The subject matter disclosed herein relates to piezo electrophoretic displays which may be activated or driven without being connected to a power source, and methods for their manufacture.
Non-emissive displays convey information using contrast differences, which are achieved by varying the reflectance of different frequencies of light; they are thus distinct from traditional emissive displays, which stimulate the eye by emitting light. One type of non-emissive display is an electrophoretic display, which utilizes the phenomenon of electrophoresis to achieve contrast. Electrophoresis refers to movement of charged particles in an applied electric field. When electrophoresis occurs in a liquid, the particles move with a velocity determined primarily by the viscous drag experienced by the particles, their charge, the dielectric properties of the liquid, and the magnitude of the applied field.
An electrophoretic display utilizes charged particles of one color suspended in a dielectric liquid medium of a different color (that is, light reflected by the particles) is absorbed by the liquid. The suspension is housed in a cell located between (or partly defined by) a pair of oppositely disposed electrodes, one of which is transparent. When the electrodes are operated to apply a DC or pulsed field across the medium, the particles migrate toward the electrode of opposite sign. The result is a visually observable color change. In particular, when a sufficient number of the particles reach the transparent electrode, their color dominates the display; if the particles are drawn to the other electrode, however, they are obscured by the color of the liquid medium, which dominates instead.
Many electrophoretic displays are bi-stable: their state persists even after the activating electric field is removed. This is generally achieved via residual charge on the electrodes and van der Waals interactions between the particles and the walls of the electrophoretic cell. The driving of an electrophoretic display requires a power source, such as a battery to provide power to the display and/or its driving circuitry. The power source may be a driver IC in order to generate an electric field. The electric field may also need to be enhanced by a circuitry. In any case, a physical connection through wires is required to attach the power source to the electrophoretic display and its driving circuitry.
According to one aspect of the subject matter disclosed herein, an electro-optic display may include a layer of electrophoretic material; a first conductive layer; and a piezoelectric material positioned between the layer of electrophoretic material and the first conductive layer, the piezoelectric material overlaps with a portion of the layer of electrophoretic material, and a portion of the first conductive layer overlaps with the rest of the electrophoretic material.
The term “electro-optic”, as applied to a material or a display, is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
The term “gray state” is used herein in its conventional meaning in the imaging art to refer to a state intermediate two extreme optical states of a pixel, and does not necessarily imply a black-white transition between these two extreme states. For example, several of the E Ink patents and published applications referred to below describe electrophoretic displays in which the extreme states are white and deep blue, so that an intermediate “gray state” would actually be pale blue. Indeed, as already mentioned, the change in optical state may not be a color change at all. The terms “black” and “white” may be used hereinafter to refer to the two extreme optical states of a display, and should be understood as normally including extreme optical states which are not strictly black and white, for example, the aforementioned white and dark blue states. The term “monochrome” may be used hereinafter to denote a display or drive scheme which only drives pixels to their two extreme optical states with no intervening gray states.
The term “pixel” is used herein in its conventional meaning in the display art to mean the smallest unit of a display capable of generating all the colors which the display itself can show. In a full color display, typically each pixel is composed of a plurality of sub-pixels each of which can display less than all the colors which the display itself can show. For example, in most conventional full color displays, each pixel is composed of a red sub-pixel, a green sub-pixel, a blue sub-pixel, and optionally a white sub-pixel, with each of the sub-pixels being capable of displaying a range of colors from black to the brightest version of its specified color.
Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed by applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface. This type of electro-optic medium is typically bistable.
Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. Nos. 6,301,038; 6,870,657; and 6,950,220. This type of medium is also typically bistable.
Another type of electro-optic display is an electro-wetting display developed by Philips and described in Hayes, R. A., et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, 425, 383-385 (2003). It is shown in U.S. Pat. No. 7,420,549 that such electro-wetting displays can be made bistable.
One type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays.
As noted above, electrophoretic media require the presence of a fluid. In most prior art electrophoretic media, this fluid is a liquid, but electrophoretic media can be produced using gaseous fluids; see, for example, Kitamura, T., et al., “Electrical toner movement for electronic paper-like display”, IDW Japan, 2001, Paper HCS1-1, and Yamaguchi, Y., et al., “Toner display using insulative particles charged triboelectrically”, IDW Japan 2001, Paper AMD4-4). See also U.S. Pat. Nos. 7,321,459 and 7,236,291. Such gas-based electrophoretic media appear to be susceptible to the same types of problems due to particle settling as liquid-based electrophoretic media, when the media are used in an orientation which permits such settling, for example in a sign where the medium is disposed in a vertical plane. Indeed, particle settling appears to be a more serious problem in gas-based electrophoretic media than in liquid-based ones, since the lower viscosity of gaseous suspending fluids as compared with liquid ones allows more rapid settling of the electrophoretic particles.
Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various technologies used in encapsulated electrophoretic and other electro-optic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles in a fluid medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. The technologies described in these patents and applications include:
Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called polymer-dispersed electrophoretic display, in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned U.S. Pat. No. 6,866,760. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the fluid are not encapsulated within microcapsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, U.S. Pat. Nos. 6,672,921 and 6,788,449, both assigned to Sipix Imaging, Inc.
Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, U.S. Pat. Nos. 5,872,552; 6,130,774; 6,144,361; 6,172,798; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode. Electro-optic media operating in shutter mode may be useful in multi-layer structures for full color displays; in such structures, at least one layer adjacent the viewing surface of the display operates in shutter mode to expose or conceal a second layer more distant from the viewing surface.
An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating, meniscus coating; spin coating; brush coating; air knife coating, silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; electrophoretic deposition (See U.S. Pat. No. 7,339,715); and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed, using a variety of methods, the display itself can be made inexpensively.
Other types of electro-optic materials may also be used in the present invention.
An electrophoretic display normally comprises a layer of electrophoretic material and at least two other layers disposed on opposed sides of the electrophoretic material, one of these two layers being an electrode layer. In most such displays both the layers are electrode layers, and one or both of the electrode layers are patterned to define the pixels of the display. For example, one electrode layer may be patterned into elongate row electrodes and the other into elongate column electrodes running at right angles to the row electrodes, the pixels being defined by the intersections of the row and column electrodes. Alternatively, and more commonly, one electrode layer has the form of a single continuous electrode and the other electrode layer is patterned into a matrix of pixel electrodes, each of which defines one pixel of the display. In another type of electrophoretic display, which is intended for use with a stylus, print head or similar movable electrode separate from the display, only one of the layers adjacent the electrophoretic layer comprises an electrode, the layer on the opposed side of the electrophoretic layer typically being a protective layer intended to prevent the movable electrode damaging the electrophoretic layer.
In yet another embodiment, such as described in U.S. Pat. No. 6,704,133, electrophoretic displays may be constructed with two continuous electrodes and an electrophoretic layer and a photoelectrophoretic layer between the electrodes. Because the photoelectrophoretic material changes resistivity with the absorption of photons, incident light can be used to alter the state of the electrophoretic medium. Such a device is illustrated in
The aforementioned U.S. Pat. No. 6,982,178 describes a method of assembling a solid electro-optic display (including an encapsulated electrophoretic display) which is well adapted for mass production. Essentially, this patent describes a so-called “front plane laminate” (“FPL”) which comprises, in order, a light-transmissive electrically-conductive layer; a layer of a solid electro-optic medium in electrical contact with the electrically-conductive layer; an adhesive layer, and a release sheet. Typically, the light-transmissive electrically-conductive layer will be carried on a light-transmissive substrate, which is preferably flexible, in the sense that the substrate can be manually wrapped around a drum (say) 10 inches (254 mm) in diameter without permanent deformation. The term “light-transmissive” is used in this patent and herein to mean that the layer thus designated transmits sufficient light to enable an observer, looking through that layer, to observe the change in display states of the electro-optic medium, which will normally be viewed through the electrically-conductive layer and adjacent substrate (if present); in cases where the electro-optic medium displays a change in reflectivity at non-visible wavelengths, the term “light-transmissive” should of course be interpreted to refer to transmission of the relevant non-visible wavelengths. The substrate will typically be a polymeric film, and will normally have a thickness in the range of about 1 to about 25 mil (25 to 634 μm), preferably about 2 to about 10 mil (51 to 254 μm). The electrically-conductive layer is conveniently a thin metal or metal oxide layer of, for example, aluminum or ITO, or may be a conductive polymer. Poly (ethylene terephthalate) (PET) films coated with aluminum or ITO are available commercially, for example as “aluminized Mylar” (“Mylar” is a Registered Trade Mark) from E.I. du Pont de Nemours & Company, Wilmington Del., and such commercial materials may be used with good results in the front plane laminate.
Assembly of an electro-optic display using such a front plane laminate may be effected by removing the release sheet from the front plane laminate and contacting the adhesive layer with the backplane under conditions effective to cause the adhesive layer to adhere to the backplane, thereby securing the adhesive layer, layer of electro-optic medium and electrically-conductive layer to the backplane. This process is well-adapted to mass production since the front plane laminate may be mass produced, typically using roll-to-roll coating techniques, and then cut into pieces of any size needed for use with specific backplanes.
U.S. Pat. No. 7,561,324 describes a so-called “double release sheet” which is essentially a simplified version of the front plane laminate of the aforementioned U.S. Pat. No. 6,982,178. One form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two adhesive layers, one or both of the adhesive layers being covered by a release sheet. Another form of the double release sheet comprises a layer of a solid electro-optic medium sandwiched between two release sheets. Both forms of the double release film are intended for use in a process generally similar to the process for assembling an electro-optic display from a front plane laminate already described, but involving two separate laminations; typically, in a first lamination the double release sheet is laminated to a front electrode to form a front sub-assembly, and then in a second lamination the front sub-assembly is laminated to a backplane to form the final display, although the order of these two laminations could be reversed if desired.
U.S. Pat. No. 7,839,564 describes a so-called “inverted front plane laminate”, which is a variant of the front plane laminate described in the aforementioned U.S. Pat. No. 6,982,178. This inverted front plane laminate comprises, in order, at least one of a light-transmissive protective layer and a light-transmissive electrically-conductive layer; an adhesive layer; a layer of a solid electro-optic medium; and a release sheet. This inverted front plane laminate is used to form an electro-optic display having a layer of lamination adhesive between the electro-optic layer and the front electrode or front substrate; a second, typically thin layer of adhesive may or may not be present between the electro-optic layer and a backplane. Such electro-optic displays can combine good resolution with good low temperature performance.
The photoelectrophoretic properties of certain pigments were recognized some time ago. For example U.S. Pat. No. 3,383,993 discloses a photoelectrophoretic imaging apparatus that could be used to reproduce projected images on a medium, typically a transparent electrode, such as ITO. The photoelectrophoretic process described in the '993 patent, and other related patents by Xerox Corporation, was not reversible, however, because the photoelectrophoretic process involved the photoelectrophoretic particles migrating to an “injecting electrode” where they would become attached to the electrode. Because of the lack of reversibility, as well as the cost and complication of the setup, this phenomenon was not commercialized widely.
The subject matter presented herein relates to several piezo electrophoretic display structural designs which do not need a power supply (e.g., battery or wired power supply etc.) in order for the electrophoretic display to operate. The assembly of such an electrophoretic display is therefore simplified.
Piezoelectricity is the charge which accumulates in a solid material in response to applied mechanical stress. Suitable materials for the subject matter disclosed herein may include polyvinylidene fluoride (PVDF), quartz (SiO2), berlinite (AlPO4), gallium orthophosphate (GaPO4), tourmaline, barium titanate (BaTiO3), lead zirconate titanate (PZT), zinc oxide (ZnO), aluminum nitride (AlN), lithium tantalite, lanthanum gallium silicate, potassium sodium tartrate and any other known piezo materials.
Some aspects of the subject matter presented herein utilizes the piezoelectricity to drive the pigments of an electrophoretic material, to change the color of the electrophoretic material when viewed from a viewing surface. For example, by bending or introduce stress to a piece of piezo material, voltage may be generated and this voltage can be utilized to cause movement of the color pigments of the electrophoretic material. As used herein, the term “contrast ratio” (CR) for an electro-optic display (e.g., an electrophoretic display) is defined as the ratio of the luminance of the brightest color (white) to that of the darkest color (black) that the display is capable of producing. Normally a high contrast ratio, or CR, is a desired aspect of a display.
In practice, the CR of the electro-optic display 100 may differ depending on the ratio of the EPD film 104 surface area A1110 (i.e., the portion of EPD film 104 that is overlaps with or covered by or in direct contact with the piezo material 102) compared to that of area A2112 (i.e., the portion of EPD film 104 that is overlapped with or covered by electrode 2108), as illustrated in
As shown in
In another embodiment in accordance with the subject matter disclosed herein, instead of having a piezo film directly laminated onto or overlapping with an EPD film as shown in
Furthermore, display CR may be optimized by adjust the resistance value of the semi-conductive layer 304. For example, at a resistance range of approximately 108 (Ohm*cm), the display CR of 12 may be achieved. In another embodiment, the resistance of the electrode 1 layer 306 may be at approximately 450 ohm/sq, where the resistance of an electrode 2 layer 310 may be at 0.003 ohm/sq, the EPD film 308 may have a resistance of approximately 107 to 108 oh, and the piezo material 302 may have a resistance of 1013 to 1014 ohm.
In another embodiment,
In yet another embodiment, in a configuration similar to that illustrated in
It should be appreciated that all the layers presented in
It should also be noted that, referring to the display configurations illustrated in
In some other embodiments, a piezo electrophoretic display in accordance with the subject matter disclosed herein may be combined with another apparatus, such as a currency bill illustrated in
Methods of Manufacturing
In some embodiments, a method for producing a display as describe above may include producing a layer of electrophoretic display material having a first portion 1102 and a second portion 1100, the first portion 1102 having a plurality of micro-cells and the second portion 1100 being substantially flat. The method may further include providing a piezoelectric material, and aligning the piezoelectric material to the second portion of the electrophoretic display material such that the piezoelectric material substantially overlaps with the second portion. In some embodiments, the first 1102 and second 1100 portions of the electrophoretic material are produced using a single photolithography step. The method may further include placing the electrophoretic display material and the piezoelectric material onto a substrate, where the substrate may be flexible. In some embodiments, the method may further include providing a conductive electrode onto the substrate, and providing a barrier layer between the conductive electrode and the substrate. In some embodiments, after the producing a layer of electrophoretic display step, the method may further include providing a layer of release liner, where the release liner has a height that is substantially similar to that of the plurality of micro-cells.
Furthermore, another second electrode may be printed on top of the substrate as shown in
In use, when a force is applied onto the piezoelectric material layer 1202, charge separation occurs within the piezoelectric material 1202. The charge on the interface of the electrophoretic display medium layer 1204 and the piezoelectric material layer 1202 can induce the charges on the EPD film and the electric field passes through the EPD to make the particles move.
In yet another embodiment, to achieve an even better contrast ratio, piezo films with opposite poling directions may be positioned in a side by side configuration, as illustrated in
The embodiments shown in
Latent Images
In some embodiments, displays with structures that's similar to or based on the configurations illustrated in
In some embodiments, images or shapes may be printed or laminated onto a white background and onto either the electrode 11406 or electrode 21408, and viewed from an opposite side. In use, when the EPD layer 1404 is showing white color, the printed image or shape will be hidden (i.e., see
In yet another embodiment, dark colored images or shapes may be produced onto either electrode 11406 or electrode 21408 without a background and be viewed from an opposite side. In this configuration, when the display 1400 is position over a black background, as illustrated in
In yet another embodiment, as illustrated in
It should also be noted that, referring to the display configurations illustrated in
It will be apparent to those skilled in the art that numerous changes and modifications can be made to the specific embodiments of the invention described above without departing from the scope of the invention. Accordingly, the whole of the foregoing description is to be interpreted in an illustrative and not in a limitative sense.
This application is related and claims priority to U.S. Provisional Application 62/673,092 filed on May 17, 2018. This application is also related to U.S. Provisional Application 62/727,033 filed on Sep. 5, 2018. The entire disclosures of the aforementioned applications are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3035200 | Yando | May 1962 | A |
3072821 | Yando | Jan 1963 | A |
3383993 | Yeh | May 1968 | A |
4418346 | Batchelder | Nov 1983 | A |
5760761 | Sheridon | Jun 1998 | A |
5777782 | Sheridon | Jul 1998 | A |
5808783 | Crowley | Sep 1998 | A |
5872552 | Gordon, II et al. | Feb 1999 | A |
6054071 | Mikkelsen, Jr. | Apr 2000 | A |
6055091 | Sheridon et al. | Apr 2000 | A |
6097531 | Sheridon | Aug 2000 | A |
6128124 | Silverman | Oct 2000 | A |
6130774 | Albert et al. | Oct 2000 | A |
6137467 | Sheridon et al. | Oct 2000 | A |
6144361 | Gordon, II et al. | Nov 2000 | A |
6147791 | Sheridon | Nov 2000 | A |
6172798 | Albert et al. | Jan 2001 | B1 |
6184856 | Gordon, II et al. | Feb 2001 | B1 |
6225971 | Gordon, II et al. | May 2001 | B1 |
6241921 | Jacobson et al. | Jun 2001 | B1 |
6271823 | Gordon, II et al. | Aug 2001 | B1 |
6301038 | Fitzmaurice et al. | Oct 2001 | B1 |
6373461 | Hasegawa et al. | Apr 2002 | B1 |
6672921 | Liang et al. | Jan 2004 | B1 |
6704133 | Gates et al. | Mar 2004 | B2 |
6738050 | Comiskey et al. | May 2004 | B2 |
6788449 | Liang et al. | Sep 2004 | B2 |
6842166 | Hasegawa et al. | Jan 2005 | B2 |
6866760 | Paolini Jr., et al. | Mar 2005 | B2 |
6870657 | Fitzmaurice et al. | Mar 2005 | B1 |
6922276 | Zhang et al. | Jul 2005 | B2 |
6950220 | Abramson et al. | Sep 2005 | B2 |
6982178 | LeCain et al. | Jan 2006 | B2 |
7002728 | Pullen et al. | Feb 2006 | B2 |
7012600 | Zehner et al. | Mar 2006 | B2 |
7072095 | Liang et al. | Jul 2006 | B2 |
7075502 | Drzaic et al. | Jul 2006 | B1 |
7116318 | Amundson et al. | Oct 2006 | B2 |
7144942 | Zang et al. | Dec 2006 | B2 |
7170670 | Webber | Jan 2007 | B2 |
7236291 | Kaga et al. | Jun 2007 | B2 |
7312784 | Baucom et al. | Dec 2007 | B2 |
7321459 | Masuda et al. | Jan 2008 | B2 |
7339715 | Webber et al. | Mar 2008 | B2 |
7408699 | Wang et al. | Aug 2008 | B2 |
7411719 | Paolini, Jr. et al. | Aug 2008 | B2 |
7420549 | Jacobson et al. | Sep 2008 | B2 |
7453445 | Amundson | Nov 2008 | B2 |
7535624 | Amundson et al. | May 2009 | B2 |
7561324 | Duthaler et al. | Jul 2009 | B2 |
7616375 | Hirai et al. | Nov 2009 | B2 |
7679814 | Paolini, Jr. et al. | Mar 2010 | B2 |
7715088 | Liang et al. | May 2010 | B2 |
7839564 | Whitesides et al. | Nov 2010 | B2 |
8009348 | Zehner et al. | Aug 2011 | B2 |
8177942 | Paolini, Jr. et al. | May 2012 | B2 |
8319759 | Jacobson et al. | Nov 2012 | B2 |
8791909 | Tsai et al. | Jul 2014 | B2 |
8896501 | Stahl et al. | Nov 2014 | B2 |
9025238 | Chan et al. | May 2015 | B2 |
9279906 | Kang | Mar 2016 | B2 |
9465261 | Stahl et al. | Oct 2016 | B2 |
10203793 | Grosse-Puppendahl et al. | Feb 2019 | B2 |
20040027327 | LeCain | Feb 2004 | A1 |
20060087479 | Sakurai et al. | Apr 2006 | A1 |
20080043318 | Whitesides | Feb 2008 | A1 |
20120224343 | Sato | Sep 2012 | A1 |
20120293858 | Telfer et al. | Nov 2012 | A1 |
20140354596 | Djordjev | Dec 2014 | A1 |
20150362647 | Tanimoto | Dec 2015 | A1 |
20170285828 | Grosse-Puppendahl | Oct 2017 | A1 |
20180350309 | Emelie | Dec 2018 | A1 |
20190033576 | Oster | Jan 2019 | A1 |
20190198748 | Behera | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2004165267 | Jun 2004 | JP |
2008009110 | Jan 2008 | JP |
20070082346 | Aug 2007 | KR |
20080094252 | Oct 2008 | KR |
20090058995 | Jun 2009 | KR |
Entry |
---|
Korean Intellectual Property Office, PCT/US2019/032805, International Search Report and Written Opinion, dated Sep. 6, 2019. Sep. 6, 2019. |
O'Regan, B. et al., “A Low Cost, High-efficiency Solar Cell Based on Dye-sensitized colloidal TiO2 Films”, Nature, vol. 353, pp. 737-740 (Oct. 24, 1991). Oct. 24, 1991. |
Wood, D., “An Electrochromic Renaissance?” Information Display, 18(3), (Mar. 24, 2002) Mar. 1, 2002. |
Bach, Udo. et al., “Nanomaterials-Based Electrochromics for Paper-Quality Displays”, Adv. Mater, vol. 14, No. 11, pp. 845-848, (Jun. 5, 2002). Jun. 5, 2002. |
Hayes, R.A. et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, No. 25, pp. 383-385 (Sep. 2003). Sep. 25, 2003. |
Kitamura, T. et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, pp. 1517-1520, Paper HCS1-1 (2001). Jan. 1, 2001. |
Yamaguchi, Y. et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, pp. 1729-1730, Paper AMD4-4 (2001). Jan. 1, 2001. |
Number | Date | Country | |
---|---|---|---|
20190353973 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62673092 | May 2018 | US | |
62727033 | Sep 2018 | US |