The present invention relates to at least one piezo-electric actuated valve capable of two-way or three-way operation for on/off or proportional control of fluid passing between at least one inlet port and at least one outlet port of a fluid passageway.
Commercially available solenoid operated valves typically are available in sizes down to a minimum 6 mm in diameter. Although valves smaller than 4.5 mm exist, the valves are much smaller, and are based on alternate construction and/or actuation techniques such as MEMS. In general, smaller solenoid based valves do not exist, because as the solenoid decreases in size, the work capability of the solenoid is reduced to the point where the solenoid is incapable of providing operation of the valve for the desired valve pressures and flow rates. It would be desirable in the present invention to provide an electrically actuated valve capable of being sized to 4.5 mm or less.
Commercially available solenoid actuated proportional valves are typically no smaller than 15 mm in diameter. The issue is not merely the raw power of the electromagnetic field as the coil decreases, but rather the ability to control the operation of the valve in a predictable linear fashion is extremely difficult. Further, a proportional valve is continually operating, thus typically requiring greater heat dissipation/handling ability than a simple on/off valve. It would be desirable to provide an electrically actuated valve capable of two-way or three-way operation, and capable of either on/off mode of operation or proportional mode of operation.
Typical commercially available solenoid valves respond with times in a range from 5 ms to 20 ms. Higher speed for the solenoids can be achieved, but generally require special electronic control such as overexcitation or special coil construction. It would be desirable to provide an electrically actuated, direct acting valve capable of response times in a range less than 5 ms, and preferably approximately 1 ms.
Commercially available, competitively sized valves based on solenoid actuation generally are sized on the order of 6 mm to 16 mm pitch and can exceed 22 mm. Further, the commercially available solenoid valves generally consume between 0.5 and 4.0 watts. Other piezo valves have lower power consumption compared to such solenoid actuated valves, but none of the piezo valves have the desired level of flow and pressure capability on a direct acting basis in as narrow a size. Piezo valves that do have the desired level of pressure and flow capability typically reach the desired levels when acting as a pilot valve for a larger valve, where the larger valve provides the desired level of pressure and flow capability. Alternatively, piezo valves can reach the desired performance levels but require greater width. It would be desirable in the present invention to provide a direct acting electrically actuated valve with high pressure and high flow capabilities without acting as a pilot valve for a larger valve and with a narrow width.
Although narrower examples are available, commercially available proportional valves can be, for example, approximately 22.2 mm in diameter and 39.6 mm tall. The version of such a commercially available proportional valve with an orifice size of ˜1.5 mm can flow up to fourteen standard liters per minute (slpm) at the maximum pressure of twenty-five pounds per square inch (psi). Further, the maximum rated pressure at any flow for the commercially available proportional valve is 100 psi. It would be desirable to provide an electrically actuated proportional valve which can operate at over 120 psi with a 1.5 mm equivalent orifice, and to provide an electrically actuated proportional valve which at 80 psi can flow up to approximately 50 slpm.
An apparatus according to the present invention controls the flow of a fluid from at least one inlet port to at least one outlet port through a fluid flow passage in response to an electrical activation. The apparatus can include a support having a rigid, non-flexible portion, at least one pivotable relatively rigid, non-flexible, folded-back arm portion extending from the rigid portion, at least one surface associated with the at least one folded-back arm portion for movement relative to the support, and a rigid, non-flexible force transfer member operably positioned for driving the at least one pivotable folded-back arm portion in rotational movement. An electrically operated actuator operably engages between the rigid, non-flexible portion and the force transfer member to drive the force transfer member relative to the rigid, non-flexible portion to pivot the at least one pivotable folded-back arm portion in response to an electrical activation of the actuator wherein the work produced by the rotational movement of the at least one pivotable folded-back arm portion can be greater than 60% of the work produced by the electrically operated actuator. A manifold includes a fluid passage communicating with at least one valve seat and operably engageable with respect to at least one corresponding valve body for movement between a closed position in sealing engagement with the valve seat and an opened position spaced from the valve seat, wherein at least one of the valve seat and valve body is operably movable with respect to the other by the electrically operated actuator through the support in response to an electrical activation.
The multi-valve manifold according to the present invention can house and provide fluid connections for multiple piezo actuated, direct acting valves. The current design of the valves is three-way on-off. These valves can be used for various applications including, by way of example and not limitation, mixing and diverting. In the current configuration, the manifold provides a common inlet port, a common exhaust port, and an outlet port unique to each valve. It also provides a single point for electrical connection and in some configurations the manifold will also house the system power supply and valve control. This same three-way valve configuration can be operated in a proportional mode for mixing or blending applications. In such applications, the common exhaust port, described above, would be used as a second common inlet port. Alteration of the flow can enable use for diverting applications. In support of mixing, blending or diverting, check valves can be incorporated to prevent undesirable flow.
A unique design feature of the multi-valve manifold pack is that the valve spacing is set at 4.5 mm. This tight spacing allows, for example, the valve to provide direct dispensing of analytical fluids. Such fluids can be transferred into titration wells that are currently spaced 4.5 mm apart in typical titration trays using, for example, a nozzle directly attached to the outlet ports of the manifold or minimal interface tubing from the valves to the wells. This can improve dispensing accuracy, save reagent volumes and improve dispensing times. Typical existing valve manifolds use 10 mm spacing, thus requiring complex valve mounting geometries and extensive tubing or manifolding to transfer the fluid being dispensed from the valve. The present invention provides for nozzles attached to the manifold on 4.5 mm pitch and in line with the valves located at 4.5 mm spacing from one another mounted on the manifold, i.e. the valve is inline and very close so that there is minimal “dead volume” from the valve to the dispensing orifice or nozzle.
Another unique feature of the valve is its high flow capacity within the 4.5 mm pitch spacing. At 80 psig the valve in the three-way configuration will flow approximately 50 standard liters per minute (slpm). Existing valves, even based on a 10 mm width, do not typically flow more than 20 lpm. Thus the valve of the present invention can, by way of example and not limitation, also be used very effectively to pilot much larger pneumatically actuated valves.
In a two-way configuration the valves can operate as proportional fluid controls. This level of control is believed to be unique in such small packaging. Further, the flow rates of valves according to the present invention would substantially exceed the performance of known comparable valves.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Referring now to
Competitively performing existing valves generally are sized on the order of 6 mm to 16 mm pitch, and generally consume between 0.5 and 4.0 watts. In comparison once actuated, the piezo-electric actuator of the present invention draws less than 0.010 watts. Other piezo valves have such a low power consumption. None have the flow and pressure capability on a direct acting basis. Those that do have the pressure and flow capability only do so when acting as a pilot for a larger valve. Benefits of the present invention include: direct control using logic level circuits, potential for long life battery operation, potential for radio frequency (RF) operation with photovoltaic cell, battery or other low power electric source, virtually no heat generation—important for certain applications such as biomedical or analytical. Minimal heat generation is also important, because it eliminates, or at least greatly reduces the requirement for cooling considerations. The heat generated and associated heat transfer to the fluid being metered is not only a function of the solenoid coil versus piezo, it is also related to the fact that the present invention is able to separate the fluid control portion of the valve from the heat generating, actuation portion. With a solenoid based valve, frequently the fluid passages are very close to the coil. As the size decreases, the relative proximity tends to increase. In some cases, the fluid passage of a solenoid based valve actually pass “through” a passage within the heat generating coil of the solenoid. The multi-valve manifold having fluid control portions separate from piezo actuator portions according to the present invention avoids this disadvantage of the solenoid based valve.
Separate from raw size, the fact that the valve spacing is 4.5 mm pitch (4.5 mm on center valve to valve) allows the valves to line up exactly with the well in a standard 384 well microtitration tray. This is a potential benefit for analytical automation applications. Presently this is accomplished using various complex configurations such as: custom manifolds; custom plumbing from the valve to the wells; micro electromechanical system (MEMS) based dispensers; robotics; etc. The multi-valve manifold according to the present invention, by way of example and not limitation, can include an eight-pack manifold which can be doubled up to provide a sixteen valve version in order to allow direct dispensing into a complete row of wells in a standard 384 microtitration tray.
Each valve is capable of on/off operation and also proportional operation. By comparison, the closest known commercially available solenoid actuated proportional valve is no smaller than 15 mm in diameter. The issue is not merely the raw power of the electromagnetic field as the coil decreases. The ability to control the operation of the valve in a predictable linear fashion is also much more difficult. Further, a proportional valve is continually operating, thus requiring greater heat dissipation/handling ability than a simple on/off valve.
The valves have the potential to respond to on/off operations faster than 1 millisecond (ms). Typical competitive solenoid valves respond in 5 ms to 20 ms. Higher speed for the solenoids can be achieved, but typically require special electronics such as overexcitation or use special coil construction.
The fluid portion of each valve can be pressure balanced. This allows the use of a comparatively smaller actuator while providing high flow and pressure capability. As an example, the recently announced Clippard EVP proportional valve is 22.2 mm in diameter and 39.6 mm tall. The version with an orifice sized comparable to the orifice in each valve of the present invention (˜1.5 mm) can flow fourteen standard liters per minute (slpm) at the maximum pressure of twenty-five pounds per square inch (psi). Further, the maximum rated pressure at any flow for the Clippard EVP proportional valve is 100 psi. By comparison, each valve according to the present invention can operate at over 120 psi with the standard 1.5 mm equivalent orifice, and at 80 psi the valve according to the present invention can flow up to approximately 50 slpm. The combination of the pressure balanced fluid control valve with the piezo actuator according to the present invention provides the improved performance, i.e. pressure balancing reduces the work that the actuator must produce thereby allowing the use of smaller piezo actuators. In addition, the unique basic form factor of the piezo actuator according to the present invention, i.e. narrow relative to the other dimensions, especially when compared to solenoids, enables the overall narrow form of the valves according to the present invention.
It should be recognized that the present invention can be modified to provide the one or more of the following features: control electronics located in the manifold “bottom” rather than merely an electrical interface; for either two-way or three-way operation; simplified valve mounting into the manifold so that additional screws are not needed; a manifold with valves in any quantity other than 8 valves, for example 2, 3, 4, 5, . . . 8, . . . 16, . . . n; a fluid inlet port located in alternate position, by way of example and not limitation, such as a “bottom” entry and located central to the valves to reduce the distance from the inlet to the furthest valve (manifold dead volume); for use of non-pressured balanced valve, which would offer less flow but can offer other benefits, by way of example and not limitation, such as longer life or simpler assembly; various size multi-valve manifolds since the valve width according to the present invention is potentially scalable to smaller sizes, by way of example and limitation, to approximately half the width of the valve discussed above (i.e. 4.5 mm), and scaled to much larger sizes, by way of example and not limitation, to approximately 25 mm in width; the manifold and valve components made from metal or any suitable other alternate materials known to those skilled in the art; the inlet and outlet port connectors including tubing “quick connects” or any other suitable alternative connections known to those skilled in the art.
The rigid non-flexible portion 16 can receive an adjustable support 54 with an adjustable seat 52 having a complementary surface to the end 42 of the actuator 14. The complementary surface of the adjustable seat 52 can be flat or shaped in any manner to support the actuator 14 in a position suitable for driving the force transfer member 26 in response to an electrical actuation of the actuator 14. Movement of the rigid, non-flexible force transfer member 26 pivots the at least one pivotable arm portion 18, 20 about at least one living hinge 36, 38. At least one living hinge 36, 38 extends between each rigid arm portion and a pivotal base portion 46, 48 of each corresponding pivotable relatively rigid, non-flexible arm portion, and at least one living hinge 32, 34 extends between the corresponding base portion 46, 48 of the pivotable relatively rigid, non-flexible arm portions and the rigid force transfer member 26.
A controller 28 can be provided to operate the apparatus 10. The controller can provide a charging voltage across the piezoelectric device to produce spatial displacement along a predetermined axis. The amount of electrical charge stored by the piezoelectric device is generally proportional to the amount of voltage applied across the piezoelectric device. Thus, varying the amount of voltage applied across the piezoelectric device can control the amount of spatial displacement along one predetermined axis. This spatial displacement is transferred and amplified via the living integral hinge 36, 38 into the at least one rigid, non-flexible pivotable arm 18, 20 causing the corresponding one of the opposing surfaces 22, 24 to move in a curvilinear path with respect to the other.
In
In the embodiment illustrated in
In the embodiment illustrated in
The disclosure of the actuator configuration and operation from U.S. patent application Ser. No. 10/107,951 filed Mar. 27, 2002 and U.S. patent application Ser. No. 10/613,138 filed Jul. 3, 2003 are incorporated by reference herein in their entirety. The disclosure of the 8 Pack Manifold from U.S. provisional application Ser. No. 60/460,666 filed Apr. 4, 2003 is incorporated by reference herein in its entirety.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims the benefit of U.S. provisional patent application Ser. No. 60/460,666 filed on Apr. 4, 2003, and is a continuation-in-part of U.S. patent application Ser. No. 10/107,951 filed Mar. 27, 2002 now U.S. Pat. No. 6,759,790 and a continuation-in-part of U.S. patent application Ser. No. 10/613,138 filed on Jul. 3, 2003.
Number | Name | Date | Kind |
---|---|---|---|
3099289 | Neilson et al. | Jul 1963 | A |
4080873 | Bauer et al. | Mar 1978 | A |
4106390 | Kodaira et al. | Aug 1978 | A |
4121504 | Nowak | Oct 1978 | A |
4379335 | Kirsch et al. | Apr 1983 | A |
4431873 | Dunn et al. | Feb 1984 | A |
4450753 | Basrai et al. | May 1984 | A |
4481451 | Kautz et al. | Nov 1984 | A |
4481768 | Goshorn et al. | Nov 1984 | A |
4628499 | Hammett | Dec 1986 | A |
4686338 | Kashiwagi et al. | Aug 1987 | A |
4736131 | Fujimoto | Apr 1988 | A |
4741247 | Glomeau et al. | May 1988 | A |
4763560 | Sasaki | Aug 1988 | A |
4790233 | Backe et al. | Dec 1988 | A |
4808874 | Stahlhuth | Feb 1989 | A |
4819543 | Leinen | Apr 1989 | A |
4878417 | Facon | Nov 1989 | A |
4901625 | Bussan et al. | Feb 1990 | A |
4932311 | Mibu et al. | Jun 1990 | A |
5154207 | Bolt | Oct 1992 | A |
5211196 | Schwelm | May 1993 | A |
5271226 | Stone | Dec 1993 | A |
5333455 | Yoshioka | Aug 1994 | A |
5388751 | Harada et al. | Feb 1995 | A |
5400824 | Gschwendtner et al. | Mar 1995 | A |
5424941 | Bolt et al. | Jun 1995 | A |
5425941 | Wilson et al. | Jun 1995 | A |
5431086 | Morita et al. | Jul 1995 | A |
5465021 | Visscher et al. | Nov 1995 | A |
5546847 | Rector et al. | Aug 1996 | A |
5587536 | Rasmussen | Dec 1996 | A |
5881767 | Loser | Mar 1999 | A |
5950668 | Baumann | Sep 1999 | A |
6003428 | Mundie et al. | Dec 1999 | A |
6023121 | Dhuler et al. | Feb 2000 | A |
6085632 | Stoll et al. | Jul 2000 | A |
6230606 | Sato | May 2001 | B1 |
6234060 | Jolly | May 2001 | B1 |
6255934 | Gadini et al. | Jul 2001 | B1 |
6291928 | Lazarus et al. | Sep 2001 | B1 |
6305264 | Yang et al. | Oct 2001 | B1 |
6333583 | Mahadevan et al. | Dec 2001 | B1 |
6431340 | Ineson et al. | Aug 2002 | B1 |
6453261 | Boger et al. | Sep 2002 | B1 |
6467264 | Stephenson et al. | Oct 2002 | B1 |
6523451 | Liao et al. | Feb 2003 | B1 |
6548938 | Moler et al. | Apr 2003 | B1 |
6567255 | Panzer et al. | May 2003 | B1 |
6619142 | Forster et al. | Sep 2003 | B1 |
6642067 | Dwyer | Nov 2003 | B1 |
6759790 | Bugel et al. | Jul 2004 | B1 |
6870305 | Moler | Mar 2005 | B1 |
20010030306 | Moler et al. | Oct 2001 | A1 |
20040035106 | Moler | Feb 2004 | A1 |
20040045148 | Moler | Mar 2004 | A1 |
20040125472 | Belt | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
199 12 334 A 1 | Sep 2000 | DE |
10122297 | Jun 2002 | DE |
61276981 | Dec 1986 | EP |
0 325 764 | Feb 1989 | EP |
01185175 | Jul 1989 | EP |
1 391 647 | Jun 2003 | EP |
2203195 | Oct 1988 | GB |
WO 0178160 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050016606 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
60460666 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10107951 | Mar 2002 | US |
Child | 10817512 | US | |
Parent | 10613138 | Jul 2003 | US |
Child | 10107951 | US |