This disclosure generally relates to embodiments for a piezoelectric acoustic resonator based sensor.
Conventional fingerprint sensor technologies detect fingerprints using optical, ultrasonic, thermal, and/or radio frequency (RF) means. However, conventional fingerprint sensor technologies have had some drawbacks, some of which may be noted with reference to the various embodiments described herein.
Non-limiting embodiments of the subject disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified:
Aspects of the subject disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which example embodiments are shown. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. However, the subject disclosure may be embodied in many different forms and should not be construed as limited to the example embodiments set forth herein.
There are two kinds of finger print sensors, namely swipe-based and area-based. For mobile applications, optical method is too bulky and expensive; thermal and swipe-based RF method are not the favored due to user experience; area-based ultrasound and RF sensors have challenges to lower the manufacturing cost. In general, above conventional fingerprint sensor technologies are subject to errors due to finger contamination, sensor contamination, imaging errors, etc. Various embodiments disclosed herein provide for improved fingerprint sensor performance by measuring a frequency response of a piezoelectric acoustic resonator.
For example, a device can include an array of piezoelectric transducers, and an array of cavities that has been attached to the array of piezoelectric transducers to form an array of resonators, e.g., an array of MEMS piezoelectric acoustic resonators. A resonator, e.g., a membrane resonator, a Helmholtz resonator, etc. of the array of resonators can be associated with a first frequency response, e.g., a resonant frequency of the resonator, a Q factor of the resonator, etc. corresponding to a determination that the resonator has a non-touch baseline condition. Then a second frequency response, e.g., increase in resonant frequency of the resonator, decrease in Q factor of the resonator, etc. corresponding to a determination that the resonator has been touched, e.g., by the finger ridge. Thus the finger print map can be determined according to the frequency response changes of resonators in the resonator array.
In an embodiment, the array of piezoelectric transducers can include a piezoelectric material; a first set of electrodes that has been formed a first side of the piezoelectric material; and a second set of electrodes that has been formed on second side of the piezoelectric material—a piezoelectric transducer of the array of piezoelectric transducers corresponding to the resonator including a first electrode of the first set of electrodes and a second electrode of the second set of electrodes.
In another embodiment, the piezoelectric transducer comprises a portion of the resonator, e.g., a membrane resonator, that has been touched. In yet another embodiment, a first end of a cavity of array of cavities corresponding to a portion of the resonator, e.g., a Helmholtz resonator, that has been touched is smaller than a second end of the cavity. In an embodiment, the first end of the cavity is open to the environment, e.g., air adjacent to the device, etc. In another embodiment, the cavity has been filled with a first material corresponding to a first acoustic velocity that is different from a second acoustic velocity corresponding to a second material that is adjacent to, surrounding, etc. the cavity.
Another embodiment can include a system, e.g., a piezoelectric acoustic resonator based fingerprint sensor, etc. that can include an array of piezoelectric transducers; an array of cavities that has been attached to the array of piezoelectric transducers to form an array of resonators; a memory to store instructions; and a processor coupled to the memory, that facilitates execution of the instructions to perform operations, comprising: determining a frequency response of a resonator of the array of resonators—the resonator including a piezoelectric transducer of the array of piezoelectric transducers and a cavity of the array of cavities; and determining that the resonator has been touched, e.g., by a finger, etc. in response determining that a change in the frequency response satisfies a defined condition, e.g., a resonant frequency of the resonator has increased, a Q factor of the resonator has decreased, etc.
In one embodiment, a first portion of the cavity, e.g., corresponding to a portion of the resonator that has been touched, is smaller than a second portion of the cavity. In another embodiment, the first portion of the cavity is open to the environment. In yet another embodiment, the cavity has been filled with a first material corresponding to a first acoustic velocity that is different from a second acoustic velocity corresponding to a second material that is adjacent to the cavity.
One embodiment can include a method including forming an array of piezoelectric transducers on a first substrate; forming one or more portions of an array of cavities using a second substrate; and attaching the array of piezoelectric transducers to the second substrate to form an array of resonators. A resonator, e.g., a membrane resonator, a Helmholtz resonator, etc. of the array of resonators can be associated with a first frequency response with respect to, e.g., a resonant frequency of the resonator, a Q factor of the resonator, etc. corresponding to a determined non-touch of the resonator. Further, the resonator can be associated with a second frequency response with respect to, e.g., the resonant frequency, the Q factor, etc. corresponding to a determined touch of the resonator. Furthermore, the method can include removing the first substrate from the array of piezoelectric transducers.
In an embodiment, the forming of the array of piezoelectric transducers can include forming a first set of electrodes on a first side of a piezoelectric material, and forming a second set of electrodes on a second side of the piezoelectric material—a piezoelectric transducer of the array of piezoelectric transducers corresponding to the resonator can include a first electrode of the first set of electrodes and a second electrode of the second set of electrodes.
In another embodiment, the method can include filling a cavity of the array of cavities corresponding to the resonator, e.g., the Helmholtz resonator, with a material having a first acoustic velocity that is different from a second acoustic velocity of the second substrate.
Reference throughout this specification to “one embodiment,” or “an embodiment,” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment,” or “in an embodiment,” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the appended claims, such terms are intended to be inclusive—in a manner similar to the term “comprising” as an open transition word—without precluding any additional or other elements. Moreover, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Furthermore, the word “exemplary” and/or “demonstrative” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” and/or “demonstrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.
Referring now to
where A is the cross-sectional area of the top portion, or “neck”, of cavity 240, V0 is the static volume of cavity 240, Leq is the equivalent length of the neck with end correction, and v is the speed of sound in a gas as given by Equation (2) below:
v=331.3+0.606·θ (2)
where is the ambient temperature in degree Celsius.
MEMS piezoelectric acoustic resonator 205 includes piezoelectric transducer 207, which includes top electrode 210, piezoelectric material 220, e.g., piezoelectric membrane, polyvinylidene fluoride (PVDF), etc. and bottom electrode 230. In one embodiment, top electrode 210 and bottom electrode 230 can be manufactured from a conductive material, e.g., metal, and control component 102 can generate and apply a stimulus, e.g., a pulse signal, a frequency sweep, an alternating current (AC) voltage, an AC current, etc. to piezoelectric transducer 207 via top electrode 210 and bottom electrode 230. As illustrated by
Now referring to
As illustrated by
In an embodiment illustrated by
Referring now to
At 1130, portions(s) of an array of cavities (240) can be formed on substrate 250. At 1140, the portion(s) of the array of cavities can be placed on, attached to, etc. the array of piezoelectric transducers (207). In another embodiment (not shown), one or more cavities of the array of cavities can be filled with a material having a first acoustic velocity that is different from a second acoustic velocity of substrate 250. At 1150, substrate 1110 can be removed from the bottom electrodes.
At 1220, portions(s) of an array of cavities (310) can be formed on substrate 250. At 1230, the portion(s) of the array of cavities can be placed on, attached to, etc. the array of piezoelectric transducers (207). At 1240, substrate 1110 can be removed from dielectric material 220 and the top electrodes.
The order in which some or all of the manufacturing, assembling, etc. steps described above with respect to block diagrams 1100 and 1200 should not be deemed limiting. Rather, it should be understood by a person of ordinary skill in MEMS technologies having the benefit of the instant disclosure that some of the steps can be executed in a variety of orders not illustrated.
The above description of illustrated embodiments of the subject disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.
In this regard, while the disclosed subject matter has been described in connection with various embodiments and corresponding Figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.
Number | Name | Date | Kind |
---|---|---|---|
3748502 | Bernstein | Jul 1973 | A |
4556871 | Yoshikawa | Dec 1985 | A |
5386479 | Hersh | Jan 1995 | A |
5963679 | Setlak | Oct 1999 | A |
7013031 | Kim et al. | Mar 2006 | B2 |
7053529 | Knowles | May 2006 | B2 |
7067962 | Scott | Jun 2006 | B2 |
7109642 | Scott | Sep 2006 | B2 |
7400750 | Nam | Jul 2008 | B2 |
7459836 | Scott | Dec 2008 | B2 |
7489066 | Scott et al. | Feb 2009 | B2 |
7739912 | Schneider et al. | Jun 2010 | B2 |
8139827 | Schneider et al. | Mar 2012 | B2 |
8335356 | Schmitt | Dec 2012 | B2 |
8433110 | Kropp et al. | Apr 2013 | B2 |
8508103 | Schmitt et al. | Aug 2013 | B2 |
8515135 | Clarke et al. | Aug 2013 | B2 |
8666126 | Lee et al. | Mar 2014 | B2 |
8703040 | Liufu et al. | Apr 2014 | B2 |
8723399 | Sammoura et al. | May 2014 | B2 |
8805031 | Schmitt | Aug 2014 | B2 |
8913039 | Nikolovski | Dec 2014 | B2 |
9007348 | Nikolovski | Apr 2015 | B2 |
9056082 | Liautaud et al. | Jun 2015 | B2 |
9114977 | Daneman et al. | Aug 2015 | B2 |
9182853 | Wennemer | Nov 2015 | B2 |
9342187 | Jakobsen | May 2016 | B2 |
20040094815 | Park et al. | May 2004 | A1 |
20050146401 | Tilmans et al. | Jul 2005 | A1 |
20060012583 | Knowles et al. | Jan 2006 | A1 |
20070096605 | Fujii et al. | May 2007 | A1 |
20070230754 | Jain et al. | Oct 2007 | A1 |
20080198145 | Knowles et al. | Aug 2008 | A1 |
20090274343 | Clarke | Nov 2009 | A1 |
20100239751 | Regniere | Sep 2010 | A1 |
20100251824 | Schneider et al. | Oct 2010 | A1 |
20100256498 | Tanaka | Oct 2010 | A1 |
20110210554 | Boysel | Sep 2011 | A1 |
20110285244 | Lewis et al. | Nov 2011 | A1 |
20120016604 | Irving et al. | Jan 2012 | A1 |
20120092026 | Liautaud et al. | Apr 2012 | A1 |
20120147698 | Wong et al. | Jun 2012 | A1 |
20120167823 | Gardner et al. | Jul 2012 | A1 |
20120279865 | Regniere et al. | Nov 2012 | A1 |
20120288641 | Diatezua et al. | Nov 2012 | A1 |
20120319220 | Noda et al. | Dec 2012 | A1 |
20130032906 | Ogawa et al. | Feb 2013 | A1 |
20130127592 | Fyke et al. | May 2013 | A1 |
20130133428 | Lee et al. | May 2013 | A1 |
20130201134 | Schneider et al. | Aug 2013 | A1 |
20130210175 | Hoisington et al. | Aug 2013 | A1 |
20140145244 | Daneman et al. | May 2014 | A1 |
20140176332 | Alameh et al. | Jun 2014 | A1 |
20140219521 | Schmitt et al. | Aug 2014 | A1 |
20140355387 | Kitchens, II et al. | Dec 2014 | A1 |
20150035375 | Mayer | Feb 2015 | A1 |
20150036065 | Yousefpor et al. | Feb 2015 | A1 |
20150076963 | Sipp | Mar 2015 | A1 |
20150169136 | Ganti et al. | Jun 2015 | A1 |
20150189136 | Chung et al. | Jul 2015 | A1 |
20150220767 | Yoon et al. | Aug 2015 | A1 |
20150261261 | Bhagavatula et al. | Sep 2015 | A1 |
20150286312 | Kang et al. | Oct 2015 | A1 |
20150298965 | Tsai et al. | Oct 2015 | A1 |
20160031702 | Daneman et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
184872 | Oct 2006 | CN |
1975956 | Jun 2007 | CN |
102590555 | Jul 2012 | CN |
103026520 | Apr 2013 | CN |
1533743 | May 2005 | EP |
20090010357 | Jan 2009 | KR |
2009137106 | Nov 2009 | WO |
2015009635 | Jan 2015 | WO |
2015112453 | Jul 2015 | WO |
2015120132 | Aug 2015 | WO |
2015131083 | Sep 2015 | WO |
Entry |
---|
Wygant, et al., “Integration of 2D CMUT Arrays with Front-End Electronics for Volumetric Ultrasound Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, And Frequency Control, Feb. 2008, 16 pages, vol. 55 No. 2. |
Fesenko, “Capacitive Micromachined Ultrasonic Transducer (cMUT) for Biometric Applications,” Thesis for the Degree of Erasmus Mundus Master of Nanoscience and Nanotechnology, 2012, 46 pages, Goteborg, Sweden. |
Vanagas, et al., “Study of the CMUT Operation in Microfluidic Application,” Paper ID: 344—2012 IEEE International Ultrasonics Symposium. Last accessed Jun. 26, 2014, 4 pages. |
Feng, et al., “Touch Panel with Integrated Fingerprint Sensors Based User Identity Management,” Last accessed Jul. 20, 2014, 7 pages. |
Singh, “Fingerprint Sensing Techniques, Devices and Applications,” Apr. 2003, 31 pages. |
“Capacitive Micromachined Ultrasonic Transducers,” Wikipedia, Last accessed Jun. 25, 2014, 4 pages. |
“CMUT Working Principle”. Last accessed Jun. 26, 2014, 2 pages. |
Schmitt, et al., “Surface Acoustic Impediography: A New Technology for Fingerprint Mapping and Biometric Identification: A Numerical Study,” Proc. SPIE 5403, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense III, 309, Sep. 15, 2004, 2 pages. |
“General Description and Advantages of CMUTs”. Last accessed Jun. 26, 2014, 5 pages. |
International Search Report and Written Opinion dated Nov. 2, 2015 for PCT Application Serial No. PCT/US2015/043329, 12 pages. |
Taiwanese Office Action dated Dec. 8, 2015 for Taiwanese Patent Application Serial No. 103132242, 6 pages. |
Partial International Search Report dated Jan. 4, 2016 for PCT Application Serial No. PCT/US2015/048964, 7 pages. |
Savoia et al. “Design and Fabrication of a cMUT Probe for Ultrasound Imaging of Fingerprints” 2010 IEEE International Ultrasonics Symposium Proceedings; Publication [online] Oct. 2010 [retrieved Oct. 7, 2014] Retrieved from Internet: <http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5935836>; pp. 1877-1880. |
Dausch et al. “Theory and Operation of 2-D Array Piezoelectric Micromachined Ultrasound Transducers” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, No. 11, Nov. 2008; Retrieved from Internet on [Dec. 9, 2014]: <https:llrti.org/pubs/dauschtuffcv55is11 p2484nov2008.pdf >. |
Qiu et al. “Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging”; Sensors 2015, 15, 8020-8041; doi: 1 0.3390/S150408020; Retrieved from Internet [Dec. 9, 2015] : <http://www.mdpi.com/1424-8220/15/4/8020/pdf>. |
Chinese Office Action dated Feb. 3, 2016 for Chinese Application Serial No. 201410483646.X, 12 pages. |
International Search Report and Written Opinion dated Mar. 14, 2016 for PCT Application Serial No. PCT/US2015/048964, 16 pages. |
Office Action dated Apr. 14, 2016 for US. Appl. No. 14/480,051, 29 pages. |
Office Action dated Jan. 30, 2014 for U.S. Appl. No. 13/687,304, 15 pages. |
Office Action dated May 28, 2014 for U.S. Appl. No. 13/687,304, 13 pages. |
Office Action dated Sep. 16, 2014 for U.S. Appl. No. 13/687,304, 11 pages. |
Office Action dated Oct. 20, 2015 for U.S. Appl. No. 14/480,051, 25 pages. |
Khuri-Yakub, et al. “Next-gen ultrasound ,” IEEE Spectrum, vol. 46, No. 5, pp. 44-54, May 2009. |
Lamberti, et al. “A high frequency cMUT probe for ultrasound imaging of fingerprints,” Sensors and Actuators A: Physical 172 (2), pp. 561-569. 2011. |
Iula, et al. “Capacitive Microfabricated Ultrasonic Transducers for Biometric Applications”; Microelectronic Engineering, vol. 88, Issue 8, 2011, pp. 2278-2280. |
Tang, et al. “Pulse-Echo Ultrasonic Fingerprint Sensor on A Chip,” University of California, Berkeley, CA, USA, 2013. |
Lu, et al. “High frequency piezoelectric micromachined ultrasonic transducer array for intravascular ultrasound Imaging.” Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014. |
Olsson, III, et al. “Post-CMOS-Compatible Aluminum Nitride Resonant MEMS Accelerometers.” Journal of Microelectromechanical Systems, vol. 18, No. 3, Jun. 2009. |
Wojciechowski, et al. “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS-resonators.” Solid-State Sensors, Actuators and Microsystems Conference, 2009. Transducers 2009. International. IEEE, 2009. |
Office Action dated Sep. 28, 2016 for US. Appl. No. 14/829,404, 50 pages. |
Chinese Office Action dated Aug. 1, 2016 for Chinese Application Serial No. 201410483646.X, 4 pages. |
Office Action dated Jan. 9, 2016 for U.S. Appl. No. 14/800,604, 9 pages. |
Final Office Action dated Jul. 6, 2016 for U.S. Appl. No. 14/800,604, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20160041047 A1 | Feb 2016 | US |