion as described by Kliewer and Powell, IEEE Journal of Quantum Electronics vol. 25, page 1850-1854 (1989).


With reference again to FIG. 2, the laser beam emitted by the pump radiation source 210 (e.g., an alexandrite laser source generating pulses at around 755 nm and 200 mJ/pulse, with a pulse duration shorter than 800 ps) can be reflected on 100% reflectors M1 and M2 to serve as the pump beam for the wavelength-shifting resonator 220 (e.g., an Nd:YVO4 or Nd:YAG short round trip time 1064 nm oscillator), thereby stimulating the oscillator 220 to produce up to around 100 mJ pulse energy at 1064 nm at less than 1000 ps pulse duration. The output from the 1064 nm oscillator 220 can be reflected on the 100% reflectors M3 and M4 and can be coupled into the treatment beam delivery system 230.


Alternatively, the output from the 1064 nm oscillator 220 can be amplified in the 1064 nm amplifier 240 to a pulse energy between 200 and 900 mJ, for example, while maintaining the less than 1000 ps pulse duration and then reflected on the 100% reflectors M3 and M4 and coupled into the treatment beam delivery system.


Alternatively or additionally, the output from the 1064 nm oscillator 220 or the output from the 1064 nm amplifier 240 can be converted to second harmonic 532 nm radiation in the Second Harmonic Generator 250. For a typical 50% conversion efficiency in the Second Harmonic Generator 250, the 532 nm pulse output can have a pulse energy around 50 mJ when there is no 1064 nm amplifier, or between 100 to 500 mJ when the 1064 nm pulse is amplified in the 1064 nm amplifier 240 before it reaches the Second Harmonic Generator 250. In both cases, the 532 nm pulse will have a pulse duration of around 750 ps or less due to the pulse shortening effect of the second harmonic conversion process. After being frequency doubled, the 532 nm pulse can propagate in parallel with the 1064 nm pumping pulse. By choosing mirrors M3 and M4 to be 100% reflectors or substantially totally reflective reflectors on both the 1064 nm and 532 nm wavelengths, a combined wavelength treatment can be delivered to the target through the treatment beam delivery system.


Alternatively, in some embodiments, mirrors M3 and M4 can be chosen to be 100% reflectors at 532 nm and 100% transmitters at 1064 nm so as to deliver a single wavelength 532 nm treatment through the treatment beam delivery system. Moreover, by allowing the mirrors (M1, M2) to selectively transmit or deflect the 755 nm alexandrite pulse, for example, by translating the mirrors into and out of the pulse beam, the system 200 can be designed to transmit all three treatment wavelengths 755, 1064 and 532 nm. That is, when mirrors M1 and M4 are moved out of the beam path of the pump radiation source 210, the pulsed pump beam of 755 nm is coupled directly to the treatment beam delivery system to be used for patient treatments.


Example

An example plot of the output pulse shape of a short wavelength-shifting Nd:YAG resonator with a 70% output coupler is shown in FIG. 4, as measured at position (B) of FIG. 1. The Nd:YAG crystal was doped to 1.3 at. % (30% higher than the standard 1 at. % doping) to allow for a shorter resonator—6.2 mm in length, shorter roundtrip time, and a shorter output pulse duration. The Nd:YAG oscillator was pumped by an Alexandrite laser with 200 mJ per pulse, 680 ps pulse duration, and a 4.4 mm spot (as measured at position (A) of FIG. 1). As shown in FIG. 4, the output of the wavelength-shifting Nd:YAG resonator at 1064 nm was 65 mJ per pulse, 750 ps mean pulse duration. The roundtrip time in the Nd:YAG resonator was about 76 picoseconds, substantially shorter than the 680 ps Alexandrite input pulse.


With reference now to FIG. 5, the output pulse shape of a short resonator Nd:YVO4 laser having a length of 3 mm with a 50% output coupler is depicted, as measured at position (B) of FIG. 1. The Nd:YVO4 oscillator was pumped by the output of an Alexandrite laser delivering 200 mJ per pulse, 720 ps pulse duration focused to a 6.3 mm spot (as measured at position (A) of FIG. 1). The pump spot was apertured down to 3.6 mm diameter. As shown in FIG. 5, the output wavelength-shifting Nd:YVO4 resonator at 1064 nm was 34 mJ per pulse, 500 ps mean pulse duration. It is surprising that the output pulse duration of the short pulse Nd:YVO4 laser resonator is shorter than the pulse duration of the pumping Alexandrite pulse—500 ps relative to 720 ps, especially considering that the shorter output pulse duration is achieved without any extra elements in the laser resonator aimed at pulse shaping (e.g., in the resonator there is no modelocker. Q-switch, pulse picker or any similar device of active or passive type). The short Nd:YVO4 resonator is also remarkably and surprisingly efficient. That is, with 33% of the Alexandrite energy being transmitted through the aperture (i.e., 66 mJ), the 34 mJ Nd:YVO4 resonator output is 51% of the pump energy transmitted thereto. The roundtrip time in the Nd:YVO4 resonator was about 39 ps substantially shorter than the 720 ps Alexandrite input pulse.


An example plot of the output pulse shape of a short resonator Nd:YAG laser with a 70% output coupler is shown on FIG. 6. The Nd:YAG oscillator was pumped with 200 mJ per pulse, 860 ps pulse duration, 4 mm spot. The oscillator output at 1064 nm was 96 mJ per pulse, 1030 ps pulse duration. FIG. 6 shows that it is possible to generate and have an output that has a longer pulse duration 1030 ps than the pulse duration of the pumping pulse, 860 ps.


The short pulse output from the short roundtrip time oscillator (e.g., resonator) can be amplified to increase the pulse energy while keeping the pulse duration shorter than 1000 ps as described previously. When the oscillator and amplifier material are the same, for example Nd:YAG or Nd:YVO4, the oscillator output wavelength can be matched to the amplifier gain profile to enable maximum energy extraction from the amplifier.


In one embodiment, the oscillator and amplifier materials are different from one another, optionally, it is advantageous for the oscillator to be made from different materials than the amplifier. For example a Nd:YVO4 oscillator can be designed with a shorter roundtrip time vs a Nd:YAG oscillator, and a shorter output pulse duration will be produced by the Nd:YVO4 oscillator when pumped with a short pulse Alexandrite laser, as compared to a Nd:YAG oscillator as discussed previously. Amplifying the Nd:YVO4 oscillator output in a Nd:YVO4 amplifier is relatively difficult because of the shorter fluorescence lifetime of Nd:YVO4 is 100 μs versus the 230 μs fluorescence lifetime of the Nd:YAG. Amplifying the Nd:YVO4 oscillator output in a Nd:YAG amplifier is possible, but sub-optimal because of the wavelength mismatch of the two different materials. According to Koechner “Solid-State Laser Engineering”, 5th Ed., the laser wavelength of Nd:YVO4 is 1064.3 nm, while the Nd:YAG peak gain wavelength is 1064.1 nm.


More detailed data for the laser output wavelength of a Nd:YVO4 oscillator is published by Mingxin et al. “Performance of a Nd:YVO4 microchip laser with continuous-wave pumping at wavelengths between 741 and 825 nm”, Appl. Opt, v. 32, p. 2085, where the laser output wavelength of a Nd:YVO4 microchip laser is shown to vary when the oscillator temperature is varied such that the laser output is 1063.9 nm when the oscillator temperature is about 0° C. and the laser output is 1064.5 nm when the oscillator temperature is about 100° C. An optimized laser system consisting of a Nd:YVO4 oscillator and a Nd:YAG amplifier can be envisioned where the temperature of the oscillator and/or the amplifier is controlled and/or adjusted such that and the peak wavelength can be varied. In one embodiment, one controls the temperature of the Nd:YVO4 so that it is well amplified in the amplifier. In one embodiment, the temperature of the oscillator and/or the amplifier is controlled so that one can provide a maximum energy output pulse with a minimal pulse duration. The range of temperature adjustment can be between about 0° C. and about 100° C., between about 20° C. and about 80° C., or between about 30° C. and about 70° C.


In addition to temperature control, other possible approaches to controlling and/or varying the peak wavelength can include external pressure applied to the laser material and doping the laser material with trace amounts of elements that would alter, for example, the crystal lattice stress. The approaches to varying peak wavelength such as oscillator and/or amplifier temperature control, pressure applied to the laser material, and doping the laser material can be employed alone or in combination.


Gain Uniformity


Gain uniformity in the lasing medium of a laser (e.g., in a solid state alexandrite lasing medium) has a direct effect on the uniformity of the output beam. In the case of a multi-mode, mode locked laser, as discussed previously herein (e.g., at FIGS. 1 and 2), where the beam energy propagates through the gain medium multiple times, a difference in gain uniformity of only a few percent can cause undesired modes with high peak fluences to develop. Gain uniformity is important because in the early stages of laser profile generation differences in gain uniformity in the lasing medium (e.g., a rod) have an exponential build up. Relatively small differences in the lasing medium gain profile (this is the pump profile) become exacerbated. To optimize the energy extracted from the resonator, a relatively even fluence is most desirable, for example, a round beam of even fluence is preferred. It is desirable to obtain a more uniform fluorescence profile such that the center of the lasing medium, for example, a crystal rod and its edges have substantially the same amount of fluorescence (e.g., a relatively even fluorescence).


In order to generate light via a light source (e.g., a pumped radiation source such as a flash lamp) the light couples into a lasing medium (e.g., a crystal laser rod) and that coupling can be done via a reflecting enclosure. The reflector can be diffuse (e.g., scattered) or specular (e.g., like a silvered surface that is mirror-like and not scattered). The lasing medium (e.g., crystal rod) absorbs the light coupled into it from the flash lamp. An absorption profile develops in lasing medium (e.g., the crystal rod). The function of the lasing medium is to absorb the light from the flash lamp and then to re-emit the light at changed wavelength (e.g., a longer wavelength). Where the lasing medium is a crystal rod if the middle of the rod absorbed the most light the middle of the rod would appear to be the brightest in that emitted wavelength—i.e., to emit the most changed wavelength. The phenomenon of the rod center being brighter than the rod edges is referred to as “fluorescence non-uniformity” this can generally occur for any laser where a flash lamp is coupled to a crystal (e.g., a crystal rod).


Turning now to FIG. 7, a cross section of a traditional dual-flash lamp diffuse pump chamber is depicted. Two flash lamps 713, each encased in glass coolant tubes 715, are arranged in parallel on both sides of a central lasing medium 711 (e.g., an alexandrite crystal rod lasing medium). The two flash lamps 713 and the lasing medium crystal 711 are all encased within a diffusing material 717 as shown in FIG. 7. Any diffusing material which would survive the high intensity light from the flash lamps 713 is suitable. Suitable modifications can include sandblasting a texture on the flash lamps 713 for example, on the coolant tubes 715 that encase the flash lamps 713, or in an area between the flash lamps 713 and the crystal lasing rod 711, shown in FIG. 7 and/or providing a coated a strip of aluminum with a white diffusing coating for example on one or more of the flash lamps 713 (e.g., on the coolant tube(s) 715). Some white diffusing coating examples include potassium sulfate, aluminum oxide, compressed PTFE and fumed silica.


Many factors can contribute to non-uniform gain distribution within the lasing medium. Lasing medium crystals may have different absorption coefficients at different wavelength(s) and/or along different axis of the crystal. This can be further imbalanced by the unequal output spectrum of the flash lamp pump source and how it matches the absorption spectrum of the lasing medium 711 (e.g., the active lasing medium). There is also the magnitude of the quantum defect within the flash lamp pump bands. It is desirable to improve gain uniformity on any material which lases, and the choice of lasing media is considered to be within the skill of an ordinary practitioner in view of the teachings provided herein.


The pump chamber geometry can also contribute to non-uniform gain by coupling more light into the crystal along one direction. In the case of an alexandrite crystal in a diffuse pump chamber, an increase in gain was observed in the direction of the flash lamps.



FIG. 8 depicts an image generated by the pump chamber geometry of FIG. 7, and captured by aligning a camera to the axis of the lasing medium 811 (e.g., the alexandrite crystal laser rod) and imaging the fluorescence of the pumped lasing medium 811 (e.g., the alexandrite crystal laser rod). The end face 814 of the lasing medium 811 is depicted as having a substantially circular boundary. The areas of the laser rod end face 814 that are most proximate to the flash lamps 813 exhibit high gain regions 812.



FIG. 9 depicts a graph showing profiles of the lasing medium 811 described in FIGS. 7 and 8 with the profiles taken along the horizontal axis 818B and along the vertical axis 818A. As can be seen by the graph in FIG. 9, the gain at the edge regions 812 of the end face 814 of the lasing medium 811 (in FIG. 8) in the horizontal direction 8188 may be about 5 to 10 percent higher than the gain in the vertical direction 818A. These edge region 812 peaks correspond to the high gain regions depicted in the image of FIG. 8. This uneven gain distribution is problematic in that it leads to failure of the laser system due, for example, to uneven heating of the lasing medium that results in system breakdown and unacceptable down time and repair times. Further, where there is substantially uniform beam gain one can increase the system power output with less system failure than in the system where the gain is not uniform.


Accordingly, in order to improve system reliability, it is desirable to lessen and/or eliminate these gain peaks such that gain is substantially uniform across all axis of the lasing medium (e.g., that the gain is substantially uniform along both the horizontal axis 818B and along the vertical axis 818A of the lasing medium).


Embodiments of the present disclosure that improve gain uniformity include an optical system comprising a pump chamber with one or more elements that enable a substantially uniform gain across the lasing medium, for example, diffusing element(s) disposed between a flash lamp and a crystal. Elements that enable a substantially uniform gain across the lasing medium can include, for example, light shaping elements for example deflectors that lead to diffusion, scattering, refraction, and/or reflection or elements that provide absorption. In one embodiment, the element that enables a substantially uniform gain across the lasing medium is a diffusing element that acts to scatter a portion of the light coupling into the crystal and to increase the diffuse illumination of the rod, thereby avoiding non-uniform high-gain regions and achieving a circular symmetry to the gain region within the crystal rod.


Referring to FIGS. 10 and 11, relatively uniform fluorescence can be achieved via elements that enable a substantially uniform gain across the lasing medium. Suitable elements include diffusing elements 1019. The stored photons from the rod fluoresce and enter into the cavity of the resonator formed by two or more mirrors. The photons travel between at least two mirrors that are along the relatively long axis of the gain medium and the photons build up energy through multiple trips between the opposing mirrors, which are substantially totally reflective. It is during this buildup of energy that the impact of the contrast between a non-uniform fluorescence and a relatively uniform fluorescence can be best understood when considering the laser energy profile that is emitted. A non-uniform fluorescence results in non-uniform energy emission from the laser, which is problematic due to the wear it causes on, for example, the optical components of the laser. For example, coatings present on the Pockels cells can be deteriorated by the non-uniform energy emission. A more uniform fluorescence results in a more uniform energy emission from the laser, which is desirable including due to the resulting increase in optical component longevity. By using an element that improves gain uniformity, such as a diffuser 1019 (e.g., the baffle and/or an absorber) obtaining more uniform gain and thereby more uniform fluorescence is favored, but at the expense of pumping efficiency, which is sacrificed due the presence of the element 1019.


Referring still to FIGS. 10 and 11, according to one embodiment of the disclosure, a lasing medium 1011 (e.g., a crystal rod) was placed between each flash lamp 1013 and a diffusing element 1019 (e.g., a baffle and/or an absorber) was placed in between the flash lamp 1013 and the lasing medium 1011 to scatter a portion of the light coupling directly into the lasing medium 1011 and to increase the diffuse illumination of the crystal rod lasing medium 1011. According to one embodiment, when a suitably-sized diffusing element 1019 was placed in the chamber, the lasing medium 1011 (e.g., a crystal rod) achieved substantially uniform gain (e.g., substantially circular symmetry). In one embodiment, the diffusing element 1019 is a 0.063 inch diameter alumina rod that was placed equidistant between the flash lamp 1013 and the crystal rod lasing medium 1011. Suitable diffusing element 1019 diameters can be about the same diameter as the lasing medium (e.g., about 0.375 inches) to as small a diameter as can be structurally sound (e.g., about 0.03 inches).



FIG. 10 depicts an image of the fluorescence using such an implementation. The fluorescence resulting from this chamber configuration shows the gain is more evenly distributed in a circularly symmetric fashion and the high-gain regions seen in FIG. 8 (when diffusing elements are absent) are eliminated.


The graph of FIG. 11 shows that the horizontal and vertical beam profiles have a closer agreement between the gain in the two axes (e.g., the vertical axis 1018A and horizontal axis 1018B show a substantially similar gain distribution) of the beam are in close agreement. The normalized gain distribution in the chamber having the diffusing element shows that the edge region 1012 of FIG. 10 lacks the peaks seen in FIG. 9 that were a result when there was no diffusing element in place.


In some embodiments, the choice of gain uniformity element material (e.g., a diffuser, absorber, deflector, baffle, scattering element, refractor, and/or reflector) and in the case of a material in the shape of a rod the selected diameter of the gain uniformity material can be adjusted to improve the beam uniformity of the system. The gain uniformity element (e.g., the diffusing element) need not sit between the flash lamp and the laser rod, rather the diffusing element can be a grating that is etched on the surface of one or more of the flash lamp or the laser rod.


The effect of balancing and/or improving gain uniformity on the beam profile of a mode locked laser by altering pump chamber geometry, e.g., by adding one or more diffusing element, is dramatic. The image depicted in FIG. 12 shows the beam produced by the unmodified chamber described in connection with FIG. 8. The high peak fluence produced at the sides of the beam in FIG. 12 are beyond the damage threshold of the optics contained in the laser resonator. In comparison, the beam profile shown in FIG. 13, is produced by an embodiment that includes one or more diffusing elements (e.g., a baffled chamber with an alumina rod) like that described in connection to FIG. 10 and the beam profile is produced by the modified chamber is more circular, indicating the energy from the beam is spread over a greater area. As a result, the peak fluence of the beam generated with the embodiment of the pump chamber modified to include at least one diffusing element was greatly reduced and overall system power may be increased without damaging the optics in the resonator. As a result, the life and/or reliability of the laser system is improved due to the presence of the at least one gain uniformity improvement elements (e.g., a baffle).


Non-Spherical Lenses Lessen Free Space Propagation Mode Effect


Picopulse laser treatment energy relies on laser intensity, which is the square of the sum of the lasers electric fields. When free space propagation modes couple together the laser output intensity profile can tend toward non-uniformity. Free space propagation modes can include one or more of Hermite profiles, Leguerre profiles and Ince Gaussian profiles.


For the multi transverse mode laser it is beneficial to have sufficient transverse modes present such that the beam profile is filled in (substantially even). This ensures the peak fluence will be as close as possible to the average fluence. The ideal situation is the where the beam profile has a “top hat” beam profile, which looks like a top hat in profile e.g., referring to the representation of the normalized gain distribution shown in FIG. 11 in an idealized situation the two gain regions 1012 connect with a straight line and the sloping sides are much steeper. A low peak fluence will prevent laser damage to optical coatings and thus prolong the life of the laser.


The picopulse resonator can produce many multimode Hermite profile electric fields and can produce unwanted combinations of multimode Hermites. In order meet the desired laser treatment energy levels. Hermite profiles can result in high intensity profiles. These high intensity profiles can damage the optics of the resonator leading to reduced lifetime issues.


It is desirable to lessen the impact of free space propagation modes including Hermites in the beam output profile. Introducing a lens element that provides astigmatism can act to decouple free space propagation modes thereby obviating or lessening their impact on the beam profile. Lens elements that can lessen the impact of free space propagation modes (e.g., Hermites) could be for example, cylinder lens, angled spherical lens, anamorphic prisms, etc.


Unlike a spherical lens, which is cut from a sphere, a non-spherical lens (e.g., an astigmatic lens such as a cylindrical lens) can be cut from a rod. Specifically, a non-spherical lens can be cut along the long axis of a rod such that its end face looks like the letter “D”. The non-spherical lens provides only one axis of curvature in contrast to a spherical lens which provides two axis of curvature. When light travels through the curved axis the light is deviated (e.g., focused or defocused) by the curvature of the lens such that the light is different in the x-plane versus the y-plane. Light that travels across the other axis does not get focused or defocused—it sees no deviation.


Alternatively, a spherical lens may be angled such that light impinges on the spherical lens at an angle that provides the effect of a cylindrical lens such that the angled spherical lens output of light is different in the x-plane versus the y-plane. These are just a few of many ways to produce an astigmatic lens effect. Other methods or means of utilizing lenses or prisms to produce an astigmatic effect are known to those of skill in the relevant art.


There is a phenomenon in multimode lasers by which multiple Hermite profiles can build up within a resonator and interfere with each other to cancel portions of one another out and thereby create hotspots that give an unacceptable laser beam intensity profile. By controlling and/or managing the mix of Hermites their interference in the laser output can be limited. The mix of Hermites can be limited by utilizing different astigmatism for the x and y axis' in the resonator. In this way, the astigmatic element prevents multiple Hermite profiles from interfering with one another to produce a bad profile. Rather, each individual Hermite profile exits the laser individually. In this way, the astigmatic lens element avoids Hermite's canceling portions of one another out that results in undesirable hot spots in the laser beam profile that can cause wear on the optics of the system. As discussed previously, it is important to provide a beam output that shows a relatively even energy distribution (e.g., beam uniformity). The astigmatic effect element can aid in beam uniformity, because it avoids coupling of free space propagation modes that result in undesirable hot spots.


An example of an unwanted two electric field combination with a resultant laser intensity combination is shown FIG. 14A. In FIG. 14A, the majority of the beam energy is contained in two distinct regions 1412 within the profile. This is an unwanted electric field, which is a result of the combination of two individual propagating Hermite fields that remain in phase, i.e. each field is in step with the other.


By introducing astigmatism into the picopulse resonator the undesirable phase relationship of the propagating Hermite electric fields is broken along the astigmatic axes (physics Gouy phase effect). Using the same two Hermites of the previous combination example shown in FIG. 14A, but now showing the effect of phase mismatch created by the astigmatic element (e.g., astigmatic lens) on intensity is FIG. 14B. The FIG. 14B profile has a better fill of energy or distribution of energy in that all four corners of the beam profile are illuminate, which is much less likely to damage the optics compared to the beam profile in FIG. 14A where energy is concentrated into two of the four corners of the beam profile.


The picopulse laser transverse mode profile is improved when astigmatism is introduced into the resonator. The astigmatism essentially provides two resonator configurations, each with a preferred set of modes. In one embodiment, astigmatism was introduced by a weak cylindrical lens<<0.5 Dioptres. The astigmatic generating element could be placed anywhere within the resonator path. The cylinder lens worked well when its axis was perpendicular or parallel to the plane polarized light in the picopulse laser.


There are many approaches to introducing an astigmatic element to the resonator, for example, the goal of different net curvature can be achieved within a resonator by, for example, positioning a spherical lens or spherical lenses such that one or more spherical lens is tilted relative to the optical axis, thereby providing one or more astigmatic element(s). Alternatively, the beam can be expanded in a single direction (e.g., anamorphic expansion) prior to a lens or a spherical mirror.


Another method of free space propagation mode control is to place an obscuration (e.g., a wire) at the electric field zero crossings of a wanted mode. The obscuring element (e.g., for a Hermite a line, for a LeGuerre a radial obscuration) can be produced in a substrate or in the anti-reflection coating on a substrate. The obscuration element prevents unwanted free space propagation modes from lasing and effectively filters them out of the distribution of energy lased from the system. Preferably, obscuring elements have thin lines (e.g., lines that are <50 um thick), which can be produced, for example, by UV laser writing directly into the substrate (e.g., glass). The lines are best situated near the rod where resonator misalignment will have least effect on line position.


Picosecond Laser Sub-Harmonic Resonator


In a simple, free running, laser resonator a number of longitudinal modes develop independently. These modes have no set phase relationship so they are free to interfere with each other, which leads to fluctuations in the output intensity of the laser as the output signal is an average of all modes inside the resonator.


In frequency space, each mode corresponds to a spectral line and the separation of spectral lines is called the axial mode interval, c/2L, where c is the speed of light and L is the optical path length of the resonator (2L is the round trip optical path length of the resonator). The temporal output of the laser is related to the frequency space by a Fourier transform.


Mode locking is a technique used to create pulses of light with durations less than 1 nanoseconds. This is done by introducing an element which periodically inhibits the lasing of the resonator. This inhibiting element can take a number of forms but the implementation is broken down into two categories:


(a) Passive mode locking uses an element whose properties are varied by the light inside the resonator


(b) Active mode locking utilizes elements that need to be driven using external signals.


When the mode locking element is a Pockels cell it can be used in combination with a polarizer to vary the losses inside of the resonator. Using the Pockels cell in this manner is equivalent to modifying the reflectivity of one of the cavity mirrors.


The voltage applied to the Pockels cell can be increased until the lasing within the resonator is inhibited. The highest voltage in which laser emissions are produced is called the threshold voltage. To mode lock the resonator the voltage is modulated around the threshold voltage at a set frequency. When the voltage is lower than threshold the losses are less and lasing can occur. Voltages higher than threshold will result in no lasing.


In traditional mode locked lasers the oscillation period of the lasing inhibitor is equal to the time for a pulse to travel one round trip through the resonator. Since lasing is inhibited when the Pockels cell voltage is above threshold a single pulse of light is formed which propagates through the resonator. This pulse is formed of longitudinal modes whose phases are aligned. The peak longitudinal mode will have a frequency which experiences minimal losses when propagating through the mode locking element. In the region around this peak the modes will experience greater loss for greater differences in frequency. This creates a relationship between the longitudinal modes that doesn't exist in free running lasers and leads to the smaller pulse durations of mode locked lasers.


A traditional mode locked laser works based on the principal that the electrical switching frequency at which a mode locker (e.g., a Pockels cell) is switched is directly tied to the optical path length of the resonator. The optical path length of the mode locked resonator can range from about 3 meters to about 0.5 meters in length, for example.


Active mode locking involves modulation of a component inside the resonator at a frequency whose period is equal to the time required for light to propagate one round trip in the resonator. The purpose of this component is to only allow lasing to occur over a portion of this period and the end result is a single pulse of light traveling within the resonator.


In the case of the traditional picosecond resonator (i.e., the fundamental) the modulation is applied to the Pockels cell which requires several hundred volts of modulation in order to produce the mode locking effect. The length of the picopulse resonator is limited by the highest modulation frequency that can reliably be produced at this voltage level.


At this point 75 MHz is believed to be the maximum frequency which can be created which leads to a 2 meter long resonator. A shorter resonator would be preferable from a mechanical point of view as the mirror positional sensitivity increases as the resonator length increases.



FIG. 15A shows the modulation signal 1599A applied to the Pockels cell in a traditional picosecond resonator having a threshold voltage 1585A. In the presence of this modulation signal 1599A the intensity 1589A builds up in the resonator over time.


For example, a resonator having an optical round-trip length of 10 ft requires an electrical switching frequency of about 100 MHz. The speed of light in air is approximately 1 ft per nanosecond; therefore, the round-trip time of a photon in a 10 ft resonator is about 10 nanoseconds. The Pockels cell therefore is switched at about 100 MHz. In accordance with a traditional picosecond resonator (i.e., the fundamental) picosecond seed pulses that are generated in the resonator pass through the Pockels cell one time per electrical switching event. Unfortunately, switching the Pockels cell at 100 MHz is not an option due limitations and to issues such as fidelity issues.


In order to resolve such a problem, a sub-harmonic solution may be employed. The sub-harmonic approach can include (A) divide the Pockels cell switching frequency by a factor of the nth harmonic (e.g., by any power of 2) and/or (B) dividing the optical path length by a factor of the nth harmonic (e.g., by any power of 2). The approaches A and B were first tested on a prototype. This test was done whereby a traditional picopulse laser approach to a 75 MHz modulation frequency would call for a 2 meter resonator length (A) using the switching frequency approach the modulation frequency of the existing 75 MHz, 2 meter resonator was changed to a modulation frequency of 37.5 MHz. Then (B) using the optical path length approach the 75 MHz modulation frequency was maintained, but the path length of the resonator was reduced to 1 meter, which was half the original 2 meter length. Approaches (A) and (B) produced pulses of similar pulse widths to the traditional 75 MHz and 2 meter resonator length design.


Embodiments Relating to Dividing the Pockels Cell Switching Frequency by a Factor of the nth Harmonic (e.g., by any n>1, n is a Whole Number.)


In one embodiment, a system in which the electrical switching frequency is a sub-multiple of the standard resonator switching frequency is implemented. In other words, a system is implemented in which seed pulses that flow in the resonator pass through the Pockels more than one time for every electrical switching event. The modulation signal can be viewed as a gate which allows the light to pass. When the Pockels cell voltage is below threshold the gate is closed. So a single pulse travels around the resonator passing the Pockels cell while the gate is open and all other radiation is suppressed when the gate is closed. Considering this analogy, the proposed idea is to close the gate every other round trip through the resonator. This would allow for shorter resonator lengths for a given modulation frequency.



FIG. 15B shows a lower frequency modulation signal 1599B applied to the Pockels cell in a sub-harmonic picosecond resonator having a threshold voltage 158513, this is the nth harmonic of the switching frequency of frequency modulation signal 1599A shown in FIG. 15A. In the presence of this lower frequency modulation signal 1599B the intensity 15898 builds up in the resonator over time such that, referring now to FIGS. 15A and 15B, at the time of about 140 nanoseconds the intensity inside the resonator 1589A and 15898 is substantially the same.


While we have shown the modulation signal 1599A in FIG. 15A and the modulation signal 1599 B in FIG. 15B as featuring an idealized sine wave, in actual usage in the picosecond system the modulation signal has at least some harmonic content. More specifically, the modulation signal should have from about 5% to about 50% harmonic content, and from about 10% to about 20% harmonic content.


Embodiments Relating to Dividing the Optical Path Length by a Factor of the Nth Harmonic (e.g., by n>1, n is a Whole Number).


In another sub-harmonic approach, inhibiting the lasing on every other pass through the resonator would be sufficient to produce a mode locked pulse. This sub-harmonic approach can decrease the picopulse resonator length and/or ease the electrical burden by decreasing the modulation frequency.


In a normal mode locked laser a pulse of light propagates one round trip through the resonator for each oscillation of the mode locking element. If the element were instead driven at half the frequency, or the first sub harmonic, then the pulse would travel two round trips for each oscillation. During the first trip the pulse would travel through the resonator while the element was at maximum transmission. This is the same in the standard mode locking resonator. During the second trip the pulse will hit the element at minimal transmission and experience loss. If the gain of the active medium is sufficient then the pulse energy will increase more during the first trip than it loses in the second trip and a mode locked pulse can be generated.


Since the modulation frequency is tied to the propagation time through the resonator, modulating with a subharmonic provides the benefit of a shorter overall resonator length. For example, if the electrical circuit can reliably switch the required voltages at 50 MHz then the period of one oscillation is 20 nanoseconds. A 6 meter round trip cavity length is required for a travel time of 20 nanoseconds. However, if 50 MHz is the first subharmonic of the resonator then the round trip cavity length is cut in half to 3 meters. If we consider the frequency of oscillation to be a limiting factor then subharmonic operation provides smaller resonators than traditional mode locking.


A method of evaluating mode locked resonators was developed by Kuizenga and Siegman (D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogenous laser—Part 1: Theory”, IEEE Journal of Quantum Electronics, November 1970, pp. 694-708 [I]) Their analysis applies a self-consistent criterion on the pulse after one round trip of the resonator. Energy travels through an active medium and back then through a modulator and back.


The following expression, Formula (1), relates the pulse width, τ, to the gain, g, modulation depth, δ, modulation frequency, fm, and gain bandwidth, Δf.









τ
=





2


ln





2


π




(

g
δ

)


1
/
4





(

1


f
m


Δ





f


)


1
/
2







Formula






(
1
)








A similar analysis can be done for the sub harmonic resonator, but the self-consistent criterion can only be applied after n round trips of the resonator, n>1, n a whole number. The overall transmission function for the n round trips must be computed to discover the modulation depth variable (δ). The sub harmonic overall transmission will be <100% and shows a variation from one round trip to the next during the n round trips taken for the analysis.


In one embodiment, a resonator was constructed using an 8 mm Alexandrite rod, 85 mm in length and a KD*P Pockels cell. In the first configuration the Pockels cell is driven at 75 MHz and the path length is 2 meters. This system is operating with the traditional fundamental mode locking frequency for this resonator. Pulsewidth of 550 picoseconds are produced by this configuration. The system is then configured to mode lock at the first sub harmonic such that it modulates at 50 MHz and the path length is decreased to 1.5 meters. Pulses of 700 picoseconds are produced by this system. Even though the equation at Formula (1) was developed for a traditional mode locking approach the pulse widths of these two systems reasonably follow the square root of one over the frequency term of the above expression.



FIG. 16 depicts a representative embodiment of an apparatus 1600 according to the present disclosure, which is capable of achieving the above pulse duration and energy output parameters, suitable for the effective treatment of pigmented lesions through photomechanical means. Advantageously, the apparatus includes a resonator (or laser cavity) capable of generating laser energy having the desirable pulse duration and energy per pulse, as described herein. The resonator has a characteristic longitudinal or optical axis 1622 (i.e., the longitudinal flow path for radiation in the resonator), as indicated by the dashed line. Also included in the representative apparatus shown are an electro-optical device, in this case a Pockels cell 1620, and a polarizing element also referred to as a polarizer 1618 (e.g., a thin-film polarizer). During operation, the laser pulse output will be obtained along output path 1623.


At opposite ends of the optical axis 1622 of the resonator are a first mirror 1612 and a second mirror 1614 having substantially complete reflectivity. This term, and equivalent terms such as “substantially totally reflective” are used to indicate that the mirrors 1612 and 1614 completely reflect incident laser radiation of the type normally present during operation of the resonator, or reflect at least 90%, preferably at least 95%, and more preferably at least 99% of incident radiation. The mirror reflectivity is to be distinguished from the term “effective reflectivity,” which is not a property of the mirror itself but instead refers to the effective behavior of the combination of second mirror 1614, Pockels cell 1620, and polarizer 1618 that is induced by the particular operation of the Pockels cell 1620, as discussed in detail below.


In particular, a laser pulse traveling from lasing or gain medium 1616 towards second mirror 1614 will first pass through polarizer 1618, then Pockels cell 1620, reflect at second mirror 1614, traverse Pockels cell 1620 a second time, and finally pass through polarizer 1618 a second time before returning to gain medium 1616. Depending upon the bias voltage applied to Pockels cell 1620, some portion (or rejected fraction) of the energy in the pulse will be rejected at polarizer 1618 and exit the resonator along output path 1623. The remaining portion (or non-rejected fraction) of the energy (from 0% to 100% of the energy in the initial laser pulse) that returns to the medium 1616 is the “effective reflectivity” of second mirror 1614. As explained above, for any given applied voltage to Pockels cell 1620, the effective behavior of the combination of second mirror 1614, Pockels cell 1620, and polarizer 1618 is indistinguishable, in terms of laser dynamics, from that of a single partially reflective mirror, reflecting the same non-rejected fraction described above. An “effective reflectivity of substantially 100%” refers to a mirror that acts as a substantially totally reflective mirror as defined above.


Also positioned along the optical axis 1622 of the resonator is a lasing or gain medium 1616, which may be pumped by any conventional pumping device (not shown) such as an optical pumping device (e.g., a flash lamp) or possibly an electrical or injection pumping device. A solid state lasing medium and optical pumping device are preferred for use in the present disclosure. Representative solid state lasers operate with an alexandrite or a titanium doped sapphire crystal. Alternative solid lasing media include a yttrium-aluminum garnet crystal, doped with neodymium (Nd:YAG laser). Similarly, neodymium may be used as a dopant of pervoskite crystal (Nd:YAP or Nd:YAlO3 laser) or a yttrium-lithiumcustom characterfluoride crystal (Nd:YAF laser). Other rare earth and transition metal ion dopants (e.g., erbium, chromium, and titanium) and other crystal and glass media hosts (e.g., vanadite crystals such as YVO4, fluoride glasses such as ZBLN, silica glasses, and other minerals such as ruby) of these dopants may be used as lasing media.


The above mentioned types of lasers generally emit radiation, in predominant operating modes, having wavelengths in the visible to infrared region of the electromagnetic spectrum. In an Nd:YAG laser, for example, population inversion of Nd+3 ions in the YAG crystal causes the emission of a radiation beam at 1064 nm as well as a number of other near infrared wavelengths. It is also possible to use, in addition to the treating radiation, a low power beam of visible laser light as a guide or alignment tool. Alternative types of lasers include those containing gas, dye, or other lasing media. Semiconductor or diode lasers also represent possible sources of laser energy, available in varying wavelengths. In cases where a particular type of laser emits radiation at both desired and undesired wavelengths, the use of filters, reflectors, and/or other optical components can aid in targeting a pigmented lesion component with only the desired type of radiation.


Aspects of the disclosure also relate to the manner in which the apparatus 1600, depicted in FIG. 16, is operated to generate laser energy with the desirable pulse duration and energy output requirements discussed above. For example, laser energy from the lasing medium 1616 is reflected between the first mirror 1612 and second mirror 1614 at opposite ends of the optical axis 1622 of the resonator. Laser energy emanating from the lasing medium 1616 therefore traverses the thin film polarizer 1618 and Pockels cell 1620 before being reflected by the substantially totally reflective second mirror 1614, back through the Pockels cell 1620 and polarizer 1618.


Naturally birefringent laser gain materials such as alexandrite, and other crystals such as Nd:YVO4 exhibit a large stimulated emission cross-section selectively for radiation having an electric field vector that is aligned with a crystal axis. Radiation emitted from such lasing materials is therefore initially linearly polarized, the polarized axis corresponding to the materials highest gain crystallographic axis. Typically the polarizer 1618 is configured for transmission of essentially all incident radiation by proper alignment with respect to the electric field vector.


Optionally, referring still to FIG. 16, an astigmatic element 1619 may be placed anywhere along the optical axis 1622 including, for example, directly in front of one or more mirrors 1612, 1614. Further, one or more of the mirrors 1612, 1614 can provide an astigmatic element by possessing two different radii of curvature that are perpendicular to one another.


Referring to the simple apparatus of FIG. 16. When the laser threshold bias DC voltage is applied to the Pockels cell 1620 then the effective mirror reflectivity is set at such a value that the medium 1616 will lase. Varying the voltage above and below the bias voltage is called modulating the voltage. In one embodiment, using an Alexandrite medium 1616, a typical DC bias voltages applied to Pockels cells is around 650V and the modulated voltage applied to the Pockels cell is about 200V.



FIG. 17 depicts a representation of the seed pulse grown using a sub-harmonic resonator as disclosed herein. The varying amplitude of the seed pulses while operating in the sub-harmonic regime is depicted in this plot. The trace pulse height variation of repeated high then low is due to the subharmonic used being an n=2.


The picopulse laser uses a mode locking to achieve its short pulsewidth. The mode locker is a constricting device which is only fully open for a small fraction of the time it takes a photon to make a round trip in the resonator. So of all the photons circulating and making round trips, only those which arrive at the gate at the right moment will find it fully open, all other photons will experience a loss. Over many round trips this elimination of all but the ‘correctly’ timed photons results in a shortening of the pulsewidth. All prior literature suggests you drive open the gate once per round trip or even twice per round trip for 2 pulses to be present and so on. The picopulse laser with the sub-harmonic resonator is not run at once per round trip but at once per 2 round trips, hence it is sub-harmonic on a single round trip (e.g., in this example it is one half harmonic).


While the embodiments of the disclosure described herein detail the advantages of implementing the modified pump chamber of a multi-mode, mode-locked operated laser, one skilled in the art would recognize that such advantages may be experiences using other types of lasers and operations, such as, for example, multi-mode, non-mode locked operation.


The use of headings and sections in the application is not meant to limit the invention, each section can apply to any aspect, embodiment, or feature of the invention.


Throughout the application, where compositions are described as having, including, or comprising specific components, or where processes are described as having, including or comprising specific process steps, it is contemplated that compositions of the present teachings also consist essentially of, or consist of, the recited components, and that the processes of the present teachings also consist essentially of, or consist of, the recited process steps.


In the application, where an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components and can be selected from a group consisting of two or more of the recited elements or components. Further, it should be understood that elements and/or features of a composition, an apparatus, or a method described herein can be combined in a variety of ways without departing from the spirit and scope of the present teachings, whether explicit or implicit herein.


The use of the terms “include,” “includes,” “including,” “have,” “has,” or “having” should be generally understood as open-ended and non-limiting unless specifically stated otherwise.


The use of the singular herein includes the plural (and vice versa) unless specifically stated otherwise. Moreover, the singular forms “a,” “an,” and “the” include plural forms unless the context clearly dictates otherwise. In addition, where the use of the term “about” is before a quantitative value, the present teachings also include the specific quantitative value itself, unless specifically stated otherwise.


It should be understood that the order of steps or order for performing certain actions is immaterial so long as the present teachings remain operable. Moreover, two or more steps or actions may be conducted simultaneously.


While only certain embodiments have been described, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the appended claims. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the appended claims.


The patent, scientific and medical publications referred to herein establish knowledge that was available to those of ordinary skill in the art. The entire disclosures of the issued U.S. patents, published and pending patent applications, and other references cited herein are hereby incorporated by reference.

Claims
  • 1. An apparatus for delivery of pulsed treatment radiation comprising: a pump radiation source generating picosecond pulses at a first wavelength, anda wavelength-shifting resonator having a lasing medium and resonant cavity configured to receive the picosecond pulses from the pump radiation source at the first wavelength and to emit radiation at a second wavelength in response thereto,wherein the resonant cavity of the wavelength-shifting resonator has a round trip time shorter than duration of the picosecond pulses generated by the pump radiation source, and the wavelength-shifting resonator operates without use of a modelocker or a Q-switch.
  • 2. The apparatus of claim 1, wherein the wavelength-shifting resonator has a round trip time at least 5 times shorter than the duration of the picosecond pulses generated by the pump radiation source.
  • 3. The apparatus of claim 1, wherein the wavelength-shifting resonator has a round trip time at least 10 times shorter than the duration of the picosecond pulses generated by the pump radiation source.
  • 4. The apparatus of claim 1, wherein the wavelength-shifting resonator has a cavity length less than 10 millimeters.
  • 5. The apparatus of claim 1, wherein the lasing medium of the wavelength-shifting resonator comprises a neodymium-doped crystal.
  • 6. The apparatus of claim 5, wherein the lasing medium of the wavelength-shifting resonator comprises a solid state crystal medium selected from the group consisting of neodymium-doped yttrium-aluminum garnet (Nd:YAG) crystals, neodymium-doped Perovskite (Nd:YAP or Nd:YAlO3) crystals, neodymium-doped yttrium-lithium-fluoride (Nd:YAF) crystals, and neodymium-doped, vanadate (Nd:YVO4) crystals.
  • 7. The apparatus of claim 1, further comprising a polarizer embedded within the resonant cavity of the wavelength-shifting resonator.
  • 8. The apparatus of claim 1, wherein the lasing medium of the wavelength-shifting resonator is a polarizing medium.
  • 9. The apparatus of claim 1, further comprising a frequency-doubling crystal.
  • 10. The apparatus of claim 9, wherein the frequency-doubling crystal comprises a second harmonic generating, nonlinear crystal material.
  • 11. The apparatus of claim 9, wherein the frequency-doubling crystal comprises one of a lithium triborate (LiB3O5) material or a KTP material.
  • 12. The apparatus of claim 1, wherein the pump radiation source is a mode-locked laser.
  • 13. The apparatus of claim 12, wherein the mode-locked laser comprises an alexandrite laser.
  • 14. The apparatus of claim 12, wherein the mode-locked laser generates pulsed laser energy having at least about 100 mJ/pulse.
  • 15. The apparatus of claim 12, wherein the mode-locked laser generates pulsed laser energy has a pulse duration of less than 1000 picoseconds.
  • 16. The apparatus of claim 1, further comprising a treatment beam delivery system configured to apply a treatment beam to a patient's skin.
  • 17. The apparatus of claim 16, wherein the treatment beam comprises at least one of picosecond pulses from the pump radiation source at the first wavelength, picosecond pulses emitted by the wavelength-shifting resonator at the second wavelength, and picosecond pulses at a third wavelength, wherein the picosecond pulses at the third wavelength are output by a frequency-doubling crystal that receives the picosecond pulses at the second wavelength.
  • 18. The apparatus of claim 17, wherein the first wavelength is about 755 nm, the second wavelength is about 1064 nm, and the third wavelength is about 532 nm.
  • 19. A method for shifting wavelength of a picosecond optical radiation pulse, the method comprising: generating a pulse of optical radiation at a first wavelength and having a duration less than 1000 picoseconds,pumping a wavelength-shifting resonator, operating without use of a modelocker or a Q-switch, with the pulse of optical radiation at the first wavelength, the wavelength-shifting resonator comprising a laser crystal with a high absorption coefficient at the first wavelength,wherein a round trip time of the wavelength-shifting resonator is shorter than pumping laser pulse duration; andextracting a pulse of radiation at a second wavelength emitted by the wavelength-shifting resonator, wherein the pulse at the second wavelength also has a duration of less than 1000 picoseconds.
  • 20. The method of claim 19, wherein the wavelength-shifting resonator has a round trip time at least 5 times shorter than the duration of the pumping pulse.
  • 21. The method of claim 19, wherein the wavelength-shifting resonator has a round trip time at least 10 times shorter than the duration of the pumping pulse.
  • 22. The method of claim 19, wherein the wavelength-shifting resonator has a cavity length less than 10 millimeters.
  • 23. The method of claim 19, wherein the laser crystal comprises a neodymium-doped crystal.
  • 24. The method of claim 23, wherein the laser crystal comprises a solid state crystal medium selected from the group comprising neodymium-doped yttrium-aluminum garnet (Nd:YAG) crystals, neodymium-doped pervoskite (Nd:YAP or Nd:YAlO3) crystals, neodymium-doped yttrium-lithium-fluoride (Nd:YAF) crystals, and neodymium-doped vanadate (Nd:YVO4) crystals.
  • 25. The method of claim 19, further comprising transmitting the pulse of radiation at a second wavelength through a frequency doubling crystal.
  • 26. A method for treating tattoos or skin pigmentation disorders using a picosecond optical radiation source, the method comprising: employing a pump radiation source to generate a pulse of optical radiation at a first wavelength, wherein the pulse has a duration of less than 1000 picoseconds,pumping a wavelength-shifting resonator, operating without use of a modelocker or a Q-switch, with the pulse of optical radiation at the first wavelength, the wavelength-shifting resonator comprising a laser crystal with high absorption coefficient at the first wavelength,wherein a round trip time of the wavelength-shifting resonator is shorter than the pumping laser pulse duration;extracting a pulse of radiation at a second wavelength emitted by the wavelength-shifting resonator, wherein the pulse at the second wavelength also has a duration of less than 1000 picoseconds;delivering the pulse of radiation at the second wavelength to a frequency-doubling crystal so as to generate a pulse of radiation at a third wavelength, wherein the pulse at the third wavelength also has a duration of less than 1000 picoseconds; anddirecting the pulse at the third wavelength to a tattoo pigment or a skin pigmentation target to disrupt the target and promote clearance thereof.
  • 27. The apparatus of claim 1, further comprising controlling a temperature of the wavelength-shifting resonator.
  • 28. The method of claim 19 wherein the duration of each pulse is greater than 1 picosecond.
  • 29. The method of claim 26 wherein the duration of each pulse is greater than 1 picosecond.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 14/216,353 filed on Mar. 17, 2014, which claims priority to and the benefit of U.S. Provisional Application No. 61/789,144 filed Mar. 15, 2013 entitled Subnanosecond Laser Systems and Methods of Use and U.S. Provisional Application No. 61/891,299 filed on Oct. 15, 2013 entitled Multi-Wavelength Optical Radiation Sources for Dermatology, the entire contents of which are incorporated by reference herein.

US Referenced Citations (1322)
Number Name Date Kind
853033 Roberts May 1907 A
1590283 Catlin Jun 1926 A
1676183 Garfunkle Jul 1928 A
1706161 Hollnagen Mar 1929 A
2068721 Wappler et al. Jan 1937 A
2472385 Rollman Jun 1949 A
2669771 Burge et al. Feb 1954 A
3243650 Hawkins et al. Mar 1966 A
3261978 Brenman Jul 1966 A
3284665 Goncz Nov 1966 A
3327712 Kaufmann Jun 1967 A
3465203 Michaels et al. Sep 1969 A
3486070 Engel Dec 1969 A
3524144 Buser et al. Aug 1970 A
3527932 Thomas Sep 1970 A
3538919 Meyer Nov 1970 A
3597652 Gates, Jr. Aug 1971 A
3622743 Muncheryan Nov 1971 A
3651425 McKnight Mar 1972 A
3653778 Freiling Apr 1972 A
3667454 Prince Jun 1972 A
3693623 Harte et al. Sep 1972 A
3699967 Anderson Oct 1972 A
3725733 MacK et al. Apr 1973 A
3766393 Herzog et al. Oct 1973 A
3766488 Kohn Oct 1973 A
3769963 Goldman et al. Nov 1973 A
3793723 Kuris et al. Feb 1974 A
3794028 Mueller et al. Feb 1974 A
3815046 Johnson et al. Jun 1974 A
3818373 Chun et al. Jun 1974 A
3818914 Bender Jun 1974 A
3821510 Muncheryan Jun 1974 A
3834391 Block Sep 1974 A
3843865 Nath Oct 1974 A
3846811 Nakamura et al. Nov 1974 A
3857015 Clark et al. Dec 1974 A
3858577 Bass et al. Jan 1975 A
3861921 Hoffmann et al. Jan 1975 A
3885569 Judson May 1975 A
3890537 Park et al. Jun 1975 A
3900034 Katz et al. Aug 1975 A
3909649 Arsena Sep 1975 A
3914709 Pike et al. Oct 1975 A
3939560 Lyall Feb 1976 A
3977083 Leslie et al. Aug 1976 A
3980861 Fukunaga Sep 1976 A
4019156 Fountain et al. Apr 1977 A
4037136 Hoene Jul 1977 A
4038984 Sittner Aug 1977 A
4047106 Robinson Sep 1977 A
4065370 Noble et al. Dec 1977 A
4122853 Smith Oct 1978 A
4133503 Bliss Jan 1979 A
4139342 Sheldrake et al. Feb 1979 A
4154240 Ikuno et al. May 1979 A
4176324 Aldag et al. Nov 1979 A
4180751 Ammann Dec 1979 A
4188927 Harris Feb 1980 A
4213462 Sato Feb 1980 A
4228800 Degler, Jr. et al. Oct 1980 A
4233493 Nath et al. Nov 1980 A
4254333 Bergstrom Mar 1981 A
4259123 Tymkewicz Mar 1981 A
4269067 Tynan et al. May 1981 A
4273109 Enderby Jun 1981 A
4275335 Ishida et al. Jun 1981 A
4291281 Pinard et al. Sep 1981 A
4292601 Aldag et al. Sep 1981 A
4293827 McAllister et al. Oct 1981 A
4298005 Mutzhas Nov 1981 A
4299912 Shiba et al. Nov 1981 A
4302730 Jernigan Nov 1981 A
4313431 Frank Feb 1982 A
4316467 Muckerheide Feb 1982 A
4333197 Kuris Jun 1982 A
4335726 Kolstedt Jun 1982 A
4336809 Clark Jun 1982 A
4364015 Drake et al. Dec 1982 A
4375684 Everett May 1983 A
4388924 Weissman et al. Jun 1983 A
4409479 Sprague et al. Oct 1983 A
4428368 Torii Jan 1984 A
4435808 Javan Mar 1984 A
4445217 Acharekar et al. Apr 1984 A
4452081 Seppi Jun 1984 A
4456872 Froeschle Jun 1984 A
4461294 Baron Jul 1984 A
4488104 Suzuki Dec 1984 A
4489415 Jones et al. Dec 1984 A
4492601 Nakasone et al. Jan 1985 A
4503854 Jako Mar 1985 A
4504727 Melcher et al. Mar 1985 A
4512197 von Gutfeld et al. Apr 1985 A
4524289 Hammond et al. Jun 1985 A
4539987 Nath et al. Sep 1985 A
4553546 Javelle Nov 1985 A
4555786 Byer Nov 1985 A
4556979 Scott et al. Dec 1985 A
4559943 Bowers Dec 1985 A
4561440 Kubo et al. Dec 1985 A
4566271 French et al. Jan 1986 A
4566438 Liese et al. Jan 1986 A
4569345 Manes Feb 1986 A
4576177 Webster, Jr. Mar 1986 A
4587968 Price May 1986 A
4591762 Nakamura May 1986 A
4592353 Daikuzono Jun 1986 A
4601037 McDonald Jul 1986 A
4601753 Soileau et al. Jul 1986 A
4608978 Rohr Sep 1986 A
4608979 Breidenthal et al. Sep 1986 A
4617926 Sutton Oct 1986 A
4623929 Johnson et al. Nov 1986 A
4629884 Bergstrom Dec 1986 A
4638800 Michel Jan 1987 A
4653495 Nanaumi Mar 1987 A
4656641 Scifres et al. Apr 1987 A
4662368 Hussein et al. May 1987 A
4677347 Nakamura Jun 1987 A
4686986 Fenyo et al. Aug 1987 A
4693244 Daikuzono Sep 1987 A
4693556 McCaughan, Jr. Sep 1987 A
4695697 Kosa Sep 1987 A
4710677 Halberstadt et al. Dec 1987 A
4718416 Nanaumi Jan 1988 A
4724835 Liss et al. Feb 1988 A
4733660 Itzkan Mar 1988 A
4735201 O'Reilly Apr 1988 A
4736743 Daikuzono Apr 1988 A
4736745 Gluckman Apr 1988 A
4740047 Abe et al. Apr 1988 A
4741338 Miyamae May 1988 A
4745909 Pelton et al. May 1988 A
4747660 Nishioka et al. May 1988 A
4749913 Stuermer et al. Jun 1988 A
4759349 Betz et al. Jul 1988 A
4773413 Hussein et al. Sep 1988 A
4775361 Jacques et al. Oct 1988 A
4779173 Carr et al. Oct 1988 A
4784135 Blum et al. Nov 1988 A
4799479 Spears Jan 1989 A
4813412 Yamazaki et al. Mar 1989 A
4813762 Leger et al. Mar 1989 A
4819669 Politzer Apr 1989 A
4826431 Fujimura et al. May 1989 A
4829262 Furumoto May 1989 A
4832024 Boussignac et al. May 1989 A
4840174 Gluckman Jun 1989 A
4840563 Altendorf Jun 1989 A
4845608 Gdula Jul 1989 A
4848339 Rink et al. Jul 1989 A
4852107 Hamal et al. Jul 1989 A
4852549 Mori Aug 1989 A
4860172 Schlager et al. Aug 1989 A
4860303 Russell Aug 1989 A
4860743 Abela Aug 1989 A
4860744 Johnson et al. Aug 1989 A
4862886 Clarke et al. Sep 1989 A
4862888 Yessik Sep 1989 A
4862903 Campbell Sep 1989 A
4871479 Bachelard et al. Oct 1989 A
4878224 Kuder Oct 1989 A
4884560 Kuracina Dec 1989 A
4887600 Watson et al. Dec 1989 A
4889525 Yuhas et al. Dec 1989 A
4890898 Bentley et al. Jan 1990 A
4891817 Duarte Jan 1990 A
4896329 Knaak Jan 1990 A
4898438 Mori Feb 1990 A
4898439 Mori Feb 1990 A
4901323 Hawkins et al. Feb 1990 A
4905690 Ohshiro et al. Mar 1990 A
4910438 Farnsworth Mar 1990 A
4913142 Kittrell et al. Apr 1990 A
4914298 Quad et al. Apr 1990 A
4917084 Sinofsky Apr 1990 A
4926227 Jensen May 1990 A
4928038 Nerone May 1990 A
4930504 Diamantopoulos Jun 1990 A
4931053 L'Esperance Jun 1990 A
4932954 Wondrazek et al. Jun 1990 A
4945239 Wist et al. Jul 1990 A
4950266 Sinofsky Aug 1990 A
4955882 Hakky Sep 1990 A
4968314 Michaels Nov 1990 A
4972427 Streifer et al. Nov 1990 A
4973848 Kolobanov et al. Nov 1990 A
4976308 Faghri Dec 1990 A
4976709 Sand Dec 1990 A
4977571 Furumoto et al. Dec 1990 A
4978186 Mori Dec 1990 A
4979180 Muncheryan Dec 1990 A
4992256 Skaggs et al. Feb 1991 A
4994060 Rink et al. Feb 1991 A
5000752 Hoskin et al. Mar 1991 A
5006293 Hartman et al. Apr 1991 A
5009658 Damgaard-Iversen Apr 1991 A
5011483 Sleister Apr 1991 A
5027359 Leger et al. Jun 1991 A
5030090 Maeda et al. Jul 1991 A
5032178 Cornell Jul 1991 A
5037421 Boutacoff et al. Aug 1991 A
5041109 Abela Aug 1991 A
5046494 Searfoss et al. Sep 1991 A
5050597 Daikuzono Sep 1991 A
5056515 Abel Oct 1991 A
5057099 Rink Oct 1991 A
5057104 Chess Oct 1991 A
5059192 Zaias Oct 1991 A
5060243 Eckert Oct 1991 A
5061266 Hakky Oct 1991 A
5065515 Iderosa Nov 1991 A
5066292 Müller et al. Nov 1991 A
5066293 Furumoto Nov 1991 A
5071416 Heller et al. Dec 1991 A
5071417 Sinofsky Dec 1991 A
5079772 Negus et al. Jan 1992 A
5080660 Buelna Jan 1992 A
5090019 Scheps Feb 1992 A
5092865 Rink Mar 1992 A
5099231 Sato Mar 1992 A
5102410 Dressel Apr 1992 A
5108388 Trokel Apr 1992 A
5109387 Garden et al. Apr 1992 A
5112328 Taboada et al. May 1992 A
5127395 Bontemps Jul 1992 A
5129896 Hasson Jul 1992 A
5129897 Daikuzono Jul 1992 A
5132980 Connors et al. Jul 1992 A
5133102 Sakuma Jul 1992 A
5137530 Sand Aug 1992 A
5140608 Karpol et al. Aug 1992 A
5140984 Dew et al. Aug 1992 A
5147353 Everett Sep 1992 A
5147356 Bhatta Sep 1992 A
5151097 Daikuzono Sep 1992 A
5159601 Huber Oct 1992 A
5160194 Feldman Nov 1992 A
5163935 Black et al. Nov 1992 A
5171564 Nathoo et al. Dec 1992 A
5178617 Kuizenga et al. Jan 1993 A
5180378 Kung et al. Jan 1993 A
5182557 Lang Jan 1993 A
5182857 Simon Feb 1993 A
5190541 Abele et al. Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5192278 Hayes et al. Mar 1993 A
5196004 Sinofsky Mar 1993 A
5197470 Helfer et al. Mar 1993 A
5201731 Hakky Apr 1993 A
5193526 Daikuzono May 1993 A
5207671 Franken et al. May 1993 A
5207672 Roth et al. May 1993 A
5207673 Ebling et al. May 1993 A
5209748 Daikuzono May 1993 A
5213092 Uram May 1993 A
5217455 Tan Jun 1993 A
5219347 Negus et al. Jun 1993 A
5222907 Katabuchi et al. Jun 1993 A
5222953 Dowlatshahi Jun 1993 A
5225926 Cuomo et al. Jul 1993 A
5226907 Tankovich Jul 1993 A
5242437 Everett et al. Sep 1993 A
5242438 Saadatmanesh Sep 1993 A
5246436 Rowe Sep 1993 A
5249192 Kuizenga et al. Sep 1993 A
5254114 Reed, Jr. et al. Oct 1993 A
5255277 Carvalho Oct 1993 A
5257970 Dougherty Nov 1993 A
5257991 Fletcher et al. Nov 1993 A
5261904 Baker et al. Nov 1993 A
5267399 Johnston Dec 1993 A
5267995 Doiron et al. Dec 1993 A
5267998 Hagen Dec 1993 A
5269777 Doiron et al. Dec 1993 A
5269780 Roos Dec 1993 A
5281211 Parel et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282797 Chess Feb 1994 A
5284154 Raymond et al. Feb 1994 A
5287372 Ortiz Feb 1994 A
5287380 Hsia Feb 1994 A
5290273 Tan Mar 1994 A
5290274 Levy et al. Mar 1994 A
5292320 Brown et al. Mar 1994 A
5293880 Levitt Mar 1994 A
5300063 Tano et al. Apr 1994 A
5300065 Anderson Apr 1994 A
5300097 Lerner et al. Apr 1994 A
5303585 Lichte Apr 1994 A
5304167 Freiberg Apr 1994 A
5304170 Green Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306143 Levy Apr 1994 A
5306274 Long Apr 1994 A
5307369 Kimberlin Apr 1994 A
5308311 Eggers et al. May 1994 A
5312395 Tan et al. May 1994 A
5312396 Feld et al. May 1994 A
5320618 Gustafsson Jun 1994 A
5320620 Long et al. Jun 1994 A
5330470 Hagen Jul 1994 A
5331649 Dacquay et al. Jul 1994 A
5334191 Poppas et al. Aug 1994 A
5334193 Nardella Aug 1994 A
5336217 Buys et al. Aug 1994 A
5336221 Anderson Aug 1994 A
5342358 Daikuzono et al. Aug 1994 A
5344418 Ghaffari Sep 1994 A
5344434 Talmore Sep 1994 A
5346488 Prince et al. Sep 1994 A
5348551 Spears et al. Sep 1994 A
5349590 Amirkhanian et al. Sep 1994 A
5350376 Brown Sep 1994 A
5353020 Schurmann Oct 1994 A
5353790 Jacques et al. Oct 1994 A
5354294 Chou Oct 1994 A
5356081 Sellar Oct 1994 A
5358503 Bertwell et al. Oct 1994 A
5360426 Muller et al. Nov 1994 A
5366456 Rink et al. Nov 1994 A
5368031 Cline et al. Nov 1994 A
5368038 Fraden Nov 1994 A
5369496 Alfano et al. Nov 1994 A
5369831 Bock Dec 1994 A
5370642 Keller Dec 1994 A
5370649 Gardetto et al. Dec 1994 A
5380317 Everett et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5386427 Zayhowski Jan 1995 A
5387211 Saadatmanesh Feb 1995 A
5395356 King et al. Mar 1995 A
5403306 Edwards et al. Apr 1995 A
5405368 Eckhouse Apr 1995 A
5409446 Rattner Apr 1995 A
5409479 Dew et al. Apr 1995 A
5409481 Poppas et al. Apr 1995 A
5415654 Daikuzono May 1995 A
5421337 Richards-Kortum Jun 1995 A
5421339 Ramanujam et al. Jun 1995 A
5422112 Williams Jun 1995 A
5423800 Ren et al. Jun 1995 A
5423803 Tankovich et al. Jun 1995 A
5423805 Brucker et al. Jun 1995 A
5425728 Tankovich Jun 1995 A
5425735 Rosen et al. Jun 1995 A
5425754 Braun et al. Jun 1995 A
5439954 Bush Aug 1995 A
5441499 Fritzsch Aug 1995 A
5445608 Chen et al. Aug 1995 A
5445611 Eppstein et al. Aug 1995 A
5454807 Lennox et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5458140 Eppstein et al. Oct 1995 A
5464436 Smith Nov 1995 A
5464724 Akiyama et al. Nov 1995 A
5470331 Daikuzono Nov 1995 A
5472748 Wolfe et al. Dec 1995 A
5474549 Ortiz et al. Dec 1995 A
5484436 Eggers et al. Jan 1996 A
5486170 Winston et al. Jan 1996 A
5486172 Chess Jan 1996 A
5488626 Heller et al. Jan 1996 A
5489256 Adair Feb 1996 A
5492894 Bascom et al. Feb 1996 A
5496305 Kittrell et al. Mar 1996 A
5496307 Daikuzono Mar 1996 A
5498935 McMahan et al. Mar 1996 A
5499313 Kleinerman Mar 1996 A
5501680 Kurtz et al. Mar 1996 A
5502582 Larson et al. Mar 1996 A
5505726 Meserol Apr 1996 A
5505727 Keller Apr 1996 A
5507739 Vassiliadis et al. Apr 1996 A
5519534 Smith et al. May 1996 A
5521367 Bard et al. May 1996 A
5522813 Trelles Jun 1996 A
5527350 Grove et al. Jun 1996 A
5527368 Supkis et al. Jun 1996 A
5530711 Scheps Jun 1996 A
5531739 Trelles Jul 1996 A
5531740 Black Jul 1996 A
5536168 Bourke Jul 1996 A
5540676 Freiberg Jul 1996 A
5540678 Long et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5541948 Krupke et al. Jul 1996 A
5546214 Black et al. Aug 1996 A
5549660 Mendes et al. Aug 1996 A
5557625 Durville Sep 1996 A
5558666 Dewey et al. Sep 1996 A
5558667 Yarborough et al. Sep 1996 A
5561881 Klinger et al. Oct 1996 A
5571098 Domankevitz et al. Nov 1996 A
5578029 Trelles et al. Nov 1996 A
5578866 DePoorter et al. Nov 1996 A
5592327 Gabl et al. Jan 1997 A
5595568 Anderson et al. Jan 1997 A
5598426 Hsia et al. Jan 1997 A
5608210 Esparza et al. Mar 1997 A
5611793 Wilson et al. Mar 1997 A
5616140 Prescott Apr 1997 A
5618284 Sand Apr 1997 A
5620478 Eckhouse Apr 1997 A
5624435 Furumoto et al. Apr 1997 A
5626631 Eckhouse May 1997 A
5628744 Coleman et al. May 1997 A
5628771 Mizukawa et al. May 1997 A
5630811 Miller May 1997 A
5632741 Zavislan et al. May 1997 A
5634711 Kennedy et al. Jun 1997 A
5647866 Zaias et al. Jul 1997 A
5649972 Hochstein Jul 1997 A
5651783 Reynard Jul 1997 A
5652481 Johnson et al. Jul 1997 A
5653706 Zavislan et al. Aug 1997 A
5655547 Karni Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658148 Neuberger et al. Aug 1997 A
5658323 Miller Aug 1997 A
5660836 Knowlton Aug 1997 A
5661744 Murakami et al. Aug 1997 A
5662643 Kung et al. Sep 1997 A
5662644 Swor Sep 1997 A
5668824 Furumoto Sep 1997 A
5671315 Tabuchi et al. Sep 1997 A
5673451 Moore et al. Oct 1997 A
5679113 Caisey et al. Oct 1997 A
5683380 Eckhouse et al. Nov 1997 A
5684902 Tada Nov 1997 A
5688266 Edwards et al. Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5692509 Voss et al. Dec 1997 A
5698866 Doiron et al. Dec 1997 A
5707369 Vaitekunas et al. Jan 1998 A
5707401 Martin et al. Jan 1998 A
5707403 Grove et al. Jan 1998 A
5713738 Yarborough Feb 1998 A
5714119 Kawagoe et al. Feb 1998 A
5720772 Eckhouse Feb 1998 A
5722397 Eppstein Mar 1998 A
5725522 Sinofsky Mar 1998 A
5728090 Martin et al. Mar 1998 A
5735844 Anderson et al. Apr 1998 A
5735884 Thompson et al. Apr 1998 A
5738678 Patel Apr 1998 A
5742392 Anderson et al. Apr 1998 A
5743901 Grove et al. Apr 1998 A
5743902 Trost Apr 1998 A
5746735 Furumoto et al. May 1998 A
5748822 Miura et al. May 1998 A
5749868 Furumoto May 1998 A
5755751 Eckhouse May 1998 A
5759162 Oppelt et al. Jun 1998 A
5759200 Azar Jun 1998 A
5760362 Eloy Jun 1998 A
5769076 Maekawa et al. Jun 1998 A
5776129 Mersch Jul 1998 A
5782249 Weber et al. Jul 1998 A
5802136 Carol Sep 1998 A
5807386 Slatkine et al. Sep 1998 A
5810801 Anderson et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5812567 Jeon et al. Sep 1998 A
5813855 Crisio, Jr. Sep 1998 A
5814008 Chen et al. Sep 1998 A
5814040 Nelson et al. Sep 1998 A
5814041 Anderson et al. Sep 1998 A
5817089 Tankovich et al. Oct 1998 A
5818580 Murnick Oct 1998 A
5820625 Izawa et al. Oct 1998 A
5820626 Baumgardner Oct 1998 A
5822034 Shimashita et al. Oct 1998 A
5824023 Anderson Oct 1998 A
5827264 Hohla Oct 1998 A
5828803 Eckhouse Oct 1998 A
5830208 Muller Nov 1998 A
5830209 Savage et al. Nov 1998 A
5835648 Narciso, Jr. Nov 1998 A
5836877 Zavislan Nov 1998 A
5836999 Eckhouse et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5840048 Cheng Nov 1998 A
5843072 Furumoto et al. Dec 1998 A
5849029 Eckhouse et al. Dec 1998 A
5851181 Talmor Dec 1998 A
5853407 Miller Dec 1998 A
5860967 Zavislan et al. Jan 1999 A
5868731 Budnik et al. Feb 1999 A
5868732 Waldman et al. Feb 1999 A
5871479 Furumoto et al. Feb 1999 A
5871480 Tankovich Feb 1999 A
5879159 Cipolla Mar 1999 A
5879346 Waldman et al. Mar 1999 A
5879376 Miller Mar 1999 A
5883471 Rodman et al. Mar 1999 A
5885211 Eppstein et al. Mar 1999 A
5885273 Eckhouse et al. Mar 1999 A
5885274 Fullmer et al. Mar 1999 A
5891063 Vigil Apr 1999 A
5893828 Uram Apr 1999 A
5893885 Webster, Jr. Apr 1999 A
5895350 Hori Apr 1999 A
5897549 Tankovich Apr 1999 A
5906609 Assa et al. May 1999 A
5908418 Dority et al. Jun 1999 A
5908731 Leenders et al. Jun 1999 A
5913883 Alexander et al. Jun 1999 A
5916211 Quon et al. Jun 1999 A
5919601 Nguyen et al. Jul 1999 A
5920374 Vaphiades et al. Jul 1999 A
5921926 Rolland et al. Jul 1999 A
5928222 Kleinerman Jul 1999 A
5935124 Klumb et al. Aug 1999 A
5944687 Benett et al. Aug 1999 A
5944748 Mager et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5948596 Zhong et al. Sep 1999 A
5949222 Buono Sep 1999 A
5951543 Brauer Sep 1999 A
5954710 Paolini et al. Sep 1999 A
5955490 Kennedy et al. Sep 1999 A
5957915 Trost Sep 1999 A
5964749 Eckhouse et al. Oct 1999 A
5968033 Fuller et al. Oct 1999 A
5968034 Fullmer et al. Oct 1999 A
5971976 Wang et al. Oct 1999 A
5974059 Dawson Oct 1999 A
5974616 Dreyfus Nov 1999 A
5976123 Baumgardner et al. Nov 1999 A
5977723 Yoon Nov 1999 A
5979454 Anvari et al. Nov 1999 A
5983900 Clement et al. Nov 1999 A
5984915 Loeb et al. Nov 1999 A
6004723 Figov Dec 1999 A
6007219 O'Meara Dec 1999 A
6015404 Altshuler et al. Jan 2000 A
6017677 Maemoto et al. Jan 2000 A
6022316 Eppstein et al. Feb 2000 A
6022346 Panescu et al. Feb 2000 A
6024095 Stanley, III Feb 2000 A
6026828 Altshuler Feb 2000 A
6027493 Donitzky et al. Feb 2000 A
6027495 Miller Feb 2000 A
6028694 Schmidt Feb 2000 A
6029303 Dewan Feb 2000 A
6029304 Hulke et al. Feb 2000 A
6030378 Stewart Feb 2000 A
6030399 Ignotz et al. Feb 2000 A
6032071 Binder Feb 2000 A
RE36634 Ghaffari Mar 2000 E
6033431 Segal Mar 2000 A
6036684 Tankovich et al. Mar 2000 A
6044514 Kaneda et al. Apr 2000 A
6045548 Furumoto et al. Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
D424197 Sydlowski et al. May 2000 S
6056548 Neuberger et al. May 2000 A
6056738 Marchitto et al. May 2000 A
6058937 Doiron et al. May 2000 A
6059820 Baronov May 2000 A
6063108 Salansky et al. May 2000 A
6068963 Aoshima May 2000 A
6070092 Kazama et al. May 2000 A
6071239 Cribbs et al. Jun 2000 A
6074382 Asah et al. Jun 2000 A
6077294 Cho et al. Jun 2000 A
6080146 Altshuler et al. Jun 2000 A
6080147 Tobinick Jun 2000 A
6083217 Tankovich Jul 2000 A
6086363 Moran et al. Jul 2000 A
6086558 Bower et al. Jul 2000 A
6086580 Mordon et al. Jul 2000 A
6090524 Deboer et al. Jul 2000 A
6132929 Nakamura Jul 2000 A
6094767 Iimura Aug 2000 A
6096028 Bahmanyar et al. Aug 2000 A
6096029 O'Donnell, Jr. Aug 2000 A
6096209 O'Brien et al. Aug 2000 A
6099521 Shadduck Aug 2000 A
6101207 Ilorinne Aug 2000 A
6104959 Spertell Aug 2000 A
6106293 Wiesel Aug 2000 A
6106294 Daniel Aug 2000 A
6110195 Xie et al. Aug 2000 A
6112123 Kelleher et al. Aug 2000 A
6113559 Klopotek Sep 2000 A
6117129 Mukai Sep 2000 A
6120497 Anderson et al. Sep 2000 A
6126655 Domankevitz et al. Oct 2000 A
6129723 Anderson Oct 2000 A
6135774 Hack et al. Oct 2000 A
6142650 Brown et al. Nov 2000 A
6142939 Eppstein et al. Nov 2000 A
6149644 Xie Nov 2000 A
6149895 Kutsch Nov 2000 A
6153352 Oohashi et al. Nov 2000 A
6159203 Sinofsky et al. Dec 2000 A
6159236 Biel Dec 2000 A
6162055 Montgomery et al. Dec 2000 A
6162211 Tankovich et al. Dec 2000 A
6162212 Kreindel et al. Dec 2000 A
6162215 Feng Dec 2000 A
6162218 Elbrecht et al. Dec 2000 A
6164837 Haake et al. Dec 2000 A
6171300 Adams Jan 2001 B1
6171301 Nelson Jan 2001 B1
6171302 Talpalriu et al. Jan 2001 B1
6171332 Whitehurst Jan 2001 B1
6173202 Eppstein Jan 2001 B1
6174325 Eckhouse Jan 2001 B1
6176854 Cone Jan 2001 B1
6177230 Kawamura Jan 2001 B1
6183434 Eppstein Feb 2001 B1
6183500 Kohler Feb 2001 B1
6183773 Anderson Feb 2001 B1
6187001 Azar et al. Feb 2001 B1
6187029 Shapiro et al. Feb 2001 B1
6190825 Denzinger et al. Feb 2001 B1
6190831 Leon et al. Feb 2001 B1
6197020 O'Donnell, Jr. Mar 2001 B1
6200134 Kovac et al. Mar 2001 B1
6200309 Rice et al. Mar 2001 B1
6202242 Salmon et al. Mar 2001 B1
6203540 Weber Mar 2001 B1
6210425 Chen Apr 2001 B1
6210426 Cho et al. Apr 2001 B1
6214034 Azar Apr 2001 B1
6221068 Fried et al. Apr 2001 B1
6221095 Van Zuylen et al. Apr 2001 B1
6228074 Almeida May 2001 B1
6228075 Furumoto May 2001 B1
6229831 Nightingale et al. May 2001 B1
6233584 Purcell May 2001 B1
6235015 Mead et al. May 2001 B1
6235016 Stewart May 2001 B1
6236891 Ingle et al. May 2001 B1
6238839 Tomita et al. May 2001 B1
6239442 Iimura May 2001 B1
6240306 Rohrscheib et al. May 2001 B1
6240925 McMillan et al. Jun 2001 B1
6245093 Li et al. Jun 2001 B1
6245486 Teng Jun 2001 B1
6246710 Furumoto Jun 2001 B1
6246740 Maruyama et al. Jun 2001 B1
6248103 Tannenbaum et al. Jun 2001 B1
6248503 Vermeersch et al. Jun 2001 B1
6251127 Biel Jun 2001 B1
6254388 Yarborough Jul 2001 B1
6263233 Zavislan et al. Jul 2001 B1
6264649 Whitcroft et al. Jul 2001 B1
6267779 Gerdes Jul 2001 B1
6267780 Streeter Jul 2001 B1
6273883 Furumoto Aug 2001 B1
6273884 Altshuler et al. Aug 2001 B1
6273885 Koop et al. Aug 2001 B1
6280438 Eckhouse et al. Aug 2001 B1
6282442 Destefano et al. Aug 2001 B1
6283956 McDaniel Sep 2001 B1
6287549 Sumian et al. Sep 2001 B1
6290496 Azar et al. Sep 2001 B1
6290712 Nordquist et al. Sep 2001 B1
6290713 Russell Sep 2001 B1
6294311 Shimazu et al. Sep 2001 B1
6306130 Anderson et al. Oct 2001 B1
6306160 Nidetzky Oct 2001 B1
6315772 Marchitto et al. Nov 2001 B1
6317624 Kollias et al. Nov 2001 B1
6319274 Shadduck Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6325769 Klopotek Dec 2001 B1
6327506 Yogo et al. Dec 2001 B1
6328733 Trost Dec 2001 B1
6331111 Cao Dec 2001 B1
6332891 Himes Dec 2001 B1
6338855 Albacarys et al. Jan 2002 B1
6340495 Sumian et al. Jan 2002 B1
6343400 Massholder et al. Feb 2002 B1
6343933 Montgomery et al. Feb 2002 B1
6346365 Kawauchi et al. Feb 2002 B1
6350261 Domankevitz et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6352811 Patel et al. Mar 2002 B1
6354370 Miller et al. Mar 2002 B1
6355054 Neuberger Mar 2002 B1
6358242 Cecchetti Mar 2002 B1
6358272 Wilden Mar 2002 B1
6358669 Savariar-Hauck et al. Mar 2002 B1
6364872 Hsia et al. Apr 2002 B1
6383176 Connors et al. May 2002 B1
6383177 Balle-Petersen May 2002 B1
6387089 Kreindel et al. May 2002 B1
6387353 Jensen et al. May 2002 B1
6391022 Furumoto et al. May 2002 B1
6394949 Crowley et al. May 2002 B1
6395016 Oron et al. May 2002 B1
6398801 Clement et al. Jun 2002 B1
6400011 Miki Jun 2002 B1
6402739 Neev Jun 2002 B1
6405732 Edwards et al. Jun 2002 B1
6406474 Neuberger et al. Jun 2002 B1
6409665 Scott et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413267 Dumoulin-White Jul 2002 B1
6416319 Cipolla Jul 2002 B1
6419389 Fuchs et al. Jul 2002 B1
6423462 Kunita Jul 2002 B1
6424852 Zavislan Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6435873 Burgio Aug 2002 B1
6436094 Reuter Aug 2002 B1
6439888 Boutoussov et al. Aug 2002 B1
6440155 Matsumae et al. Aug 2002 B1
6440633 Kawauchi Aug 2002 B1
6443946 Clement et al. Sep 2002 B2
6443978 Zharov Sep 2002 B1
6447503 Wynne et al. Sep 2002 B1
6447504 Ben-Haim et al. Sep 2002 B1
6451007 Koop et al. Sep 2002 B1
6454790 Neuberger et al. Sep 2002 B1
6459919 Lys et al. Oct 2002 B1
6461296 Desai Oct 2002 B1
6464694 Massengill Oct 2002 B1
6468717 Kita et al. Oct 2002 B2
6470216 Mulholland Oct 2002 B1
6471712 Burres Oct 2002 B2
6471716 Pecukonis Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6482199 Neev Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485413 Boppart et al. Nov 2002 B1
6491685 Visuri et al. Dec 2002 B2
6493608 Niemeyer Dec 2002 B1
6494900 Salansky et al. Dec 2002 B1
6497702 Bernaz Dec 2002 B1
6503269 Nield et al. Jan 2003 B2
6503486 Xu et al. Jan 2003 B2
6508785 Eppstein Jan 2003 B1
6508813 Altshuler Jan 2003 B1
6511475 Altshuler et al. Jan 2003 B1
6514243 Eckhouse et al. Feb 2003 B1
6517532 Altshuler et al. Feb 2003 B1
6519376 Biagi et al. Feb 2003 B2
6525819 Delawter et al. Feb 2003 B1
6527716 Eppstein Mar 2003 B1
6527764 Neuberger et al. Mar 2003 B1
6529540 Demmer et al. Mar 2003 B1
6530915 Eppstein et al. Mar 2003 B1
6530916 Shimmick Mar 2003 B1
6537270 Elbrecht et al. Mar 2003 B1
6544257 Nagage et al. Apr 2003 B2
6547780 Sinofsky Apr 2003 B1
6551346 Crossley Apr 2003 B2
6554439 Teicher et al. Apr 2003 B1
6556596 Kim et al. Apr 2003 B1
6558372 Altshuler May 2003 B1
6561808 Neuberger May 2003 B2
6569155 Connors et al. May 2003 B1
6570892 Lin et al. May 2003 B1
6570893 Libatique et al. May 2003 B1
6572634 Koo Jun 2003 B2
6572637 Yamazaki et al. Jun 2003 B1
6595934 Hissong et al. Jul 2003 B1
6600951 Anderson Jul 2003 B1
6602245 Thiberg Aug 2003 B1
6602275 Sullivan Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6605080 Altshuler et al. Aug 2003 B1
6605083 Clement et al. Aug 2003 B2
6606755 Robinson et al. Aug 2003 B1
6607525 France et al. Aug 2003 B2
6610052 Furumoto Aug 2003 B2
6613040 Tankovich et al. Sep 2003 B2
6616447 Rizoiu et al. Sep 2003 B1
6616451 Rizolu et al. Sep 2003 B1
6618531 Goto et al. Sep 2003 B1
6623272 Clemans Sep 2003 B2
6623513 Biel Sep 2003 B2
6629971 McDaniel Oct 2003 B2
6629989 Akita Oct 2003 B2
6632219 Baranov et al. Oct 2003 B1
6635075 Li et al. Oct 2003 B2
6641578 Mukai Nov 2003 B2
6641600 Kohler Nov 2003 B1
6648904 Altshuler et al. Nov 2003 B2
6652459 Payne et al. Nov 2003 B2
6653618 Zenzie Nov 2003 B2
6659999 Anderson et al. Dec 2003 B1
6660000 Neuberger et al. Dec 2003 B2
6663620 Altshuler et al. Dec 2003 B2
6663658 Kollias et al. Dec 2003 B1
6663659 McDaniel Dec 2003 B2
6666856 Connors et al. Dec 2003 B2
6669685 Rizoiu et al. Dec 2003 B1
6675425 Iimura Jan 2004 B1
6676654 Balle-Petersen Jan 2004 B1
6679837 Daikuzono Jan 2004 B2
6682523 Shadduck Jan 2004 B2
6682524 Elbrecht et al. Jan 2004 B1
6685639 Wang et al. Feb 2004 B1
6685699 Eppstein et al. Feb 2004 B1
6685722 Rosenbluth et al. Feb 2004 B1
6689124 Thiberg Feb 2004 B1
6692456 Eppstein et al. Feb 2004 B1
6692517 Cho et al. Feb 2004 B2
6699040 Hahn et al. Mar 2004 B1
6706035 Cense et al. Mar 2004 B2
6709269 Altshuler Mar 2004 B1
6709446 Lundahl et al. Mar 2004 B2
6723090 Altshuler et al. Apr 2004 B2
6724958 German et al. Apr 2004 B1
6726681 Grasso et al. Apr 2004 B2
6736807 Yamazaki et al. May 2004 B2
6743222 Durkin et al. Jun 2004 B2
6746444 Key Jun 2004 B2
6749623 His et al. Jun 2004 B1
6755647 Melikechi et al. Jun 2004 B2
6770069 Hobart et al. Aug 2004 B1
6772053 Niemeyer Aug 2004 B2
6790205 Yamazaki et al. Sep 2004 B1
6800122 Anderson et al. Oct 2004 B2
6801595 Grodzins et al. Oct 2004 B2
6808331 Hall et al. Oct 2004 B2
6808532 Andersen et al. Oct 2004 B2
6824542 Jay Nov 2004 B2
RE38670 Asah et al. Dec 2004 E
6858009 Kawata et al. Feb 2005 B2
6860879 Irion et al. Mar 2005 B2
6860896 Leber et al. Mar 2005 B2
6862771 Muller Mar 2005 B1
6863781 Nocera et al. Mar 2005 B2
6872203 Shafirstein et al. Mar 2005 B2
6878144 Altshuler et al. Apr 2005 B2
6881212 Clement et al. Apr 2005 B1
6887260 McDaniel May 2005 B1
6888319 Inochkin et al. May 2005 B2
6893259 Reizenson May 2005 B1
6902397 Farrell et al. Jun 2005 B2
6902563 Wilkens et al. Jun 2005 B2
6905492 Zvuloni et al. Jun 2005 B2
6916316 Jay Jul 2005 B2
6917715 Berstis Jul 2005 B2
6936046 Hissong et al. Aug 2005 B2
6942658 Rizoiu et al. Sep 2005 B1
6953341 Black Oct 2005 B2
6974450 Weber et al. Dec 2005 B2
6974451 Altshuler et al. Dec 2005 B2
6976985 Altshuler et al. Dec 2005 B2
6986903 Zulli et al. Jan 2006 B2
6989007 Shadduck Jan 2006 B2
6989023 Black Jan 2006 B2
6991644 Spooner et al. Jan 2006 B2
6997923 Anderson et al. Feb 2006 B2
7001413 Butler Feb 2006 B2
7006223 Mullani Feb 2006 B2
7006874 Knowlton Feb 2006 B2
7018396 Sierra et al. Mar 2006 B2
7029469 Vasily Apr 2006 B2
7033349 Key Apr 2006 B2
7041094 Connors et al. May 2006 B2
7041100 Kreindel May 2006 B2
7044959 Anderson et al. May 2006 B2
7060061 Altshuler et al. Jun 2006 B2
7066733 Logan et al. Jun 2006 B2
7070611 Biel Jul 2006 B2
7077840 Altshuler et al. Jul 2006 B2
7081128 Hart et al. Jul 2006 B2
7097639 Almeida Aug 2006 B1
7097656 Akopov et al. Aug 2006 B1
7104985 Martinelli Sep 2006 B2
7118562 Furumoto Oct 2006 B2
7118563 Weckwerth et al. Oct 2006 B2
7135033 Altshuler et al. Nov 2006 B2
7144247 Black Dec 2006 B2
7144248 Irwin Dec 2006 B2
7145105 Gaulard Dec 2006 B2
7145108 Kanel et al. Dec 2006 B2
7160289 Cohen Jan 2007 B2
7170034 Shalev Jan 2007 B2
7175617 Jay Feb 2007 B2
7182760 Kubota Feb 2007 B2
7198634 Harth et al. Apr 2007 B2
7202446 Shalev Apr 2007 B2
7204832 Altshuler et al. Apr 2007 B2
7216055 Horton et al. May 2007 B1
7217265 Hennings et al. May 2007 B2
7217267 Jay May 2007 B2
7220254 Altshuler et al. May 2007 B2
7223270 Altshuler et al. May 2007 B2
7223281 Altshuler et al. May 2007 B2
7255691 Tolkoff et al. Aug 2007 B2
7274155 Inochkin et al. Sep 2007 B2
7276058 Altshuler et al. Oct 2007 B2
7280866 McIntosh et al. Oct 2007 B1
7282060 DeBenedictis Oct 2007 B2
7282723 Schomaket et al. Oct 2007 B2
7291140 MacFarland et al. Nov 2007 B2
7291141 Harvey Nov 2007 B2
7309335 Altshuler et al. Dec 2007 B2
7311722 Larsen Dec 2007 B2
7322972 Viator et al. Jan 2008 B2
7329273 Altshuler et al. Feb 2008 B2
7329274 Altshuler et al. Feb 2008 B2
7331953 Manstein et al. Feb 2008 B2
7331964 Maricle et al. Feb 2008 B2
7333698 Israel Feb 2008 B2
7333841 Maruo et al. Feb 2008 B2
7351252 Altshuler et al. Apr 2008 B2
7354448 Altshuler et al. Apr 2008 B2
7422598 Altshuler et al. Sep 2008 B2
7423767 Steinsiek et al. Sep 2008 B2
7431719 Altshuler Oct 2008 B2
7436863 Matsuda et al. Oct 2008 B2
7500956 Wilk Mar 2009 B1
7531967 Inochkin et al. May 2009 B2
7540869 Altshuler et al. Jun 2009 B2
7553308 Jay Jun 2009 B2
7586957 Sierra et al. Sep 2009 B2
7588547 Deem et al. Sep 2009 B2
7624640 Maris et al. Dec 2009 B2
7647092 Motz et al. Jan 2010 B2
7699058 Jay Apr 2010 B1
7722600 Connors et al. May 2010 B2
7758621 Altshuler et al. Jul 2010 B2
7763016 Altshuler et al. Jul 2010 B2
7839972 Ruchala et al. Nov 2010 B2
7856985 Mirkov et al. Dec 2010 B2
7860554 Leonardi Dec 2010 B2
7929579 Hohm et al. Apr 2011 B2
7931028 Jay Apr 2011 B2
7935107 Altshuler et al. May 2011 B2
7938821 Chan et al. May 2011 B2
7942869 Houbolt et al. May 2011 B2
7942915 Altshuler et al. May 2011 B2
7942916 Altshuler et al. May 2011 B2
7998181 Nightingale et al. Aug 2011 B2
8002768 Altshuler et al. Aug 2011 B1
8027710 Dannan Sep 2011 B1
8109924 Altshuler Feb 2012 B2
8113209 Masotti et al. Feb 2012 B2
8182473 Altshuler et al. May 2012 B2
8317779 Mirkov et al. Nov 2012 B2
8322348 Mirkov et al. Dec 2012 B2
8328794 Altshuler et al. Dec 2012 B2
8328796 Altshuler et al. Dec 2012 B2
8346347 Altshuler et al. Jan 2013 B2
8357145 Hennings et al. Jan 2013 B2
8378322 Dahm et al. Feb 2013 B2
8439940 Chomas et al. May 2013 B2
20010007068 Ota Jul 2001 A1
20010008973 Van Zuylen et al. Jul 2001 A1
20010016732 Hobart et al. Aug 2001 A1
20010023363 Harth et al. Sep 2001 A1
20010024777 Azar et al. Sep 2001 A1
20010025173 Ritchie et al. Sep 2001 A1
20010029956 Argenta et al. Oct 2001 A1
20010041886 Durkin et al. Nov 2001 A1
20010046244 Klimov et al. Nov 2001 A1
20010046652 Ostler et al. Nov 2001 A1
20010048077 Afanassieva Dec 2001 A1
20020002367 Tankovich et al. Jan 2002 A1
20020004066 Stanley et al. Jan 2002 A1
20020005475 Zenzie Jan 2002 A1
20020013572 Berlin Jan 2002 A1
20020015911 Nakamura Feb 2002 A1
20020016587 Furumoto Feb 2002 A1
20020018754 Sagel et al. Feb 2002 A1
20020019624 Clement et al. Feb 2002 A1
20020019625 Azar Feb 2002 A1
20020026225 Segal Feb 2002 A1
20020028404 Nakamura Mar 2002 A1
20020029071 Whitehurst Mar 2002 A1
20020032437 Andrews et al. Mar 2002 A1
20020039702 Hotta Apr 2002 A1
20020045891 Clement et al. Apr 2002 A1
20020048722 Aoshima Apr 2002 A1
20020049432 Mukai Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058890 Visuri et al. May 2002 A1
20020071287 Haase Jun 2002 A1
20020071827 Petersen et al. Jun 2002 A1
20020072676 Afanassieva Jun 2002 A1
20020081555 Wiesel Jun 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020091377 Anderson et al. Jul 2002 A1
20020108193 Gruber Aug 2002 A1
20020111546 Cook et al. Aug 2002 A1
20020111610 Nordquist Aug 2002 A1
20020120256 Furuno et al. Aug 2002 A1
20020123745 Svaasand et al. Sep 2002 A1
20020125230 Haight et al. Sep 2002 A1
20020127224 Chen Sep 2002 A1
20020128635 Altshuler et al. Sep 2002 A1
20020128695 Harth et al. Sep 2002 A1
20020128696 Pearl Sep 2002 A1
20020151878 Shimmick et al. Oct 2002 A1
20020151879 Loeb Oct 2002 A1
20020160299 Asawa et al. Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020161418 Wilkens et al. Oct 2002 A1
20020167974 Kennedy et al. Nov 2002 A1
20020173723 Lewis Nov 2002 A1
20020173777 Sand Nov 2002 A1
20020173780 Altshuler et al. Nov 2002 A1
20020173781 Cense et al. Nov 2002 A1
20020173782 Cense et al. Nov 2002 A1
20020182563 Boutoussov et al. Dec 2002 A1
20020183808 Biel Dec 2002 A1
20020198517 Alfano et al. Dec 2002 A1
20030004499 McDaniel Jan 2003 A1
20030009158 Perricone Jan 2003 A1
20030009205 Biel Jan 2003 A1
20030018373 Eckhardt et al. Jan 2003 A1
20030023235 Cense et al. Jan 2003 A1
20030023283 McDaniel Jan 2003 A1
20030023284 Gartstein et al. Jan 2003 A1
20030028186 Kreindel Feb 2003 A1
20030028227 Neuberger et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030032950 Altshuler et al. Feb 2003 A1
20030036680 Black Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030055413 Altshuler et al. Mar 2003 A1
20030055414 Altshuler et al. Mar 2003 A1
20030057875 Inochkin et al. Mar 2003 A1
20030059738 Neuberger Mar 2003 A1
20030065314 Altshuler et al. Apr 2003 A1
20030073989 Hoey et al. Apr 2003 A1
20030083649 Margaron et al. May 2003 A1
20030084534 Kaizuka May 2003 A1
20030092982 Eppstein May 2003 A1
20030097122 Ganz et al. May 2003 A1
20030100936 Altshuler et al. May 2003 A1
20030104340 Clemans Jun 2003 A1
20030109787 Black Jun 2003 A1
20030109860 Black Jun 2003 A1
20030113684 Scott Jun 2003 A1
20030129154 McDaniel Jul 2003 A1
20030130709 Haber Jul 2003 A1
20030152528 Singh et al. Aug 2003 A1
20030158550 Ganz et al. Aug 2003 A1
20030163884 Weihrauch Sep 2003 A1
20030167080 Hart et al. Sep 2003 A1
20030169433 Koele et al. Sep 2003 A1
20030181896 Zvuloni et al. Sep 2003 A1
20030187319 Kaneko Oct 2003 A1
20030187383 Weber et al. Oct 2003 A1
20030187486 Savage et al. Oct 2003 A1
20030195494 Altshuler et al. Oct 2003 A1
20030199859 Altshuler et al. Oct 2003 A1
20030216719 DeBenedictis Nov 2003 A1
20030216795 Harth et al. Nov 2003 A1
20030232303 Black Dec 2003 A1
20030233138 Spooner Dec 2003 A1
20040006332 Black Jan 2004 A1
20040010298 Altshuler et al. Jan 2004 A1
20040015156 Vasily Jan 2004 A1
20040015158 Chen et al. Jan 2004 A1
20040019120 Vargas et al. Jan 2004 A1
20040019990 Farrell et al. Feb 2004 A1
20040024388 Altshuler Feb 2004 A1
20040024430 Bader et al. Feb 2004 A1
20040030326 Altshuler et al. Feb 2004 A1
20040034319 Anderson et al. Feb 2004 A1
20040034341 Altshuler et al. Feb 2004 A1
20040036975 Slatkine Feb 2004 A1
20040054248 Kimchy et al. Mar 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040082940 Black et al. Apr 2004 A1
20040085026 Inochkin et al. May 2004 A1
20040092506 Thompson et al. May 2004 A1
20040093042 Altshuler et al. May 2004 A1
20040093043 Edel et al. May 2004 A1
20040098070 Mohr et al. May 2004 A1
20040105611 Bischel et al. Jun 2004 A1
20040111031 Alfano et al. Jun 2004 A1
20040111086 Trombly Jun 2004 A1
20040111132 Shenderova et al. Jun 2004 A1
20040116984 Spooner et al. Jun 2004 A1
20040122311 Cosman Jun 2004 A1
20040133251 Altshuler et al. Jul 2004 A1
20040143181 Damasio et al. Jul 2004 A1
20040143247 Anderson et al. Jul 2004 A1
20040143920 Nanda Jul 2004 A1
20040147984 Altshuler et al. Jul 2004 A1
20040156626 Thoms Aug 2004 A1
20040161213 Lee Aug 2004 A1
20040162490 Soltz et al. Aug 2004 A1
20040162549 Altshuler Aug 2004 A1
20040162596 Altshuler et al. Aug 2004 A1
20040167502 Weckwerth et al. Aug 2004 A1
20040176754 Island et al. Sep 2004 A1
20040176764 Dant Sep 2004 A1
20040186465 Francischelli et al. Sep 2004 A1
20040191729 Altshuler et al. Sep 2004 A1
20040193234 Butler Sep 2004 A1
20040193235 Altshuler et al. Sep 2004 A1
20040193236 Altshuler et al. Sep 2004 A1
20040199079 Chuck et al. Oct 2004 A1
20040199151 Neuberger Oct 2004 A1
20040199227 Altshuler et al. Oct 2004 A1
20040204745 Altshuler et al. Oct 2004 A1
20040208918 Koch et al. Oct 2004 A1
20040210275 Town et al. Oct 2004 A1
20040210276 Altshuler et al. Oct 2004 A1
20040214132 Altshuler Oct 2004 A1
20040225339 Yaroslavsky et al. Nov 2004 A1
20040230258 Altshuler et al. Nov 2004 A1
20040230260 MacFarland et al. Nov 2004 A1
20040234460 Tarver et al. Nov 2004 A1
20040249261 Torchia et al. Dec 2004 A1
20040260210 Ella et al. Dec 2004 A1
20050015077 Kuklin et al. Jan 2005 A1
20050038418 Altshuler et al. Feb 2005 A1
20050049467 Stamatas et al. Mar 2005 A1
20050049582 DeBenedictis Mar 2005 A1
20050049658 Connors et al. Mar 2005 A1
20050063931 Paus et al. Mar 2005 A1
20050065502 Stoltz Mar 2005 A1
20050065531 Cohen Mar 2005 A1
20050074038 Khaydarov Apr 2005 A1
20050080404 Jones et al. Apr 2005 A1
20050085875 Van Zuylen Apr 2005 A1
20050102213 Savasoglu et al. May 2005 A1
20050107849 Altshuler et al. May 2005 A1
20050113815 Ritchie et al. May 2005 A1
20050113890 Ritchie et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050131400 Hennings et al. Jun 2005 A1
20050143719 Sink Jun 2005 A1
20050143723 Zvuloni et al. Jun 2005 A1
20050154380 DeBenedictis et al. Jul 2005 A1
20050165315 Zuluga et al. Jul 2005 A1
20050165393 Eppstein Jul 2005 A1
20050168158 Inochkin et al. Aug 2005 A1
20050170313 Pitz et al. Aug 2005 A1
20050171517 Altshuler et al. Aug 2005 A1
20050171581 Connors et al. Aug 2005 A1
20050177026 Hoeg et al. Aug 2005 A1
20050177139 Yamazaki et al. Aug 2005 A1
20050177142 Jay Aug 2005 A1
20050182389 Laporte et al. Aug 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050203496 Ritchie et al. Sep 2005 A1
20050203497 Speeg et al. Sep 2005 A1
20050215988 Altshuler et al. Sep 2005 A1
20050220726 Pauly et al. Oct 2005 A1
20050222556 Arivra et al. Oct 2005 A1
20050245917 Strassl et al. Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050251117 Anderson et al. Nov 2005 A1
20050251118 Anderson et al. Nov 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050257612 Hiemer et al. Nov 2005 A1
20050281530 Rizoiu et al. Dec 2005 A1
20060004306 Altshuler et al. Jan 2006 A1
20060004347 Altshuler et al. Jan 2006 A1
20060007965 Tankovich et al. Jan 2006 A1
20060009750 Altshuler et al. Jan 2006 A1
20060013533 Slatkine et al. Jan 2006 A1
20060020309 Altshuler et al. Jan 2006 A1
20060047281 Kreindel et al. Mar 2006 A1
20060052661 Gannot et al. Mar 2006 A1
20060056589 Engelward Mar 2006 A1
20060058712 Altshuler et al. Mar 2006 A1
20060062448 Hirsch et al. Mar 2006 A1
20060072635 Wang Apr 2006 A1
20060079947 Tankovich et al. Apr 2006 A1
20060089687 Spooner et al. Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060100677 Blumenkranz et al. May 2006 A1
20060116671 Slayton et al. Jun 2006 A1
20060118127 Chinn Jun 2006 A1
20060122584 Bommannan et al. Jun 2006 A1
20060122668 Anderson et al. Jun 2006 A1
20060128771 Mirkov et al. Jun 2006 A1
20060149343 Altshuler et al. Jul 2006 A1
20060153254 Franjic Jul 2006 A1
20060155266 Manstein et al. Jul 2006 A1
20060161143 Altshuler et al. Jul 2006 A1
20060173480 Zhang Aug 2006 A1
20060194164 Altshuler et al. Aug 2006 A1
20060206103 Altshuler et al. Sep 2006 A1
20060217689 Dick et al. Sep 2006 A1
20060224148 Cho et al. Oct 2006 A1
20060247609 Mirkov et al. Nov 2006 A1
20060253176 Caruso et al. Nov 2006 A1
20060259102 Slatkine Nov 2006 A1
20060265032 Hennings Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20060282067 Koop et al. Dec 2006 A1
20060287646 Altshuler et al. Dec 2006 A1
20060293727 Spooner et al. Dec 2006 A1
20060293728 Roersma et al. Dec 2006 A1
20070027440 Altshuler et al. Feb 2007 A1
20070038271 Cole et al. Feb 2007 A1
20070038206 Altshuler et al. Mar 2007 A1
20070049910 Altshuler et al. Mar 2007 A1
20070060819 Altshuler et al. Mar 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070067006 Altshuler et al. Mar 2007 A1
20070073308 Anderson et al. Mar 2007 A1
20070078501 Altshuler et al. Apr 2007 A1
20070088206 Peyman Apr 2007 A1
20070093797 Chan et al. Apr 2007 A1
20070105212 Oldham et al. May 2007 A1
20070121069 Andersen et al. May 2007 A1
20070123851 Alejandro et al. May 2007 A1
20070142881 Hennings Jun 2007 A1
20070159592 Rylander et al. Jul 2007 A1
20070173749 Williams et al. Jul 2007 A1
20070179378 Boese et al. Aug 2007 A1
20070179470 Toombs Aug 2007 A1
20070185552 Masotti et al. Aug 2007 A1
20070191827 Lischinsky et al. Aug 2007 A1
20070194717 Belikov et al. Aug 2007 A1
20070197883 Zhou et al. Aug 2007 A1
20070198004 Altshuler et al. Aug 2007 A1
20070208252 Makower Sep 2007 A1
20070213696 Altshuler et al. Sep 2007 A1
20070213698 Altshuler et al. Sep 2007 A1
20070213792 Yaroslavsky et al. Sep 2007 A1
20070213851 Bellas et al. Sep 2007 A1
20070219602 Ostrovsky et al. Sep 2007 A1
20070219604 Yaroslavsky et al. Sep 2007 A1
20070219605 Yaroslavsky et al. Sep 2007 A1
20070239142 Altshuler et al. Oct 2007 A1
20070239143 Altshuler et al. Oct 2007 A1
20070244527 Hatayama et al. Oct 2007 A1
20070255355 Altshuler et al. Nov 2007 A1
20070260230 Youngquist et al. Nov 2007 A1
20070264625 DeBenedictis Nov 2007 A1
20070288071 Rogers et al. Dec 2007 A1
20080003536 Altshuler et al. Jan 2008 A1
20080004608 Dacquay et al. Jan 2008 A1
20080004611 Houbolt et al. Jan 2008 A1
20080009842 Manstein et al. Jan 2008 A1
20080033516 Altshuler et al. Feb 2008 A1
20080058782 Frangcischelli Mar 2008 A1
20080058783 Altshuler et al. Mar 2008 A1
20080082089 Jones Apr 2008 A1
20080103565 Altshuler et al. May 2008 A1
20080132886 Cohen et al. Jun 2008 A1
20080139901 Altshuler et al. Jun 2008 A1
20080140164 Oberreiter et al. Jun 2008 A1
20080147054 Altshuler et al. Jun 2008 A1
20080154157 Altshuler et al. Jun 2008 A1
20080154247 Dallarosa Jun 2008 A1
20080172047 Altshuler et al. Jul 2008 A1
20080183162 Altshuler et al. Jul 2008 A1
20080183250 Tanojo et al. Jul 2008 A1
20080186591 Altshuler et al. Aug 2008 A1
20080194969 Werahera et al. Aug 2008 A1
20080195183 Botchkareva et al. Aug 2008 A1
20080208105 Zelickson et al. Aug 2008 A1
20080214988 Altshuler et al. Sep 2008 A1
20080215038 Bakker Sep 2008 A1
20080248554 Merchant et al. Oct 2008 A1
20080262577 Altshuler et al. Oct 2008 A1
20080294150 Altshuler et al. Nov 2008 A1
20080294152 Altshuler et al. Nov 2008 A1
20080294153 Altshuler et al. Nov 2008 A1
20080306471 Altshuler et al. Dec 2008 A1
20080319430 Zenzie et al. Dec 2008 A1
20090018531 Welches Jan 2009 A1
20090018624 Levinson et al. Jan 2009 A1
20090024023 Welches et al. Jan 2009 A1
20090024192 Knowlton Jan 2009 A1
20090024193 Altshuler et al. Jan 2009 A1
20090043294 Island et al. Feb 2009 A1
20090048557 Yeshurun et al. Feb 2009 A1
20090069741 Altshuler et al. Mar 2009 A1
20090132011 Altshuler et al. May 2009 A1
20090137995 Altshuler et al. May 2009 A1
20090149843 Smits et al. Jun 2009 A1
20090149844 Altshuler et al. Jun 2009 A1
20090222068 Oberreiter et al. Sep 2009 A1
20090227995 Bhawalkar et al. Sep 2009 A1
20090248004 Altshuler et al. Oct 2009 A1
20090254076 Altshuler et al. Oct 2009 A1
20090287195 Altshuler et al. Nov 2009 A1
20090292277 Sierra et al. Nov 2009 A1
20090312749 Pini et al. Dec 2009 A1
20100010507 Kinoshita Jan 2010 A1
20100015576 Altshuler et al. Jan 2010 A1
20100021867 Altshuler et al. Jan 2010 A1
20100036295 Altshuler et al. Feb 2010 A1
20100049180 Wells et al. Feb 2010 A1
20100054284 Dekker Mar 2010 A1
20100109041 Yin et al. May 2010 A1
20100123399 Bollmann et al. May 2010 A1
20100145321 Altshuler et al. Jun 2010 A1
20100195680 Sierra et al. Aug 2010 A1
20100198134 Eckhouse et al. Aug 2010 A1
20100204686 Yaroslavksy et al. Aug 2010 A1
20100217248 Mirkov et al. Aug 2010 A1
20100278756 Chung et al. Nov 2010 A1
20100286673 Altshuler et al. Nov 2010 A1
20100296531 Hohm et al. Nov 2010 A1
20100298744 Altshuler et al. Nov 2010 A1
20110046523 Altshuler et al. Feb 2011 A1
20110087155 Uhland et al. Apr 2011 A1
20110118722 Lischinsky et al. May 2011 A1
20110137230 Altshuler et al. Jun 2011 A1
20110152847 Mirkov et al. Jun 2011 A1
20110172651 Altshuler et al. Jul 2011 A1
20110182306 Hosseini et al. Jul 2011 A1
20110184334 Altshuler et al. Jul 2011 A1
20110207075 Altshuler et al. Aug 2011 A1
20110257584 Altshuler et al. Oct 2011 A1
20110267830 Altshuler et al. Nov 2011 A1
20110313408 Tankovich et al. Dec 2011 A1
20120022510 Welches et al. Jan 2012 A1
20120023129 Vedula et al. Jan 2012 A1
20120083862 Altshuler et al. Apr 2012 A1
20120099816 Wilson Apr 2012 A1
20120116271 Caruso et al. May 2012 A1
20120165725 Chomas et al. Jun 2012 A1
20120277659 Yaroslavsky et al. Nov 2012 A1
20120301842 Altshuler et al. Nov 2012 A1
20130044768 Ter-Mikirtychev Feb 2013 A1
Foreign Referenced Citations (279)
Number Date Country
400305 Apr 1995 AT
1851583 Mar 1984 AU
2053926 Mar 1990 CN
1073607 Jun 1993 CN
1182572 May 1998 CN
1351483 May 2002 CN
1535126 Oct 2004 CN
2826383 Dec 1979 DE
3304230 Aug 1984 DE
8807746 Nov 1988 DE
3837248 May 1990 DE
3841503 Jun 1990 DE
9102407 Jul 1991 DE
3719561 Jan 1998 DE
19803460 Aug 1999 DE
19944401 Mar 2001 DE
10112289 Aug 2001 DE
10140715 Mar 2002 DE
10120787 Jan 2003 DE
0000593 Feb 1979 EP
0142671 May 1985 EP
0172490 Feb 1986 EP
0297360 Jan 1989 EP
0320080 Jun 1989 EP
0324120 Jul 1989 EP
0413025 Feb 1991 EP
0458576 Nov 1991 EP
0563953 Oct 1993 EP
0565331 Oct 1993 EP
0575274 Dec 1993 EP
0593375 Apr 1994 EP
0598984 Jun 1994 EP
0709941 May 1996 EP
0724894 Aug 1996 EP
0726083 Aug 1996 EP
0736308 Oct 1996 EP
0743029 Nov 1996 EP
0755698 Jan 1997 EP
0763371 Mar 1997 EP
0765673 Apr 1997 EP
0765674 Apr 1997 EP
0783904 Jul 1997 EP
0884066 Dec 1998 EP
0885629 Dec 1998 EP
0920840 Jun 1999 EP
0927544 Jul 1999 EP
1031414 Aug 2000 EP
1038505 Sep 2000 EP
1057455 Dec 2000 EP
1072402 Jan 2001 EP
1075854 Feb 2001 EP
1138269 Apr 2001 EP
1138349 Oct 2001 EP
1147785 Oct 2001 EP
1219258 Jul 2002 EP
1226787 Jul 2002 EP
1238683 Sep 2002 EP
1250893 Oct 2002 EP
1057454 Nov 2003 EP
1457234 Sep 2004 EP
1495735 Jan 2005 EP
1512373 Mar 2005 EP
1535582 Jun 2005 EP
1627662 Feb 2006 EP
1650615 Apr 2006 EP
1797836 Jun 2007 EP
1839705 Oct 2007 EP
1854505 Nov 2007 EP
2199453 Apr 1974 FR
2591902 Jun 1987 FR
1251424 Oct 1971 GB
1274017 May 1972 GB
1546625 May 1979 GB
2044908 Oct 1980 GB
2059053 Apr 1981 GB
2059054 Apr 1981 GB
2123287 Feb 1984 GB
2212010 Jul 1989 GB
2239675 Jul 1991 GB
2270159 Mar 1994 GB
2356570 May 2001 GB
2360461 Sep 2001 GB
2360946 Oct 2001 GB
2364376 Jan 2002 GB
2368020 Apr 2002 GB
2390021 Dec 2003 GB
2397528 Jul 2004 GB
S54129791 Oct 1979 JP
S5552766 Apr 1980 JP
S5577187 Jun 1980 JP
S574007 Jan 1982 JP
S62165985 Jul 1987 JP
S6323648 Jan 1988 JP
S63249577 Oct 1988 JP
S6427554 Jan 1989 JP
H0366387 Mar 1989 JP
S6481222 Mar 1989 JP
H01181877 Jul 1989 JP
H02199 Jan 1990 JP
H022199 Jan 1990 JP
H0213014 Jan 1990 JP
HO285694 Mar 1990 JP
H02174804 Jul 1990 JP
H02285694 Nov 1990 JP
H0319385 Jan 1991 JP
H0316956 Feb 1991 JP
H03183184 Aug 1991 JP
H03281390 Dec 1991 JP
H0622871 Feb 1994 JP
H06154239 Jun 1994 JP
H079179 Jan 1995 JP
H0763957 Mar 1995 JP
H07328025 Dec 1995 JP
H0815539 Jan 1996 JP
H0854538 Feb 1996 JP
H0984803 Mar 1997 JP
H09141869 Jun 1997 JP
H09220292 Aug 1997 JP
H1014661 Jan 1998 JP
H0199574 Apr 1998 JP
H1147146 Feb 1999 JP
H11232229 May 1999 JP
2000037400 Feb 2000 JP
2000153003 Jun 2000 JP
2000300684 Oct 2000 JP
2001000560 Jan 2001 JP
2001029124 Feb 2001 JP
2001145520 May 2001 JP
2001196665 Jul 2001 JP
2001343560 Dec 2001 JP
2002272861 Sep 2002 JP
2003052843 Feb 2003 JP
2005017796 Jan 2005 JP
2005027702 Feb 2005 JP
2006192073 Jul 2006 JP
2082337 Jun 1997 RU
2089126 Sep 1997 RU
2089127 Sep 1997 RU
2096051 Nov 1997 RU
2122848 Dec 1998 RU
WO 1986002783 May 1986 WO
WO 1988004592 Jun 1988 WO
WO 1990000420 Jan 1990 WO
WO 1990006727 Jun 1990 WO
WO 1990012548 Nov 1990 WO
WO 1991001053 Jan 1991 WO
WO 1991002562 Mar 1991 WO
WO 1991012050 Aug 1991 WO
WO 1991013652 Sep 1991 WO
WO 1991013653 Sep 1991 WO
WO 1991018646 Dec 1991 WO
WO 1992016338 Jan 1992 WO
WO 1992003977 Mar 1992 WO
WO 1992006739 Apr 1992 WO
WO 1992019165 Nov 1992 WO
WO 1993005920 Apr 1993 WO
WO 1993021843 Nov 1993 WO
WO 1995003089 Feb 1995 WO
WO 1995004393 Feb 1995 WO
WO 1995010243 Apr 1995 WO
WO 1995014251 May 1995 WO
WO 1995015725 Jun 1995 WO
WO 1995032441 Nov 1995 WO
WO 1995033518 Dec 1995 WO
WO 1996009853 Apr 1996 WO
WO 1996018347 Jun 1996 WO
WO 1996022741 Aug 1996 WO
WO 1996022813 Aug 1996 WO
WO 1996023447 Aug 1996 WO
WO 1996024182 Aug 1996 WO
WO 1996024406 Aug 1996 WO
WO 1996025979 Aug 1996 WO
WO 1996028212 Sep 1996 WO
WO 1996034316 Oct 1996 WO
WO 1996036396 Nov 1996 WO
WO 1996039734 Dec 1996 WO
WO 1996041579 Dec 1996 WO
WO 1997000777 Jan 1997 WO
WO 1997013458 Apr 1997 WO
WO 1997013552 Apr 1997 WO
WO 1997022384 Jun 1997 WO
WO 1997028752 Aug 1997 WO
WO 1997037602 Oct 1997 WO
WO 1997037723 Oct 1997 WO
WO 1998004317 Feb 1998 WO
WO 1998005286 Feb 1998 WO
WO 1998005380 Feb 1998 WO
WO 1998006456 Feb 1998 WO
WO 1998007379 Feb 1998 WO
WO 1998020937 May 1998 WO
WO 1998024507 Jun 1998 WO
WO 1998029134 Jul 1998 WO
WO 1998041158 Sep 1998 WO
WO 1998051235 Nov 1998 WO
WO 1998052481 Nov 1998 WO
WO 1998058595 Dec 1998 WO
WO 1999010046 Mar 1999 WO
WO 1999017666 Apr 1999 WO
WO 1999017667 Apr 1999 WO
WO 1999017668 Apr 1999 WO
WO 1999027997 Jun 1999 WO
WO 1999029243 Jun 1999 WO
WO 1999034867 Jul 1999 WO
WO 1999038569 Aug 1999 WO
WO 1999039410 Aug 1999 WO
WO 1999043387 Sep 1999 WO
WO 1999044638 Sep 1999 WO
WO 1999046005 Sep 1999 WO
WO 1999049937 Oct 1999 WO
WO 1999058195 Nov 1999 WO
WO 1999062472 Dec 1999 WO
WO 1999066988 Dec 1999 WO
WO 2000002491 Jan 2000 WO
WO 2000003257 Jan 2000 WO
WO 2000007514 Feb 2000 WO
WO 2000030714 Jun 2000 WO
WO 2000032272 Jun 2000 WO
WO 2000040266 Jul 2000 WO
WO 2000041278 Jul 2000 WO
WO 2000043070 Jul 2000 WO
WO 2000044294 Aug 2000 WO
WO 2000053113 Sep 2000 WO
WO 2000054649 Sep 2000 WO
WO 2000054685 Sep 2000 WO
WO 2000062700 Oct 2000 WO
WO 2000064537 Nov 2000 WO
WO 2000066226 Nov 2000 WO
WO 2000071045 Nov 2000 WO
WO 2000074583 Dec 2000 WO
WO 2000074781 Dec 2000 WO
WO 2000078242 Dec 2000 WO
WO 2001014012 Mar 2001 WO
WO 2001026573 Apr 2001 WO
WO 2001034048 May 2001 WO
WO 2001042671 Jun 2001 WO
WO 2001054606 Aug 2001 WO
WO 2001054770 Aug 2001 WO
WO 2001078830 Oct 2001 WO
WO 2002009813 Feb 2002 WO
WO 2002026147 Apr 2002 WO
WO 2001003257 Jul 2002 WO
WO 2002053050 Jul 2002 WO
WO 2002069825 Sep 2002 WO
WO 2002078559 Oct 2002 WO
WO 2002094116 Nov 2002 WO
WO 2003005883 Jan 2003 WO
WO 2003049633 Jun 2003 WO
WO 2003103529 Dec 2003 WO
WO 2004000150 Dec 2003 WO
WO 2004011848 Feb 2004 WO
WO 2004033040 Apr 2004 WO
WO 2004037068 May 2004 WO
WO 2004037287 May 2004 WO
WO 2004073537 Sep 2004 WO
WO 2004080279 Sep 2004 WO
WO 2004084752 Oct 2004 WO
WO 2004086947 Oct 2004 WO
WO 2005007003 Jan 2005 WO
WO 2005009266 Feb 2005 WO
WO 2005030317 Apr 2005 WO
WO 2005046793 May 2005 WO
WO 2005065288 Jul 2005 WO
WO 2005092438 Oct 2005 WO
WO 2005096981 Oct 2005 WO
WO 2005099369 Oct 2005 WO
WO 2005112815 Dec 2005 WO
WO 2006006123 Jan 2006 WO
WO 2006036968 Apr 2006 WO
WO 2006066226 Jun 2006 WO
WO 2006089227 Aug 2006 WO
WO 2006101735 Sep 2006 WO
WO 2006116141 Nov 2006 WO
WO 2007035444 Mar 2007 WO
WO 2007122611 Nov 2007 WO
WO 2008007218 Jan 2008 WO
WO 2008070747 Jun 2008 WO
WO 2008153999 Dec 2008 WO
WO 2010102255 Sep 2010 WO
WO 2012023129 Feb 2012 WO
Non-Patent Literature Citations (229)
Entry
US 6,230,044 B1, 05/2001, Afanassieva et al. (withdrawn)
Zayhowski et al., “Gain-Switched Pulsed Operation of Microchip Lasers”, Optics Letters, Optical Society of America, US 14:23, Dec. 1, 1989, pp. 1318-1320.
Junsu Lee et al., “Q-switched Mode-locking of an Erbium-doped Fiber Laser Through Subharmonic Cavity Modulation”, Photonics Conference (IPC), 2012 IEEE, Sep. 23, 2012, pp. 664-665.
International Search Report and Written Opinion for International Application No. PCT/US2014/030516, dated Oct. 2, 2014 (20 pages).
[No Author] Bioptron Light Therapy System. Website print-out, accessed Jul. 13, 2006 (2 pages).
[No Author] Derma Chiller advertisement (2 pages) from Paradigm Trex.
[No Author] IPG Data Sheet for TFL Thulium Laser, Jun. 2001.
[No Author] Webpage www.gallery.com—Rutile (Titanium Oxide)—Retrieved Oct. 3, 2011 from Http://www.galleries.com/minerals/oxides/rutile/rutile.htm. 2 pages.
[No Author] Altea Therapeutics—Medicines Made Better (single page website print-out, retrieved Sep. 30, 2004, © 2003-2004).
[No Author] Energy Systems Coropration, “A Practical Guide for the PhotoDern.RTM.VL user,” Haifa, Israel, Commercial Brochure 8 Pages, Oct. 1995.
[No Author] “Final Report on the LFDL-10 Laser System for the GCA Corporation,” Candela Corp., Natick, MA, Section II, subsection 5, pp. 13-15 & 27, Mar. 1982.
[No Author] “Fractional Photothermolysis Redefines Facial Skin Regeneration Science,” Aesthetic Buyers Guide, Mar./Apr. 2004, www.miinews.com, pp. 1-4.
[No Author] “Hydrogel Dressings Contain Particles During Laser Therapy,” Dermatology Times, ISSN-01966197, p. 26 (1994).
[No Author] “Instruction Manual, TFDL-10,” Adapted for SLAC, Candela Corporation, Natick, Oct. 1985.
[No Author] “Lasers Battle for Prostatectomy Market,” Medical Laser Industry Report, 5:1-3 (Aug. 1991).
[No Author] “LFDL-8 Instruction Manual,” Candela Laser Corporation, Wayland, MA Revised Oct. 1987.
[No Author] “LFDL-8 Instruction Manual,” Candela Laser Corporation, Wayland, MA, Jan. 1982, Revised Jun. 1987.
[No Author] “LFDL-8 Instruction Manual,” Cynosure, Inc., Bedford, MA, Revised Nov. 1992.
[No Author] “Prostate Enlargement: Benigh Prostatic Hyperplasia,” brochure from U.S. Department of Health and Human Services, pp. 1-14, (at least by 1992).
[No Author] “Special Instruction and Test Results for the LFDL-2 Wave Guide Laser,” Candela Laser Corporation, Wayland, MA, Sep. 1982.
[No Author] “The Laser TURP Advantage,” INTRA-SONIX, Inc. pp. 1-4 (1991).
[No Author] Beckman Laser Institute “Experimental PDT to Prevent Esophegus Cancer,” (8 pages) 1996.
[No Author] Cynosure Dioderm 510(k) Notification K992765 for Cynosure, Inc. to Food and Drug Administration, dated: Aug. 16, 1999 and Aug. 20, 1999 (Additional Information).
[No Author] Reliant Technologies, Inc. “Physicians Guide: Understanding Faxel Laser Treatment,” pp. 1-10 (2004).
[No Author] Ritter Sybron Corporation, “Electrosurgery, A Guide for Operating Room Personnel,” pp. 1-22, (Jun. 1976).
[No Author] Selective Photothermolysis of Sebaceous Glands, Department of Health and Human Services, Public Health Service, Small Business Innovation Research Program II Grant Application, Cynosure, Inc., dated: Jul. 27, 2000, pp. 17-39 and 43-44.
[No Author] “Innovative Non-Surgical Treatment for Barrett's Esophagus”, Jul. 1995, see http://www.plsgroup.com/dg950728.htm.
“American Society for Laser Medicine and Surgery Abstracts,” Lasers in Surgery and Medicine, Supplement 6, p. 46 (1994).
Anderson, R.R., et al., “Microvasculature Can Be Selectively Damaged Using Dye Lasers: A Basic Theory and Experimental Evidence in Human Skin,” Lasers in Surgery and Medicine 1:263-276 (1981).
Altshuler et al., “Human Tooth as an Optical Device,” SPIE vol. 1429 Holography and Interferometry and Optical Pattern Recognition in Biomedicine, pp. 95-104, 1991.
Altshuler et al., “Modern Optics and Dentistry,” Laser in Dentistry, pp. 283-297, 1995.
Altshuler et al., “New Optical Effects in the Human Hard Tooth Tissues,” Lasers and Medicine, Proc. SPIE vol. 1353, pp. 97-102, 1989.
Altshuler, et al., “Self Canalization of Laser Microbeam in Tissue as Fundamental Mechanism of Fractional Skin Resurfacing”, Lasers in Surgery and Medicine Supple 15, 21, 2003.
Altshuler, G.B. et al., “Acoustic response of hard dental tissues to pulsed laser action,” SPIE, vol. 2080, Dental Application of Lasers, pp. 97-103, 1993.
Altshuler, G.B. et al., “Extended theory of selective photothermolysis,” Lasers in Surgery and Medicine, vol. 29, pp. 416-432, 2001.
Amy, R.L. et al., “Selective mitochondrial damage by a ruby laser microbeam: An electron microscopic study,” Science, vol. 15, pp. 756-758, Nov. 1965.
Anderson, R.R. et al., “Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation,” Science, vol. 220, pp. 524-527, Apr. 1983.
Anderson, R.R. et al., “The optics of human skin,” Journal of Investigative Dermatology, vol. 77, No. 1, pp. 13-19, 1981.
Ang et al., “Kalman Filtering for Real-Time Orientation Tracking of Handheld . . . ”, 2004 IEEE/RSJ Iner Conf on Intell Robots and Systems (IROS), Sendai, Japan.
Ang et al., “Design of All-Accelerometer Inertial Measurement Unit for Tremor Sensing in Hand-Held . . . ”, 2003 IEEE Inter Conf on Robotice and Automation (col. 2), Taipei, Taiwan.
Angelis, et al., “Fractional, Non-Ablative Laser Therapy for the Treatment of Striae Distensae”, White Paper published by Palomar Medical Technologies, Inc. (2009)5 pages.
Apfelberg et al. “Analysis of Complications of Argon Laser Treatment for Port Wine Hemangiomas with Reference to Striped Technique,” Lasers in Surgery and Medicine, 2:357-371 (1983).
Apfelberg et al. “Dot or Pointillistic Method for Improvement in Results of Hypertrophic Scarring in the Argon Laser Treatment of Portwine Hemangiomas,” Lasers in Surgery and Medicine, 6:552-558 (1987).
Apfelberg, D.B., “A Preliminary Study of the Combined Effect of Neodymium:YAG Laser Photocoagulation and Direct Steroid Instillation in the Treatment of Capillary/Cavernous Hemangiomas of Infancy,” Department of Plastic Surgery and Comprehensive Laser Center, Palo Alto Medical Foundation, Palo Alto, CA, pp. 94-103 (1989).
Apfelberg, D.B., “Combination Treatment for Massive Cavernous Hemangioma of the Face: YAG Laser Photocoagulation Pulse Direct Steroid Injection Followed by YAG Laser Resection with Sapphire Scalpel Tips, Aided by Superselective Embolization,” Lasers in Surgery and Medicine, 10:217-223 (1990).
Belikov, A.V. et al., “Identification of enamel and dentine under tooth laser treatment,” SPIE vol. 2623, Progress in Biomedical Optics Europt Series, Proceedings of Medical Applications of Lasers III, pp. 109-116, Sep. 1995.
Benjavitvilai, C. et al., “Fuzzy Calibration of Magnetometer in Presence of Surgical Microscope,” 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 05CH37611C), Shanghai, China, Aug. 31-Sep. 3, 2005.
Bjerring, P. et al., “Selective Non-Ablative Wrinkle Reduction by Laser,” J Cutan Laser Ther, vol. 2, pp. 9-15, 2000.
Blankenau et al., “In Vivo Caries-Like Lesion Prevention with Argon Laser: Pilot Study,” Journal of Clinical Laser Medicine and Surgery, vol. 17, No. 6, pp. 241-243, 1999.
Bogdan Allemann, et al., “Laser Principles”, Physical and Electronic Properties of Lasers, Basics in Dermatological Laser Applications, Curr. Probl. Dermatol, Basel, Karger. Zurich, Switzerland and Miami, Florida. vol. 42, pp. 7-23, 2011, 17 pages.
Bohm et al., “The Pilosebaceous Unit is Part of the Skin Immune System,” Dermatology, 196:75-79, 1998.
Boiteux, M., et al., “A Transverse Flow Repetitive Dye Laser,” Applied Optics, 9, 514 (1970).
Boulnois, J., “Photophysical Processes in Recent Medical Laser Developments: a Review,” Lasers in Medical Science, vol. 1:47-66 (1986).
Brauer, Jeremy A. et al., “Successful and Rapid Treatment of Blue and Green Tattoo Pigment With a Novel Picosecond Laser”, Archives of Dermatology, vol. 148, No. 7, 2012, pp. 820-823.
Britt et al., “The Effect of pH or Photobleaching of Organic Laser Dyes”, IEEE J. Quantum Electron. (Dec. 1972), 913-914.
Burlamacchi et al, “A Simple Reliable Waveguide Dye Laser for Ophthalmological Applications,” Rev of Sci Instrum; vol. 46; No. 3; pp. 281-283, Mar. 1975.
Chan, E.K., “Effects of Compression on Soft Tissue Optical Properties,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, pp. 943-950 (Dec. 1996).
Costello, A. et al., “Nd:YAG Laser Ablation of the Prostate as a Treatment for Benign Prostatic Hypertrophy,” Lasers in Surgery and Medicine, 12:121-124 (1992).
Cunliffe, “Acne Vulgaris. The Past, the Present and the Future,” Acta Bermatovener (Stockh) Suppl. 120, pp. 34-38, 1985.
Dabrowska, “Intravital Treatment of the Pulp with Stimulation Laser Biostimulation,” Abstract Rocz-Akad-Med-Bialymst. 1997; 42(1): 168-76.
Dierickx, C.C. et al., “Thermal Relaxation of Port-wine Stain Vessels Probed In Vivo: The Need for 1-10 Millisecond Laser Pulse Treatment,” The Journal for Investigative Dermatology, pp. 709-714 (1995).
Dixon et al. “Hypertrophic Scarring in Argon Laser Treatment of Port-Wine Stains,” Plastic and Reconstructive Surgery, 73:771-777 (1984).
Dock et al., “Clinical Histologic and Ultrastructural Evaluation of Solar Elastosis Treated With the Pulsed Dye Laser,” American Society for Laser Medicine and Surgery Abstracts, p. 54 (Apr. 1997).
Doukas et al., “Transdermal Drug Delivery With a Pressure Wave,” Advanced Drug Delivery Reviews 56 (2004), pp. 559-579.
Dover J.S. et al., “Pigmented guinea pig skin irradiated with Q-switched ruby laser pulses,” Arch Dermatol, vol. 125, pp. 43-49, Jan. 1989.
Dufresne et al., “Squamous cell carcinoma arising from the follicular occlusion triad,” J. Am. Acad. Dermatol. 35(3), Part 1:475-477, 1996.
Ellenberger, et al. “Single-Frequency Nd:Glass Laser Oscillator with Pulse-Transmission-Mode Q-Switch with Pulse-Transmission-Mode Q-Switch,” Optics communication, vol. 81, No. 6 (Mar. 1991).
Ertan et al., “Esophagel Adenocarcinoma Associated with Barrett's Esophagus: Long-term Management with Laser Ablation”, Am. J. Gastro, 90: pp. 2201-2203, 1995.
Fallon Friedlander, “Effective Treatment of Acne Fulminans-Associated Granulation Tissue with the Pulsed Dye Laser,” Pediatric Dermatology, 15(5):396-398, 1998.
Finkelstein L.H. et al., “Epilation of hair-bearing urethral grafts using the neodymium:yag surgical laser,” Journal of Urology, vol. 146, pp. 840-842, Sep. 1991.
Fiskerstrand E.J. et al., “Hair Removal with Long Pulsed Diode Lasers: A Comparison Between Two Systems with Different Pulse Structures,” Lasers in Surgery and Medicine, vol. 32, pp. 399-404, 2003.
Fletcher, A.N. et al., “Improving the Output and Lifetime of Flashlamp-Pumped Dye Lasers” Proceedings of the International Conference on Lasers '85, pp. 797-804, Dec. 2-6, 1985.
Forrest-Winchester et al., “The Effect of Infrared Laser Radiation on Dentinal Permeability in vitro,” Department of Dentistry, University of Queensland Dental School, pp. 1-8, 1992.
Friedman-Birnbaum et al., “Seborrheic Skin and Acne Vulgaris as Protective Factors against the Development of Basal Cell Epithelioma,” Dermatolgica, 183:160-163, 1991.
Furumoto, H., “Dye Chemistry and System Study for Optimum Laser Operation at 436 NM Using the LFDL-10 Laser,” Prepared for Burlington Division Geophysical Corporation of America, pp. 1-23, Mar. 1982.
Ginsbach et al. “New Aspects in the Management of Benign Cutameous Tumors,” Laser 79 Opto-Electronics, Munich Conference Proceedings, 344-347 (1979).
Goldberg, “Lasers for Facial Rejuvenation”, Am J. Clin. Dermatol., 4(4):225-234, 2003, 10 pages.
Goldberg, “Nonablative Resurfacing”, Clinics in Plastic Surgery, Skin Laser and Surgery Specialists of New York and New Jersey. Westwood, New Jersey. vol. 27, No. 2, Apr. 2000, 6 pages.
Goldman, L. et al. “Treatment of basal cell epithelioma by laser radiation,” JAMA, vol. 189, No. 10, pp. 773-775, 1964.
Goldman, L. et al., “Effect of the laser beam on the skin, III. Exposure of cytological preparations,” Journal of Investigative Dermatology, vol. 42, pp. 247-251, 1964.
Goldman, L. et al., “Effect of the laser beam on the skin, Preliminary report” Journal of Investigative Dermatology, vol. 40, pp. 121-122, 1963.
Goldman, L. et al., “Impact of the laser on nevi and melanomas,” Archives of Dermatology, vol. 90, pp. 71-75, Jul. 1964.
Goldman, L. et al., “Laser action at the cellular level,” JAMA, vol. 198, No. 6, pp. 641-644, Nov. 1966.
Goldman, L. et al., “Laser treatment of tattoos, A preliminary survey of three year's clinical experience,” JAMA, vol. 201, No. 11, pp. 841-844, Sep. 1967.
Goldman, L. et al., “Long-term laser exposure of a senile freckle,” ArchEnviron Health, vol. 22, pp. 401-403, Mar. 1971.
Goldman, L. et al., “Pathology, Pathology of the effect of the laser beam on the skin,” Nature, vol. 197, No. 4870, pp. 912-914, Mar. 1963.
Goldman, L. et al., “Preliminary investigation of fat embolization from pulsed ruby laser impacts of bone,” Nature, vol. 221, pp. 361-363, Jan. 1969.
Goldman, L. et al., “Radiation from a Q-switched ruby laser, EffeCt of repeated impacts of power output of 10 megawatts on a tattoo of man,” Journal of Investigative Dermatology, vol. 44, pp. 69-71, 1965.
Goldman, L. et al., “Replica microscopy and scanning electron microscopy of laser impacts on the skin,” Journal of Investigative Dermatology, vol. 52, No. 1, pp. 18-24, 1969.
Goldman, L. et al., “The biomedical aspects of lasers,” JAMA, vol. 188, No. 3, pp. 302-306, Apr. 1964.
Goldman, L. et al., “The effect of repeated exposures to laser beams,” Acta derm.-vernereol., vol. 44, pp. 264-268, 1964.
Goldman, L., “Dermatologic manifestations of laser radiation,” Proceedings of the First Annual Conference on Biologic Effects of Laser Radiation, Federation of American Societies for Experimental Biology, Supp. No. 14, pp. S-92-S-93, Jan.-Feb. 1965.
Goldman, L., “Effects of new laser systems on the skin,” Arch Dermatol., vol. 108, pp. 385-390, Sep. 1973.
Goldman, L., “Laser surgery for skin cancer,” New York State Journal of Medicine, pp. 1897-1900, Oct. 1977.
Goldman, L., “Surgery by laser for malignant melanoma,” J. Dermatol. Surg. Oncol., vol. 5, No. 2, pp. 141-144, Feb. 1979.
Goldman, L., “The skin,” Arch Environ Health, vol. 18, pp. 434-436, Mar. 1969.
Goldman, L., Biomedical Aspects of the Laser, Springer-Verlag New York Inc., publishers, Chapts. 1, 2 & 23, 1967.
Goldman, M. P., “Leg Veins and Lasers,” American Society for Laser Medicine and Surgery Abstracts, Fourteen Annual Meeting, Toronto, Ontario, Canada, p. 48 (Apr. 8-10, 1994).
Goldman, M.P., “Sclerotherapy—Treatment of Varicose and Telangiectatic Leg Veins,” Second Edition, Mosby, pp. 454-467 (1995).
Gottlieb, I., “Power Supplies, Switching Regulators, Inverters & Converters,” 1976.
Greenwald et al. “Comparative Histological Studies of the Tunable Dye (at 577 nm) Laser and Argon Laser: The Specific Vascular Effects of the Dye Laser,” The Journal of Investigative Dermatology, 77:305-310 (1981).
Grossman, et al., “780 nm Low Power Diode Laser Irradiation Stimulates Proliferation of Keratinocyte Cultures: Involvement of Reactive Oxygen Species,” Lasers in Surgery and Medicine vol. 29, pp. 212-218, 1998.
Grossman, M.C. et al., “Damage to hair follicles by normal-mode ruby laser pulses,” Journal of he American Academy of Dermatology, vol. 35, No. 6, pp. 889-894, Dec. 1996.
Grossman, M.C. et al., “Laser Targeted at Hair Follicles, ” Lasers Med Surg., Suppl. 13:221 (2001).
Habbema, Louis et al., “Minimally invasive non-thermal laser technology using laser-induced optical breakdown fir skin rejuvenation”, J. Biophotonics, vol. 5, No. 2, 2012, pp. 194-199.
Haedersal, et el., “Fractional Nonablative 1540 nm Laser Resurfacing for Thermal Burn Scars: A Randomized Controlled Trial”, Lasers in Surgery and Medicine, 41:189-195, 2009, 7 pages.
Hicks et al., “After Low Fluence Argon Laser and Flouride Treatment,” Compendium, vol. 18, No. 6, Jun. 1997.
Hicks et al., “Enamel Carries Initiation and Progression Following Low Fluence (energy) and Argon Laser and Fluoride Treatment,” The Journal of Clinical Pediatric Dentistry, vol. 20, No. 1 pp. 9-13, 1995.
Hsu et al., “Combined Effects of Laser Irradiation/Solution Flouride Ion on Enamel Demineralization,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2 pp. 93-105, 1998.
Hulsbergen Henning et al. “Clinical and Histological Evaluation of Portwine Stain Treatment with a Microsecond-Pulsed Dye-Laser at 577 NM,” Lasers in Surgery and Medicine, 4:375-380 (1984).
Hulsbergen Henning et al., “Port Wine Stain Coagulation Experiments with a 540-nm Continuous Wave Dye-Laser,” Lasers in Surgery and Medicine, 2:205-210 (1983).
Invention description to certificate of authorship, No. 719439, “The ring resonator of optical quantum generator” (Aug. 15, 1975).
Invention description to certificate of authorship, No. 741747, “The modulator of optical radiation intensity” (Oct. 10, 1977).
Invention description to certificate of authorship, No. SU 1257475 A1 , “Laser interferometric device to determine no-linearity of an index of refraction of optical medium” (Sep. 15, 1986).
Invention description to certificate of authorship, No. SU 1326962 A1, “The way of determination of non-linearity of an index of refraction of optical medium” (Jul. 30, 1987).
Invention description to certificate of autorship, No. 532304, “The way of investigation of radiation time structure of optical quantum generator” (Jul. 9, 1974).
Ivanov, A.P. et al., “Radiation Propagation in Tissues and Liquids with Close Particle Packing,” Zhurnal Prikladnoi Spektroskopii, vol. 47, No. 4, pp. 662-668 (Oct. 1987).
Johnsson et al., “No photoinactivation of Propionibacterium acnes with soft laser treatment,” Dermatologica, 175(1):50, 1987.
Kalivradzhiyan et al., “The Usage of Low Intensity Laser Radiation for the Treatment of the Inflammatory processes of the Oral Cavity Mucosa after Applying Removable Plate Dentures,” SPIE vol. 1984 pp. 225-230.
Kandel, Laurence B., M.D., et al., “Transurethral Laser Prostatectomy in the Canine Model,” Lasers in Surgery and Medicine, 12:33-42 (1992).
Kantor et al., “Treatment of acne keloidalis nuchae with carbon dioxide laser,” J. Am. Acad. Dermatol., 14:263-267, 1986.
Karu, “Cell Attachment to Extracellular Matrics is Modulated by Pulsed Radiation at 820 nm and Chemicals that Modify the Activity of Enzymes in the Plasma Membrane,” Laser in Surgery and Medicine, vol. 29, pp. 274-281, 2001.
Karu, “Photobiological Fundamentals of Low-Power Laser Therapy,” 8th Congress of International Society for Laser Surgery and Medicine, Mar. 30, 1987.
Kazmina et al., “Laser Prophlaxis and Treatment of Primary caries,” SPIE vol. 1984, pp. 231-233.
Kelly et al., “Nonablative Laser Treatment of Facial Rhytides: United States Phase II Clinical Study,” American Society for Laser Medicine and Surgery Abstracts, 10(33):38 (1998).
Kilmer et al., “Pulse Dye Laser Treatment of Rhytids,” American Society for Laser Medicine and Surgery Abstracts, p. 44 (Apr. 1997).
Klein, E. et al., “Biological effects of laser radiation 1.,”Northeast Electroncis Research and Engineering Meeting, NEREM Record, IEEE catalogue No. F-60, pp. 108-109, 1965.
Kliewer, Michael L. et al., “Excited State Absorption of Pump Radiation as a Loss Mechanism in Solid-State Lasers”, IEEE Journal of Quantum Electronics, vol. 25, 1989, pp. 1850-1854.
Korobov et al., “Dependence of the Quantum Yield of Intercombinational Conversion into the Triplet State of Rhodamine 6G on the pH of the Medium”, Zhur. Prikl. Spektrosk. 24(1) 28-31 (Jan. 1976).
Kozlov et al., “Laser in Diagnostics and Treatment of Microcirculation Disorders Under Parodontitis,” SPIE vol. 1984, pp. 253-264.
Krames et al. “Status and Future of High-Power Light-Emitting Diodes for Solid State Lighting”, J. Display Technol., 3(2):160-175 (Jun. 2007).
Kuhns, J.G. et al., “Biological effects of laser radiation II Effects of laser irradiation on the skin,” NEREM Record, pp. 152-153, 1965.
Kuhns J.G. et al., “Laser injury in skin,” Laboratory Investigation, vol. 17, No. 1, pp. 1-13, Jul. 1967.
Kuizenga, Dirk J. et al., “FM and AM Mode Locing of the Homogenous Laser-Part I: Theory”, IEEE Journal of Quantum Electronics, vo. 6, No. 11, Nov. 1970, pp. 694-708.
Lee, Junsu et al., “Q-switched Mode-Locking of an Erbium-doped Fiber Laser through Subharmonic Cavity Modulation”, Photonics Conference (IPC), 202 IEEE, Sep. 23, 2012, pp. 664-665.
Leger, J. et al., “Geometrical Transformation of Linear Diode-Laser Arrays for Longitudinal Pumping of Solid-State Lasers”, IEEE Journal of Quantum Electronics, vol. 28, No. 4, Apr. 1992.
Lesnik et al., “Agents that cause enlargement of sebaceous glands in hairless mice,” Arch. Dermatol., 284:100-105, 1992.
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 11, 1996.
Levin, G. et al., “Designing with hyseretic current-mode control, ” EDN Magazine, pp. 1-8, Apr. 28, 1994.
Lucchina et al., “Fluorescence photography in the evaluation of acne,” J. Am. Acad. Dermatol. 35:58-63 (1996).
Maegawa, et al., “Effects of Near-Infrared Low-Level Laser Irradiation on Microcirculation,” Lasers in Surgery and Medicine, vol. 27, pp. 427-437, 2000.
Mamedova et al., “Microbiological Estimate of Parodontis Laser Therapy Efficiency,” SPIE vol. 1984, pp. 247-249.
Mang, “Effect of Soft Laser Treatment on Wound Healing in the Hamster Oral Mucosa,” Lasers in Surgery and Medicine, Supp. 8, Abstracts, Abstract 25, 1996.
Manstein, D. et al., “Selective Photothermolysis of Lipid-Rich Tissue,” American Society for Laser medicine and Surgery Abstracts, No. 17, American Society for Laser Medicine and Surgery Twenty-First Annual Meeting, Apr. 20-22, 2001, p. 6.
Manstein, D., et al., “Fractional Photothermolysis: A New Concept for Cutaneous Remodeling Using Microscopic Patterns of Thermal Injury,” Lasers in Surgery and Medicine, 34: 426-438 (2004).
Manuskiatti et al., “Laser hair removal affects sebaceous glands and sebum excretion . . . ,” J. Am. Acad. Dermatol., 41:176-180, 1999.
Margolis, R.J. et al., “Visible action spectrum for melanin-specific selective photothermolysis,” Lasers in Surgery and Medicine, vol. 9, pp. 389-397, 1989.
Marinelli et al., “Diode laser illuminated automotive lamp systems,” SPIE Proceedings vol. 3285:170-177 (1998).
Marshak, I.S., et al., “Pulsed Light Sources,” State Power Engineering Press, Moscow and Leningrad (1963).
Matsunaga et al., “Effect of pH on Dye-Laser Output Power”, J. Appl. Phys. 48(2):842-844 (Feb. 1977).
McCullough, David L., M.D., “Transurethral Laser Treatment of Benign Prostatic Hyperplasia,” and “Transurethral Ultrasound-guided Laser-Induced Prostatectomy (TULIP) Procedure): A Canine Prostate Feasibility Study,” by Roth, Robert A., M.D., et al., The Journal of Urology, 146:1126-1135 (1991).
McDaniel, et al., “Hexascan: A New Robotized Scanning Laser Handpiece,” Cutis, 45:300-305 (1990).
McNicholas, T. A., et al., “Interstitial Laser Coagulation of the Prostate: Experimental Studies,” SPIE, 1421:30-35 (1991). (From Proceedings of Lasers in Urol., Laparoscopy, and General Surgery, Jan. 21-23, 1991).
Mingxin, Qiu et al., “Performance of a Nd:YVO4 microchip laser with continuous-wave pumping at wavelengths between 741 and 825 nm”, Applied Optics, vol. 32, No. 12, Apr. 20, 1993, p. 2085.
Moretti, Michael, “Holmium Boosts Orthopedic Laser Development,” Medical Laser Buyers Guide, p. 93 (1992).
Moretti, Michael, “Lasers Improve Prostatectomy Treatment,” Medical Laser Buyers Guide, p. 94-96 (1992).
Mostovnikov, V.A. et al., “Recovery of Lasing Properties of Dye Solutions after Their Photolysis,” Sov. J. Quantum Electron, 6(9), Sep. 1976, pp. 1126-1128.
Nanni, C.A. et al., “Complications of Carbon Dioxide Laser Resurfacing,” Washington Inst. of Dermatol. Surg. 24:315-320 (1998).
Nemeth, et al., “Copper vapor laser treatment of pigmented lesions,” Lasers Surg. Med. Supp. 2:51 (1990).
Ogiso et al, “Phase Transitions of Rat Stratum Corneum Lipids by an Electron Paramagnetic Resonance Study and Relationship of Phase States to Drug Penetration,” Biochimica et Biophysica Acta 1301:97-104 (1996).
Ohbayashi, “Stimulatory Effect of Laser Irradiation on Calcified Nodule Formation in Human Dental Pulp Fibroblasts,” Abstract J-Endod. Jan. 1999; 25(1): 30-3.
Ohshiro et al., “The Ruby and Argon Lasers in the Treatment of the Naevi,” Annals Academy of Medicine, Apr. 1983, vol. 12, No. 2, pp. 388-395.
Oleinik, et al., “Automatized Securing Definition for Laser Therapy Indications in Case of Non-complicated Caries,” SPIE, vol. 1984, pp. 238-244.
Oraevsky, Alexander A. et al., “Plasma Mediated Ablation of Biological Tissues with Nanosecond-to-Femtosecond Laser Pulses: Relative Role of Lineear and Nonlinear Absorption”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, Dec. 1996, pp. 801-809.
Orchardson, “Effect of Pulsed Nd:YAG Laser Radiation on Action Potential Conduction in Nerve Fibres Inside Teeth in vitro,” Abstract J-Dent. Jul.-Aug. 1998; 26(5-6): 421-6.
Overholt BF et al. “Balloon photodynamic therapy of esophageal cancer: effect of increasing balloon size.” PubMed; Lasers Surg Med. 1996, 18(3):248-52.
Ozawa et al., “Stimulatory Effects of Low-Power Laser Irradiation on Bone Formation in vitro,” SPIE vol. 1984, pp. 281-288.
Panjehpour M et al. “Spectroscopic diagnosis of esophageal cancer: new classification model, improved measurement system.” PubMed; Gastrointest Endosc. Jun. 1995; 41 (6):577-81.
Parrish, J.A., “Selective thermal effects with pulsed irradiation from lasers: From organ to organelle,” Journal of Investigative Dermatology, vol. 80, No. 6 Supplement, pp. 75s-80s, 1983.
Petrischev et al. “Clinical and Experimental Low-Intense Laser Therapy in Dentistry,” SPIE, vol. 1984, pp. 212-214.
Petrischev et al., “Report on Low Intensity Laser Radiation Usage in Dentistry,” SPIE vol. 1984, pp. 202-211.
Polanyi, Thomas & Tobias, Irwin, Lasers—A Series of Advances, Edited by A.K. Levine, vol. 2, Marcel Dekker, Inc, N.Y., 1968, pp. 400, 402-403 & 422.
Polla, L. et al., “Melanosomes are a primary target of Q-switched ruby laser irradiation in guinea pig skin,” Journal of Investigative Dermatology, vol. 89, No. 3, pp. 281-286, Sep. 1987.
Powell, “Laser Dental Decay Prevention: does it have a future?” SPIE vol. 3192, 1997.
Reed J.T. et al., “Treatment of Periorbital Wrinkles,” Washington Inst. of Dermatol. Surg. 23:643-648 (1997).
Remillard et al., “Diode laser illuminated automotive brake lamp using a linear fanout diffractive optical element,” Proc. of the Diffractive Optics and Micro-Optics Conference, OSA Technical Digest Series vol. 10, 192-194 (1998).
Remillard et al., “Diode Laser Illuminators for Night-Vision Applications,” SPIE Proceedings vol. 4285:14-22 (2001).
Riggle et al., “Laser Effects on Normal and Tumor Tissue,” Laser Applications in Medicine and Biology, vol. 1, M.L. Wolbarsht, editor, Plenum Press, publishers, Ch. 3, pp. 35-65 (1971).
Rohrer, “Evaluating the Safety and Efficacy of a Novel Light Based Hair Removal System,” Lasers. Surg. Med. Supp.13:97 (2001).
Rosenfeld, H., et al., “Treatment of Cutaneous and Deep Vascular Lesions with the Nd:YAG Laser,” Lasers in Surgery and Medicine, 6:20-23 (1986).
Rotteleur, et al., “Robotized scanning laser handpiece for the treatment of port wine stains and other angiodysplasias,” Lasers Surg. Med., 8:283-287 (1998).
Rubach et al., “Histological and Clinical Evaluation of Facial Resurfacing Using a Carbon Dioxide Laser With the Computer Pattern Generator,” Arch Otolaryngol Head Neck Surg., 123:929-934 (1997).
Russel et al. “Flash-Lamp-Excited Self-Injection-Seeded Q-Switch Ti:Al2O3 Laser Oscillator,” Applied Optics, vol. 35, No. 24 (Aug. 1996).
Rylander, C.G. et al., “Mechanical Tissue Optical Clearing Devices: Enhancement of Light Penetration in Ex Vivo Porcine Skin and Adipose Tissue,” Lasers in Surgery and Medicine, vol. 40, pp. 688-694 (2008).
Sandford et al., “Thermal Effects During Desensitisation of Teeth with Gallium-Aluminum-Arsenide Lasers,” University of Queensland Dental School, Periodontology 15: 25-30 (1994).
Schade, W. et al., “Temperature tuned distributed feedback dye laser with high repetition rate”, Applied Optics, vol. 2 9, No. 27, Sep. 20, 1990, pp. 3950-3954.
Schappert et al., “Temperture Tuning of an Organic Dye Laser” Applied Physics Letters 13(4):124-126 (Aug. 15, 1968).
Schindl, “Does Low Intensity Laser Irradiation Really Cause Cell Damage?” Laser in Surgery and Medicine vol. 22, pp. 105, 2001.
Sheehan-Dare, et al., “Lasers in Dermatology,” British Journal of Dermatology, 129:1-8 (1993).
Shimbashi, T. et al., “Ruby laser treatment of pigmented skin lesions,” Aesth. Plast. Surg., vol. 19, pp. 225-229, 1995.
Shimizu et al., “Prospect of Relieving Pain Due to Tooth Movement During Orthodontic Treatment Utilizing a GA-AL as Diode Laser,” SPIE vol. 1984, pp. 275-280.
Shumilovitch et al., “Influence of Low Intensity Laser Radiation Upon the Microflora of Carious Cavities and Root Canal,” SPIE vol. 1984, pp. 215-220.
Shuster, “Acne: The Ashes of a Burnt Out Controversy,” Acta Derm. Venereol. Suppl. (Stockh), 120:43-46, 1985.
Sigurdsson et al., “Phototherapy of Acne Vulgaris with Visible Light,” Dermatology, 194:256-260, 1997.
Sing, “Electroacupuncture and Laser Stimulation Treatment: Evaluation by Somatosensory Evoked Potential in Conscious Rabbits,” Abstract AM-J-Chin-Med. 1997; 25(3-4): 263-71.
Sliney et al., “Safety with Lasers and Other Optical Sources: A Comprehensive Handbook,” Plenum Press, pp. 477-480 (1980).
Sokolova et al., “Low-intense Laser Radiation in Complex Treatment of Inflammatory Diseases of Parodontium,” SPIE vol. 1984, pp. 234-237.
Spears et al., “Fluorescence of Experimental Atheromatous Plaques with Hematoporphyrin Derivative,” J. Clin. Invest, 71:395-399 (1983).
Spotswood, “Novel Use of Fractional Lasers for Scarring Improves Quality of Life for Injured Troops”, http://www.usmedicine.com/articles/novel-use-of-fractional-lasers-for-scarring-improves-quality-of-life-for-injured-troops-.html, (Aug. 2012) , U.S. Medicine ISSN: 0191-6246. 4 pages.
Stratton, K. et al., “Biological Effects of Laser Radiation II: ESR Studies of Melanin Containing Tissues after Laser Irradiation,” Northeast Electronics Research and Engineering Meeting—NEREM Record, IEEE Catalogue No. F-60, pp. 150-151, Nov. 1965.
Strauss et al., “Skin Lipids and Acne,” Annu. Rev. Med., 26: 27-31, 1975.
Sumian, C.C. et al., “A Preliminary Clinical and Histopathological Study of Laser Skin Resurfacing Using a frequency-Doubled Nd:YAG Laser After Application of Chromofilm®,” Journal of Cutaneous Laser Therapy, vol. 1, pp. 159-166, 1999.
Sumian, C.C. et al., “Laser Skin Resurfacing Using a Frequency Doubled Nd:YAG Laser After Topical Application of an Exogenous Chromophore,” Lasers in Surgery and Medicine, vol. 25, pp. 43-50, 1999.
Sumian et al., “A new method to improve penetration depth of dyes into the follicular duct : . . . ,” J. Am. Acad. Dermotol., 41(2) Part 1:172-175, 1999.
Tarasov, L. V., Laser Physics, Translated from Russion by Ram S. Wadhwa, MIR publishers, Moscow, pp. 178-181, Chapter 2, 1983.
Tarijian, et al., “Fractional abalative laser skin resurfacing: A review”, Journal of Cosmetic and Laser Therapy, 13:262-264, ISSN 1476/4172. Informa UK Ltd. Sep. 2011, 3 pages.
Taylor, C.R. et al., “Treatment of tattoos by Q-switched ruby laser,” Arch. Dermatol. vol. 126, pp. 893-899, Jul. 1990.
Togatov, V.V. et al., “Electronic discharge module for pump systems of solid-state lasers”, Optical Journal, V. 67, n. 4, pp. 92-96 (2000).
Tuchin, V.V., “Laser light scattering in biomedical diagnostics and therapy,” Journal of Laser Applications, vol. 5, No. 2-3, pp. 43-60, 1993.
Unger, W.P., Laser hair transplantation III: Computer-assisted laser transplanting. Dermatol Surg. 1995;21:1047-1055.
Van Bruegel, “Power Density and Exposure Time of He—Ne Irradiation are More Important Than Total Energy Dose in Photo-Biomodulation of Human Fibroblasts in Vitro,” Lasers in Surgery and Medicine, vol. 12 pp. 528-537, 1992.
Vasily, et al., “Non-Ablative Fractional Resurfacing of Surgical and Post-Traumatic Scars”, Journal of Drugs in Dermatology, 8(11):998-1005, Nov. 2009, 8 pages.
Walsh, “Laser “Curettage”: a Critical Analysis,” Periodontology 14:4-12, 1993.
Walsh, “The Current Status of Low Level Laser Therapy in Dentistry. Part 1. Soft Tissue Applications,” Aust. Dent. J. Aug. 1997;42(4):247-54.
Watanabe, S. et al., “Comparative studies of femtosecond to microsecond laser pulses on selective pigmented cell injury in skin,” Photochemistry and Photobiology, vol. 53, No. 6, pp. 757-762, 1991.
Watanabe, S. et al., “The Effect of Pulse Duration on Selective Pigmented Cell Injury by Dye Lasers,” The Journal of Investigative Dermatology, 88:523, 1987.
Watson, G. M., MS, “Minimally Invasive Therapies of the Prostate,” Minimally Invasive Therapy, 1:231-240 (1992).
Wei Tech Ang et al., “Design of All-Accelerometer Inertial Measurement Unit for Tremor Sensing in Hand-Held Microsurgical Instrument,” 2003 IEEE International Conference on Robotics and Automation (vol. 2), Taipei, Taiwan, Sep. 14-19, 2003.
Wei Tech Ang et al., “Kalman Filtering for Real-Time Orientation Tracking of Handheld Microsurgical Instrument,” 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, Sep. 28-Oct. 2, 2004.
Welch, A.J. et al., “Evaluation of cooling techniques for the protection of the epidermis during HD-yag laser iradiation of the skin,” Neodymium-Yag Laser in Medicine and Surgery, Elsevier Science Publishing Co., publisher, pp. 195-204, 1983.
Westerman et al., “Argon Laser Irradiation Effects on Sound Root Surfaces: In Vitro Scanning Electron Microscopic Observations,” Journal of Clinical Laser Medicine and Surgery, vol. 16, No. 2, pp. 111-115, 1998.
Wilson, S.W., “Passive Alignment of a Semiconductor Laser to an Optical Fiber,” Universirty of Maryland, Master's Thesis (1995).
Winters, B.H. et al., “Photochemical Products in Coumarin Laser Dyes,” Appl. Phys. Lett. 25:723-724 (1974).
Yang et al., “Hybrid optoelectronics: A polymer laser pumped by a nitride light emitting diode,” Applied Physics Letters 92, Jan. 23, 2008.
Yules, R.B. et al., “The effect of Q-switched ruby laser radiation on dermal tattoo pigment in man,” Arch Surg, vol. 95, pp. 179-180, Aug. 1967.
Zapka et al. “Pulse Slicing and Pockels Cell Shutters,” J. Phys. E: Sci, Instrum., vol. 15 (1982).
Zayhowski, J.J. et al., “Gain-switched pulsed operation of microchip lasers”, Optice Letters, Optical Society of America, US 14:23, Dec. 1, 1989, pp. 1318-1320.
Zeitler, E. et al., “Laser Characteristics that Might be Useful in Biology,” Laser Applications in Medicine and Biology, vol. I, M.L. Wolbarsht, editor, Plenum Press, publishers, Chapter 1, pp. 1-18, 1971.
Zonios et al., “Skin Melanin, Hemoglobin, and Light Scattering Properties can be Quantitatively Assessed in Vivo Using Diffuse Reflectance Spectroscopy,” Journal of Investigative Dermatology, 117:1452-1457 (Dec. 2001).
Related Publications (1)
Number Date Country
20140371730 A1 Dec 2014 US
Provisional Applications (2)
Number Date Country
61789144 Mar 2013 US
61891299 Oct 2013 US
Continuations (1)
Number Date Country
Parent 14216353 Mar 2014 US
Child 14340961 US