Technical Field
The present invention relates to a force sensor, especially relates to a force sensor having a solid-state bonding (SSB) spacer between a top stack and a bottom stack of the force sensor.
Description of Related Art
The disadvantage for the prior art is actuation signal stabilization delay when the force sensor 100 is depressed with a constant force, and the restoration signal stabilization is also delayed after the force sensor 100 is released. A quick response force sensor needs to be developed for accelerating the response speed to accurately measure a correct force signal.
The 10% difference is calculated as follows:
ABS(I1−I2)/I2≤10%; wherein
ABS: absolute value.
I1: Impedance for actual signal.
I2: Impedance for the steady-state signal level for a fixed force.
The force sensor 100 is released at time t2, the impedance goes up approaches the baseline signal level I0. The actual impedance signal reaches I3 at time t2+3 s where impedance I3 is within 10% of impedance I0 for the baseline signal level.
The 10% difference is calculated as follows:
ABS(I0−I3)/I0≤10%; wherein
I3: Impedance for actual signal.
I0: Impedance for the baseline signal level.
It shows a force signal delay at least 3 second before the force signal being stable.
A fast response force sensor is disclosed. The force sensor utilizes a solid-state bonding (SSB) spacer. The SSB spacer is sandwiched between a top stack and a bottom stack. The fast response force sensor responds rapidly to a force applied thereon. The SSB spacer maintains a fixed position between the top stack and the bottom stack before and after the fast response force sensor being depressed. The SSB spacer shall not significantly change its dimension before and after a force is applied against the force sensor. The SSB spacer is in a solid state and is not involved in the deformed while the fast response force sensor is depressed by a user, and therefore the fast response force sensor responds quickly to a force applied against the fast response force sensor.
The piezo material 13, 13B is a piezo-resistive material exemplified in the application. The piezo material 13, 13B is selected from a group consisting of resistive type material, electrostatic type material, and capacitive type material.
The bottom stack comprises, similar to the top stack, a bottom substrate 11B, a bottom electrode 12B, and a bottom piezo material 13B as an example. The bottom electrode 12B is configured on a top side of the bottom substrate 11B, and the bottom piezo material 13B is configured on a top side of the bottom electrode 12B.
The SSB spacer 24 is configured between the top substrate 11 and the bottom substrate 11B to keep a fixed relative position between the top substrate 11 and the bottom substrate 11B in a baseline state while the force sensor 200 is in standby; and a control circuit (not shown) is electrically coupled to the force sensor 200 for sensing an output signal responding to a force applied against the force sensor 200. The SSB spacer 24 has a height G21 and a width W21 while the force sensor 200 is in standby.
In an output vs. time graph, while the force sensor is being depressed, a stabilization time to reach an Impedance I1 within 10% of an Impedance I2 for a steady-state signal level is within one third (⅓) second after a constant external force is applied against the force sensor 200.
In an output Impedance vs. time graph, while the force sensor being released, a stabilization time to reach an Impedance I3 within 10% of an Impedance I0 for the baseline signal level is within one third (⅓) second after the external force is released from the force sensor 200.
The 10% difference is calculated as follows:
ABS(I1−I2)/I2≤10%; wherein
ABS: absolute value.
I1: Impedance for actual signal.
I2: Impedance for the steady-state signal level.
The force sensor 200 is released at time t2, the impedance goes up swiftly and towards the baseline signal level I0. The actual signal goes up to I3 at time t2+0.1 s where impedance I3 is within 10% of impedance I0 for the baseline signal level.
The 10% difference is calculated as follows:
ABS(I0−I3)/I0≤10%; wherein
ABS: absolute value.
I3: Impedance for actual signal.
I0: Impedance for the baseline signal level.
It shows a force signal responding quickly, where the response time is as small as 0.1 second before the force signal being stable.
In a section view, the top electrode 12 and the bottom electrode 12B extend in an opposite direction.
The piezo material 13, 13B is a piezo-resistive material exemplified in the application only. The piezo material 13, 13B can be one material selected from a group consisting of electrostatic material, resistive material, and capacitive material.
The SSB spacer 24 is solid at room temperature and is formed through a phase-change process which transforms the spacer material from a flowable state into a solid state. The phase-change process is selected from a group consisting of: solvent evaporation for a glue, UV radiation for a UV cured adhesive, thermal curing of thermoset adhesive, and heating and cooling for hot melt adhesive.
The SSB spacer 24 usually has a cohesive strength larger than an adhesive strength at room temperature, upon mechanical separation of the bonding interface at room temperature, each of the broken surfaces remains dry without having any tacky residues.
The SSB spacer 24 has a tan δ<1 at room temperature; wherein
tan δ is a loss tangent (tan δ=G″/G′) for the solid-state bonding spacer;
G″ is a coefficient for elastic behavior;
G′ is a coefficient for viscous behavior.
Like the piezo-resistive force sensor 200 designed with SSB spacer 24 as described in previous paragraph in this application, similarly, a piezo-capacitive force sensor 200′ can also be designed with SSB spacer 24.
The bottom stack comprises, similar to the top stack, a bottom substrate 11B, a bottom electrode 12B, and a bottom piezo-capacitive material 13′B as an example. The bottom electrode 12B is configured on a top side of the bottom substrate 11B, and the bottom piezo-capacitive material 13′B is configured on a top side of the bottom electrode 12B.
The SSB spacer 24 is configured between the top substrate 11 and the bottom substrate 11B to keep a fixed relative position between the top substrate 11 and the bottom substrate 11B in a baseline state while the piezo-capacitive force sensor 200′ is in standby; and a control circuit (not shown) is electrically coupled to the force sensor 200′ for sensing an output signal responding to a force applied against the piezo-capacitive force sensor 200′. The SSB spacer 24 has a height G21 and a width W21 while the force sensor 200 is in standby.
In an output vs. time graph, while the piezo-capacitive force sensor is being depressed, a stabilization time to reach a Capacitance C1 within 10% of a Capacitance C2 for a steady-state signal level is within one third (⅓) second after a constant external force is applied against the force sensor 200.
In an output Capacitance vs. time graph, while the piezo-capacitive force sensor being released, a stabilization time to reach a Capacitance C3 within 10% of a Capacitance C0 for the baseline signal level is within one third (⅓) second after the external force is released from the piezo-capacitive force sensor 200′.
The 10% difference is calculated as follows:
ABS(C1−C2)/C2≤10%; wherein
ABS: absolute value.
C1: Capacitance for actual signal.
C2: Capacitance for the steady-state signal level.
The piezo-capacitive force sensor 200′ is released at time t2, the capacitance goes down swiftly and towards the baseline signal level C0. The actual signal goes down to C3 at time t2+0.1 s where Capacitance C3 is within 10% of Capacitance C0 for the baseline signal level.
The 10% difference is calculated as follows:
ABS(C0−C3)/C0≤10%; wherein
ABS: absolute value.
C3: Capacitance for actual signal.
C0: Capacitance for the baseline signal level.
It shows a force signal responding quickly, where the response time is as small as 0.1 second before the force signal being stable.
While several embodiments have been described by way of example, it will be apparent to those skilled in the art that various modifications may be configured without departs from the spirit of the present invention. Such modifications are all within the scope of the present invention, as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4584625 | Kellogg | Apr 1986 | A |
4801838 | Beauducel | Jan 1989 | A |
5191791 | Gerardi | Mar 1993 | A |
5889352 | Takeuchi | Mar 1999 | A |
6483055 | Tanabe | Nov 2002 | B1 |
7533582 | Okada | May 2009 | B2 |
7997144 | Pekarek | Aug 2011 | B1 |
8018301 | Huang | Sep 2011 | B2 |
8434369 | Hou | May 2013 | B2 |
20040000195 | Yanai | Jan 2004 | A1 |
20050128047 | Watanabe | Jun 2005 | A1 |
20120305378 | Hou | Dec 2012 | A1 |
20130249859 | Park | Sep 2013 | A1 |
20150020585 | Dussinger | Jan 2015 | A1 |
20170292887 | Schmidt | Oct 2017 | A1 |
20170328702 | Vossough | Nov 2017 | A1 |
20180086628 | Vossough | Mar 2018 | A1 |
Entry |
---|
Freitas et al. (“Test Method to Assess Interface Adhesion in Composite Bonding”, Applied Adhesion Science) (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20180313703 A1 | Nov 2018 | US |