The present invention concerns a female piercing member protection device for connection with a male connection part, a male connection part, and a method for connecting the female piercing member protection device with the male connection part.
Administration of hazardous medicaments such as cytotoxins and the like, has long been a nuisance to the personal which on daily basis administrate the hazardous medicaments. During preparation of medicaments, administration or after treatment, nursing personal is exposed to the risk of contamination from the hazardous medicaments. Such contamination may be in the form of liquid medicaments, derived from spillage due to ill handling or just wrong handling of equipments or instruments. Leakage from technical equipment which has been used right is however also a problem, even if leakage occur in very small doses. Due to long exposure to hazardous medicaments nursing personal can still be ill from very small quantities of hazardous medicaments. It is therefore important to minimize leakage and minimize the risk of leakage.
One specific hazardous step is when e.g. nursing personal is transferring a medicament from one fluid container to another; such transfer usually involves the use of a piercing member such as a needle. To protect the nursing personal involved, piercing member protection devices are commonly used. Such devices are arranged to protect the user, not only from contamination but also from accidentally piercing themselves or any other third persons.
In the patent publication of U.S. Pat. No. 6,890,328 a connector device for establishing fluid communication between a diluents container having side walls and a drug vial is described. The drug vial may be selectively attached to the device without piercing the closure of the vial and without breaching the hermetic seal of the fluid accessing portions of the piercing member. Means are provided for connecting the vial receiving chamber to the liquid container. The device is movable from an inactivated position, where the piercing member is outside the sidewalls and no fluid flows between the liquid container and the drug vial, to an activated position, where fluid flows through the fluid pathway between the liquid container and the drug vial. The device is movable from the inactivated position to the activated position by a force applied to the device outside the liquid container. However at any time the drug vial and diluents container can be disconnected, leaving the needle exposed to the nursing personal. The needle at such stage is full of hazardous medicaments.
Another medical connector is described in U.S. Pat. No. 5,514,117, for connecting transferring a fluid from a first fluid container to a second fluid container for administration of fluid to a patient. The medical connector is formed of two components. The first component includes a cannula hub to which a cannula is mounted, a base extending from the hub and fingers extending from the base. The second component is a collar including a support and bars extending therefrom. The collar is manually slideable along the first component in the direction the cannula extends between a retracted position and a locking position. The bars engage the fingers to flex into engagement with a junction terminal. The bars are elastically deformable to provide a spring force for locking the fingers on the junction terminal. The medical connector have however the drawback that the locking of the fingers easily can be unlocked by simply pulling apart either the collar or the junction terminal and thereby expose a user for contaminants.
It is an object of the present invention to at least partly solve the above mentioned problems. More particularly, the mentioned problems are at least partly solved by a female piercing member protection device, having a longitudinal axis A, for connection with a male connection part. The female piercing member protection device comprises; an outer casing having a first and a second end and an inner and an outer side, a connection member having a first and a second end. The connection member is arranged to, and at least partly enclosed in, the outer casing. Further is the outer casing arranged to be moved between a first and a second position, wherein when the outer casing is in its first position, the connection member is substantially locked from movement along the longitudinal axis A, and when the outer casing is in its second position the connection member is able to move along the longitudinal axis A. The female piercing member protection device additionally comprises an activated position and an inactivated position. The connection member is arranged to connect to the male connection part by means of a deformable locking device, wherein when the outer casing is in the second position, the deformable locking device is prevented from deformation by the outer casing so as to prevent disengagement of the male connection part.
The present invention provides for a secure piercing protection device which permits a fluid container to be connected to the piercing device, secured and thereafter activated so as to permit for a fluid communication to be established. The deformable locking device provides for an easy connection, which actually permits a user to, after connection to the piercing device, let go of the fluid container. The piercing member protection device can thereafter substantially lock the connected fluid container so that accidental disconnection is effectively prevented. Only after the piercing member device has been locked to the fluid container, via the male connection part, is it possible to move it to its activated position, hence, a very safe drug or medicament administration and transfer can be achieved with this device, since the needle is never exposed. Further no orientation of the male connection part is needed before connection; this enables a fast and simple connection.
For additional safety, the connection member is preferably arranged between the first and second end of the outer casing. The outer casing will then function as a protective sleeve, covering the interface between the piercing member protection device and the connected fluid container.
In one embodiment of the present invention, the deformable locking device comprises at least one deformable locking flange, which may or may not form an integrated part of the connection member. It is from a manufacturing point of view however easier to manufacture the deformable locking flange as an integrated part, i.e. in one piece. The connection member may be equipped with at least two, at least three or at least four deformable locking flanges. Alternatively, a plurality of 5 to 15 deformable locking flanges may be present.
The outer casing may comprise at least one aperture, which when the connection member is in the first position, the at least one aperture and the at least one deformable locking flange is substantially aligned, so that the deformable locking flange can deform into the aperture during connection with the male connector. When the outer casing is in the second position, the deformable locking flange is displaced from the aperture in the outer casing, so that the deformable locking flange is substantially unable to disengage from the male connector. Alternatively, the aperture may be replaced with a cavity arranged on the inner side of the outer casing. A combination of apertures and cavities are of course also possible. Cavities may be preferred since the outer casing will protect the deformable locking flanges, however, apertures permits a user to more readily watch and control the connection which is established. The number of apertures, cavities, or apertures and cavities should preferably, although not necessarily, be equal to the number of locking flanges, e.g. two locking flanges can easily be in working cooperation with one aperture or one cavity which can embrace them both.
In an embodiment of the present invention, the female piercing member protection device comprises a second locking device, which can substantially lock the connection member from movement along the longitudinal axis A, when the connection member is in the activated position. The second locking device enables a user to safely let go of the piercing device without fear or risk of a disengagement of the piercing member after fluid communication has been established. Preferably, the second locking device comprises a locked position in which the connection member is substantially unable to slide along the longitudinal axis A, and an unlocked position in which the connection member is substantially able to slide along the longitudinal axis A. The second locking device may be in the form of a turnable locking ring which encompasses the outer casing. The turnable ring is preferably provided with a locking protrusion which is in working cooperation with the outer casing, and a channel arranged in the outer casing, as will be described below.
The connection member comprises at least one barrier member, preferably two barrier members. The two barrier members may be arranged substantially parallel with respect each other and so as to intersect the longitudinal axis A. Additionally they may be arranged so as to form a piercing tip protection chamber between the two barrier members. The barrier members provide for a leakage safe arrangement, both during fluid transfer and after fluid transfer, at which medicament residuals may be present inside the protection device.
The present invention also concerns a method for connecting a female piercing member protection device with a male connection part. The female piercing member protection device having a longitudinal axis (A), an outer casing and a connection member arranged inside the outer casing, the method comprising the steps of:
Connecting the connection member to the male connection by means of a deformable locking device and moving the outer casing with respect to the connection member from a first position, in which the female piercing member protection device is in an inactivated state and in which the connection member is substantially unable to slide along the longitudinal axis A, to a second position, in which the female piercing member protection device is in an inactivated state and in which the connection member is substantially able to slide along the longitudinal axis A. Further, when the outer casing is in the second position, the fluid container is substantially unable to disengage from the piercing member protection device.
The method according to the present invention provides for a safe connection between the male connection part and the female piercing member protection device. The female piercing member protection device may thereafter be activated by moving the connection member to the activated position and thereafter be substantially locked in the activated position by means of a locking ring arranged around the outer casing.
The present invention also concerns a male connection part for connection with the female piercing member protection device. The male connection part comprises a longitudinal cylinder like body having a longitudinal axis C, a first and a second side, an outer and an inner surface. A barrier member is arranged at the centre of the first side of the male connection member, intersecting the longitudinal axis C. Further is a fluid communication channel formed by the inner surface, said fluid communication channel extends from the barrier member of the male connection part to the second side of the male connection part. The male connection part further comprises at least one turning grip protrusion to provide for an increased turning friction between the female piercing member protection device, after assembly. The male connection part provides for a safe connection, in terms of leakage protection, with the female piercing member connection device. Further may a circumferential wall surround the first end of the male connection part. The wall permits a rigid coupling while, at the same time, prevent direct exposure of the barrier member to e.g. improper handling.
To increase the turning friction, at least one turning grip protrusion is arranged on said circumferential wall. This will permit the male connection part to be inserted only a moderate distance into the female piercing member protection device, while still give the above mentioned advantages of the circumferential wall. In fact, the at least one turning grip protrusion will stiffen the circumferential wall even more, and thereby provide for a rigid and secure connection. The male connection part may comprise between 1-20 turning grip protrusions, one preferred embodiment comprises three turning grip protrusions. The at least one turning grip protrusion runs substantially parallel with said longitudinal axis C, this may e.g. provide additional rigidity to the circumferential wall of the male connection part.
The present invention will hereafter be described in greater detail with reference to the accompanying drawing wherein;
a-4b shows, in perspective, a male connection part for connection with the female piercing member protection device shown in
In the following section different embodiments according to the present invention will be described in greater detail.
The outer casing 102 is arranged to cover the connection member 101 so as to provide for a protective sleeve, in which the connection member may slide. A locking ring 103 is arranged around the periphery of the outer casing and function as a second locking device which can substantially prevent the connection member from sliding between the activated and inactivated position by means of being turned between a locked position and an unlocked position. Connection means 104 is arranged opposite the connection member 102 to the outer casing 102 so as to allow for the connection to the second fluid container. A piercing member (not shown) is arranged to the connection means 104 so as to provide for fluid communication between a first and a second fluid container.
In
Turning first to the outer casing 102, the outer casing 102 comprises a first and a second side 110, 111, an inner and an outer side 112, 113 and have substantially the form of a hollow cylinder. At least one aperture 114 is arranged in the proximity of the second end 111 of the outer casing 102. The aperture 114 is substantially rectangular with a first and a second longitudinal side 115, 116 and a first and a second transverse side 117, 118.
The aperture 114 is intended to be assembled in working cooperation with a locking flange arranged on the connection member 101.
A straight channel 120 having a first and a second end 121, 122 is arranged in the outer casing 102, extending trough the outer casing 102. The straight channel 120 further extends from the first side 110 of the outer casing towards the second end 111 of the outer casing 102 and passes the middle of the outer casing 102, with respect to the longitudinal axis A of the outer casing 102. The straight channel 120 stops just above the aperture 114, with respect to the longitudinal axis A. The straight channel 120 comprises an assembly part 123 and a working part 124. The assembly part 123 and the working part 124 are separated by a connection member locking channel 125 which extends substantially perpendicular from the middle of the straight channel 120, along the outer casing 102. Additionally, an activation and inactivation positioning channel 126 extends substantially perpendicular along the outer casing 102, from the second end 122 of the straight channel 120. The connection member locking channel 125 extends slightly shorter along the outer casing 102 than the positioning channel 126. Altogether, the straight channel 120, the connection member locking channel 125 and the positioning channel 126 substantially form an F-shaped channel system. The outer casing can preferably be turned 5-180°, more preferably 20-120°, most preferred 40-95°, between the first and second position.
A stop flange 127 is arranged between the connection member locking channel 125 and the positioning channel 126. The stop flange 127 extends around the periphery of the outer casing 102 and crosses the working part 124 of the straight channel 120. After the outer casing 102 has been assembled with the connection member 101, a locking ring 103 is placed adjacent the stop flange 127 and around the periphery of the outer casing 102. The stop flange 127 prevents the locking ring 103 from sliding along the longitudinal axis A in a direction towards the second side 111 of the outer casing 102.
Further shown in
At least one deformable locking flange 136 is arranged substantially parallel with the longitudinal axis A. The deformable locking flange 136 comprises a first and a second longitudinal side 137, 138 and a first and a second transverse side 139, 140. The first transverse side 139, which is an integrated part of the connection member 101, is arranged in the proximity of the middle of the connection member 101, with respect to the longitudinal axis A. Hence the deformable locking flange 136 is an integrated part of the connection member 102. The deformable locking flange 136 extends from the middle of the connection member 101 to the second side 131 of the connection member 101. Small channels separate, and form, the first and the second longitudinal side 137, 138 from the connection member 101. After assembly, the deformable locking flange 136 of the connection member 101 is intended to be in working cooperation with the aperture 114 of the outer casing 102, and to lock onto a male connection member, as will be described below.
The aperture 114 of the outer casing and the deformable locking flange 136 of the connection member 101 has been described in singular; however, in a preferred embodiment of the present invention, the outer casing comprises at least two opposing apertures 114 and at least two opposing deformable locking flanges 136.
The locking ring 103 is in the form of a ring-like sleeve member comprising an outer and an inner surface 150, 151 and a first and a second transverse side 152, 153. A locking protrusion 154 (shown in
A piercing member 105 in the form of a hollow needle comprises a first and a second end 160, 161 and an envelope surface 162. The first end 160 comprises a piercing tip 163 intended to pierce a male connector of a fluid container during use. A fluid outlet opening 164 is arranged in the proximity of the piercing tip 163, a fluid inlet opening 165 is arranged at the second end 161. Although the terms outlet and inlet openings are used, the openings and the piercing member 105 are not restricted to a one way flow.
The connection means 104 comprises a threaded portion 170 extending along the longitudinal axis A and arranged so that a fluid container can be attached to the connection means 104. The threaded portion 170 comprises an opening (not shown) into which the second end 161 of the piercing member 105 can be arranged so that the fluid inlet opening 165 is in fluid communication with a fluid container after connection. The threaded portion 170 is in the shown embodiment a conventional luer-lock arrangement. A sleeve member 171 is arranged to the threaded portion 170. The sleeve member 171 comprises a first and a second transverse side 172, 173 extending substantially transverse to the longitudinal axis A, an outer and an inner surface 174, 175. The threaded portion is arranged substantially in the centre of the first transverse side 172 of the sleeve member 171 which comprises a larger diameter than the threaded portion 170. The sleeve member 171 is further arranged with an assembly opening (not shown) at the second end 173 of the sleeve portion. The assembly opening extends substantially from the second transverse side 173 to the proximity of the first transverse side 172 of the sleeve member 171. After assembly, the assembly opening is intended to partly encompass at least the first side 110 of the outer casing 102.
Additionally in
The connection member 101 comprises as described above a first and a second side 130, 131 and an inner and an outer side 132, 133. A circumferential flange 134 extends around the periphery of the connection member 101 at the first side 130 of the connection member 101. A protrusion 135 protrudes out from the periphery of the circumferential flange 134 of the connection member 101.
The locking flange 136 which is arranged substantially parallel with the longitudinal axis A, comprises, as mentioned, a first and a second transverse side 139, 140. In the proximity of the second transverse side 140 of the locking flange 136, the locking flange 136 comprises a hook like configuration, in the shown embodiment, the hook like configuration comprises a fold portion 141 which together with the locking flange 136 provide a snap-on connection to a male connection part. The second transverse side 140 of the locking flange comprises a substantially transverse portion, with respect to the longitudinal axis A, which continues with an angle towards the longitudinal axis A to a folding tip 142, and then continues away from the longitudinal axis A, back to run substantially parallel with the longitudinal axis A. As mentioned, the folding tip 142 points towards the longitudinal axis A.
The locking flange 136 of the connection member 101 is as mentioned in working cooperation with the aperture 114 of the outer casing 102. As can be seen in
The connection member 101 is further arranged with a first and a second barrier member 143, 144 arranged so as to intersect the longitudinal axis A. The first and the second barrier member 143, 144 each has a substantially disc shaped form and respectively comprises a first and a second transverse side 145, 146, 147, 148. While being arranged substantially parallel with respect to each other, the space between the second transverse side 146 of the first barrier member 143 and the first transverse side 147 of the second barrier member 144 form a piercing tip protection chamber 149. As is shown in
The first and second barrier members 143, 144 has been described as two separate barrier members, however, the two separate barrier member can be replaced with one barrier member comprising a piercing tip protection chamber, or with a barrier member without a piercing tip protection chamber.
In one embodiment, a piercing member protection device comprises a piercing member, wherein said piercing member comprises a fluid opening in the proximity of a piercing tip, at least one barrier member is arranged to the piercing member protection device wherein the fluid opening of the piercing member is fully enclosed in the barrier member, so that the barrier member provides a fluid leakage protection device for the piercing member protection device. The piercing member protection device is preferably a female piercing protection device.
The outer casing 102 can, as mentioned above, be turned between a first position and a second position, wherein when the outer casing 102 is in its first position; the male connection part can be attached with a snap-on connection to the connection member 101. In the first position the male connection member may also be released from the snap-on connection, however, such detachment needs a certain force in order to overcome the snap-on connection. When the outer casing 102 is in its second position, the locking flanges 136 of the connection member 101 are displaced from the apertures 114 of the outer casing 102, this will be described in greater detail below.
Further in
In
In the shown embodiment of the male connection part 200, a circumferential wall 207 surrounds the first end 202 of the male connection part 200, as shown in
The male connection part 200 can further be arranged with at least one turning grip protrusion. In the shown embodiment, the male connection part 200 is equipped with 3 turning grip protrusions 209. The turning grip protrusions 209 are arranged on the outer surface of the circumferential wall 207, permitting the turning grip protrusions 209 to interact with the inner side 132 of the connection member 101. The tree turning grip protrusions 209 are symmetrically spread around the outer surface of the circumferential wall 207 so as to permit a good grip, and to prevent that more than one turning grip protrusions 209 will be positioned on the locking flange 136 of the connection member 101. They further run substantially along the longitudinal axis C at least along a part of the circumferential wall 207.
In those cases the male connection part 200 is arranged with turning grip protrusions, the inner side of the connection member is preferably arranged with corresponding turning grip grooves (not shown). The number of turning grip protrusions 209 on the male connection part 200 may be from 1 to 20, preferably 2-10, more preferably 3-8, generally symmetrically spread around the circumferential wall 207 or any other suitable part of the connection member 200. The number of turning grip grooves, also they generally symmetrically spread around the inner surface 132 of the connection member 101, may be from 1 to 19, preferably 1-9, more preferably 2-7. Most preferably, the number of turning grip protrusions 209 are more than the number of turning grip grooves, preferably one more. The purpose of the turning grip protrusions 209 is to prevent the connection member 101 from turning with respect to the male connection part 200 after assembly, this in turn will provide for a safe turning, with respect to the outer casing 102. The male connection part thereby provides for an increased turning friction between the female piercing member protection device, and especially the connection member, after assembly.
In
As shown in
In
At this point, the locking ring 103 which is arranged circumferentially around the outer surface 113 of the outer casing 102 can be turned between a first position (as shown in
The locking protrusion 154, which protrudes at least partly between the first and the second side 152, 153 from the inner surface 151 of the locking ring 103, runs in a part of the F-shaped channel system, which has been described above. More specifically, the locking protrusion 154 runs in the connection member locking channel 125 which extends perpendicular from the straight channel 120 of the outer casing 102. As can be seen in
The locking ring 103 or the locking protrusion 154 may further be arranged with a bias means (not shown), such as a spring, which will bias the locking protrusion 154 towards the straight channel 120 so as to provide for an automatic locking mechanism. If the locking protrusion 154 is properly formed, e.g. by making an angled surface towards the activation and inactivation positioning channel 126 of the outer casing 102, the locking protrusion 154 can be made to automatically lock the connection member 101 in the active position. During movement of the connection member 101 to the active position, the locking protrusion is pushed way, however, after the connection member 101 has passed the locking protrusion 154, the bias means bias the locking protrusion 154 back into the straight channel 120 and thereby effectively prevent the connection member 101 from returning to its inactive position. Hence the female piercing member protection device can be arranged with a manually second locking device, e.g. in which the user must turn the locking ring 103 himself to the locked position, or, an automatic second locking device, e.g. in which the locking ring 103 is automatically positioned in the locked position.
It is to be noted that the features described above may be combined in various ways, unless it is obviously inappropriate.
Number | Name | Date | Kind |
---|---|---|---|
1844342 | Berman | Feb 1932 | A |
2010417 | Schwab | Aug 1935 | A |
2697438 | Hickey | Dec 1954 | A |
2717599 | Huber | Sep 1955 | A |
3064651 | Henderson | Nov 1962 | A |
3071135 | Baldwin et al. | Jan 1963 | A |
3308822 | DeLuca | Mar 1967 | A |
3316908 | Burke | May 1967 | A |
3340671 | Loo | Sep 1967 | A |
3390677 | Razimbaud | Jul 1968 | A |
3448740 | Figge | Jun 1969 | A |
3542240 | Solowey | Nov 1970 | A |
3783895 | Weichselbaum | Jan 1974 | A |
3788320 | Dye | Jan 1974 | A |
3822700 | Pennington | Jul 1974 | A |
3938520 | Scislowicz et al. | Feb 1976 | A |
3976073 | Quick et al. | Aug 1976 | A |
4096860 | McLaughlin | Jun 1978 | A |
4296786 | Brignola | Oct 1981 | A |
D270568 | Armstrong | Sep 1983 | S |
4490139 | Huizenga et al. | Dec 1984 | A |
4516967 | Kopfer | May 1985 | A |
4564054 | Gustavsson | Jan 1986 | A |
4573967 | Hargrove et al. | Mar 1986 | A |
4576211 | Valentini et al. | Mar 1986 | A |
4581016 | Gettig | Apr 1986 | A |
4582223 | Kobe | Apr 1986 | A |
4588403 | Weiss et al. | May 1986 | A |
4600040 | Naslund | Jul 1986 | A |
4623343 | Thompson | Nov 1986 | A |
4629455 | Kanno | Dec 1986 | A |
4632673 | Tiitola et al. | Dec 1986 | A |
4636204 | Christopherson et al. | Jan 1987 | A |
4673400 | Martin | Jun 1987 | A |
4673404 | Gustavsson | Jun 1987 | A |
4737150 | Baeumle et al. | Apr 1988 | A |
4752287 | Kurtz et al. | Jun 1988 | A |
4759756 | Forman et al. | Jul 1988 | A |
4768568 | Fournier et al. | Sep 1988 | A |
4792329 | Schreuder | Dec 1988 | A |
4804015 | Albinsson | Feb 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4826492 | Magasi | May 1989 | A |
4834717 | Haber et al. | May 1989 | A |
4842585 | Witt | Jun 1989 | A |
4850978 | Dudar et al. | Jul 1989 | A |
4864717 | Baus, Jr. | Sep 1989 | A |
4872494 | Coccia | Oct 1989 | A |
4878897 | Katzin | Nov 1989 | A |
4889529 | Haindl | Dec 1989 | A |
4898209 | Zbed | Feb 1990 | A |
4909290 | Coccia | Mar 1990 | A |
4932937 | Gustavsson et al. | Jun 1990 | A |
4944736 | Holtz | Jul 1990 | A |
4964855 | Todd et al. | Oct 1990 | A |
4982769 | Fournier et al. | Jan 1991 | A |
4994048 | Metzger | Feb 1991 | A |
4997083 | Loretti et al. | Mar 1991 | A |
5017186 | Arnold | May 1991 | A |
5041105 | D'Alo et al. | Aug 1991 | A |
5061264 | Scarrow | Oct 1991 | A |
5071413 | Utterberg | Dec 1991 | A |
5122116 | Kriesel et al. | Jun 1992 | A |
5122123 | Vaillancourt | Jun 1992 | A |
5137524 | Lynn et al. | Aug 1992 | A |
5158554 | Jepson et al. | Oct 1992 | A |
5176673 | Marrucchi | Jan 1993 | A |
5199947 | Lopez et al. | Apr 1993 | A |
5201725 | Kling | Apr 1993 | A |
5207658 | Rosen et al. | May 1993 | A |
5232109 | Tirrell et al. | Aug 1993 | A |
5254097 | Schock et al. | Oct 1993 | A |
5279576 | Loo et al. | Jan 1994 | A |
5279583 | Shober, Jr. et al. | Jan 1994 | A |
5279605 | Karrasch et al. | Jan 1994 | A |
5308347 | Sunago et al. | May 1994 | A |
5312366 | Vaillancourt | May 1994 | A |
5328480 | Melker et al. | Jul 1994 | A |
5334163 | Sinnett | Aug 1994 | A |
5356406 | Schraga | Oct 1994 | A |
5385545 | Kriesel et al. | Jan 1995 | A |
5385547 | Wong et al. | Jan 1995 | A |
5389085 | D'Alessio et al. | Feb 1995 | A |
5405326 | Haber et al. | Apr 1995 | A |
5445630 | Richmond | Aug 1995 | A |
5447501 | Karlsson et al. | Sep 1995 | A |
5456675 | Wolbring et al. | Oct 1995 | A |
5470522 | Thome et al. | Nov 1995 | A |
5478328 | Silverman et al. | Dec 1995 | A |
5478337 | Okamoto et al. | Dec 1995 | A |
5492531 | Post et al. | Feb 1996 | A |
5514117 | Lynn | May 1996 | A |
5515871 | Bittner et al. | May 1996 | A |
5536259 | Utterberg | Jul 1996 | A |
5575780 | Saito | Nov 1996 | A |
5593028 | Haber et al. | Jan 1997 | A |
5613954 | Nelson et al. | Mar 1997 | A |
5632735 | Wyatt et al. | May 1997 | A |
5647845 | Haber et al. | Jul 1997 | A |
5685866 | Lopez | Nov 1997 | A |
5752942 | Doyle et al. | May 1998 | A |
5766147 | Sancoff et al. | Jun 1998 | A |
5766211 | Wood et al. | Jun 1998 | A |
5782872 | Muller | Jul 1998 | A |
5795336 | Romano et al. | Aug 1998 | A |
5817083 | Shemesh et al. | Oct 1998 | A |
5820609 | Saito | Oct 1998 | A |
5827262 | Neftel et al. | Oct 1998 | A |
5837262 | Golubev et al. | Nov 1998 | A |
5875931 | Py | Mar 1999 | A |
5879345 | Aneas | Mar 1999 | A |
5897526 | Vaillancourt | Apr 1999 | A |
5934510 | Anderson | Aug 1999 | A |
5984899 | D'Alessio et al. | Nov 1999 | A |
6022339 | Fowles et al. | Feb 2000 | A |
6063068 | Fowles et al. | May 2000 | A |
D427308 | Zinger | Jun 2000 | S |
6070623 | Aneas | Jun 2000 | A |
6071270 | Fowles et al. | Jun 2000 | A |
6090091 | Fowles et al. | Jul 2000 | A |
6113068 | Ryan | Sep 2000 | A |
6113583 | Fowles et al. | Sep 2000 | A |
6142446 | Leinsing | Nov 2000 | A |
6146362 | Turnbull et al. | Nov 2000 | A |
6209738 | Jansen et al. | Apr 2001 | B1 |
6221065 | Davis | Apr 2001 | B1 |
6245056 | Walker et al. | Jun 2001 | B1 |
D445501 | Niedospial, Jr. | Jul 2001 | S |
6253804 | Safabash | Jul 2001 | B1 |
6258078 | Thilly | Jul 2001 | B1 |
6387074 | Horppu et al. | May 2002 | B1 |
6453956 | Safabash | Sep 2002 | B2 |
6471674 | Emig et al. | Oct 2002 | B1 |
6517523 | Kaneko et al. | Feb 2003 | B1 |
6537263 | Aneas | Mar 2003 | B1 |
6571837 | Jansen et al. | Jun 2003 | B2 |
6591876 | Safabash | Jul 2003 | B2 |
6644367 | Savage et al. | Nov 2003 | B1 |
6685692 | Fathallah | Feb 2004 | B2 |
6715520 | Andreasson et al. | Apr 2004 | B2 |
6761286 | Py et al. | Jul 2004 | B2 |
D495416 | Dimeo et al. | Aug 2004 | S |
6786244 | Jones | Sep 2004 | B1 |
D506256 | Miyoshi et al. | Jun 2005 | S |
6960194 | Hommann et al. | Nov 2005 | B2 |
7000806 | Py et al. | Feb 2006 | B2 |
7080672 | Fournier et al. | Jul 2006 | B2 |
7297140 | Orlu et al. | Nov 2007 | B2 |
D570477 | Gallogly et al. | Jun 2008 | S |
D572820 | Gallogly et al. | Jul 2008 | S |
D577438 | Gallogly et al. | Sep 2008 | S |
D577822 | Gallogly et al. | Sep 2008 | S |
D582033 | Baxter et al. | Dec 2008 | S |
D605755 | Baxter et al. | Dec 2009 | S |
7703486 | Costanzo | Apr 2010 | B2 |
D616984 | Gilboa | Jun 2010 | S |
7744581 | Wallen et al. | Jun 2010 | B2 |
20010021825 | Becker et al. | Sep 2001 | A1 |
20010025671 | Safabash | Oct 2001 | A1 |
20020002352 | Becker et al. | Jan 2002 | A1 |
20020082586 | Finley et al. | Jun 2002 | A1 |
20020127150 | Sasso | Sep 2002 | A1 |
20020177819 | Barker et al. | Nov 2002 | A1 |
20030010717 | Brugger et al. | Jan 2003 | A1 |
20030070726 | Andreasson et al. | Apr 2003 | A1 |
20030106610 | Roos et al. | Jun 2003 | A1 |
20030107628 | Fowles et al. | Jun 2003 | A1 |
20030199846 | Fowles et al. | Oct 2003 | A1 |
20030233083 | Houwaert et al. | Dec 2003 | A1 |
20040116858 | Heinz et al. | Jun 2004 | A1 |
20040199139 | Fowles et al. | Oct 2004 | A1 |
20040215147 | Wessman et al. | Oct 2004 | A1 |
20050215977 | Uschold | Sep 2005 | A1 |
20060025747 | Sullivan et al. | Feb 2006 | A1 |
20060106360 | Wong | May 2006 | A1 |
20060111667 | Matsurra et al. | May 2006 | A1 |
20060157984 | Rome et al. | Jul 2006 | A1 |
20060186045 | Jensen et al. | Aug 2006 | A1 |
20070021725 | Villette | Jan 2007 | A1 |
20070060841 | Henshaw | Mar 2007 | A1 |
20070088313 | Zinger et al. | Apr 2007 | A1 |
20070106244 | Mosler et al. | May 2007 | A1 |
20070179441 | Chevallier | Aug 2007 | A1 |
20070270759 | Pessin | Nov 2007 | A1 |
20070270778 | Zinger et al. | Nov 2007 | A9 |
20080045919 | Jakob et al. | Feb 2008 | A1 |
20080103453 | Liversidge | May 2008 | A1 |
20080103485 | Kruger | May 2008 | A1 |
20080172039 | Raines | Jul 2008 | A1 |
20080223484 | Horppu | Sep 2008 | A1 |
20080287920 | Fangrow et al. | Nov 2008 | A1 |
20080312634 | Helmerson et al. | Dec 2008 | A1 |
20090254042 | Gratwohl et al. | Oct 2009 | A1 |
20100137827 | Warren et al. | Jun 2010 | A1 |
20100204671 | Kraushaar et al. | Aug 2010 | A1 |
20100243099 | Yodfat | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
200112863 | May 2003 | AU |
2005519 | Oct 1979 | DE |
0255025 | Feb 1988 | EP |
0259582 | Mar 1988 | EP |
0285424 | Oct 1988 | EP |
0311787 | Apr 1989 | EP |
0376629 | Jul 1990 | EP |
0453264 | Oct 1991 | EP |
0803267 | Oct 1997 | EP |
0819442 | Jan 1998 | EP |
0995453 | Apr 2000 | EP |
1060730 | Dec 2000 | EP |
1484073 | Dec 2004 | EP |
1731128 | Dec 2006 | EP |
2757405 | Jun 1998 | FR |
2780878 | Jan 2000 | FR |
1579065 | Nov 1980 | GB |
49-12690 | May 1972 | JP |
288664 | Jul 1990 | JP |
04-227275 | Aug 1992 | JP |
3030963 | Aug 1996 | JP |
11-009656 | Jan 1999 | JP |
2000167022 | Jun 2000 | JP |
2001505092 | Apr 2001 | JP |
2001-161792 | Jun 2001 | JP |
2001293085 | Oct 2001 | JP |
2002524217 | Aug 2002 | JP |
482670 | Apr 2002 | TW |
WO 8404672 | Dec 1984 | WO |
WO 8404673 | Dec 1984 | WO |
WO 9003536 | Apr 1990 | WO |
WO 9819724 | May 1998 | WO |
WO 9927886 | Jun 1999 | WO |
WO 9962578 | Dec 1999 | WO |
WO 0005292 | Feb 2000 | WO |
WO 0035517 | Jun 2000 | WO |
WO 0180928 | Nov 2001 | WO |
WO 0202048 | Jan 2002 | WO |
WO 0211794 | Feb 2002 | WO |
WO 02064077 | Aug 2002 | WO |
WO 02076540 | Oct 2002 | WO |
WO 2005074860 | Aug 2005 | WO |
WO 2006082350 | Aug 2006 | WO |
WO 2006083333 | Aug 2006 | WO |
WO 2008115102 | Sep 2008 | WO |
WO 2006138184 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090069783 A1 | Mar 2009 | US |