1. Field of the Invention
The present invention pertains to fluidic dispensing devices, and particularly to a fluidic dispensing device capable of dispensing fluid in fine increments or dosages.
2. Related Art and Other Considerations
In myriad environments fluids are delivered or dispensed in controlled manner from disposable, inexpensive containers (e.g., bags, pouches, cartons, cartridges, just to name a few). The dispensing may be controlled to obtain a required or target dosage or amount over time, such as (for example) control of a medicament to a patient or an ingredient utilized in an industrial or other process. Typically such control is achieved by an actuator which is external to the disposable fluid container. The actuator is generally considerably more expensive than the disposable fluid container, and thus for sake of practicality must be provided externally so that it can be reused.
What is needed, and an object of the present invention, is a fluid dispensing device which has an integrated actuator capable of dispensing fluid in fine increments or dosages. Advantages are that the fluid dispensing device including its integrated actuator is disposable and inexpensive.
A fluid dispenser comprises a housing for defining a fluid chamber. The housing has an orifice through which fluid is discharged. A piston is positioned in the housing for linear motion in the chamber for expelling fluid from the chamber and through the orifice. A piezoelectric actuator assembly is positioned in the housing for imparting the linear motion to the piston.
In one example implementation, the fluid dispenser housing takes the form of a syringe. In the syringe implementation, a syringe housing defines an essentially cylindrical fluid chamber.
In an example embodiment, the piezoelectric actuator assembly comprises a first piezoelectric actuator; a second piezoelectric actuator; and, a circuit for actuating the first piezoelectric actuator and the second piezoelectric actuator. The circuit applies activating signals to the first piezoelectric actuator and the second piezoelectric actuator whereby the first piezoelectric actuator and the second piezoelectric actuator transition between states or positions for respectively contacting a wall of the housing and deflecting in a sequence or pattern whereby the piezoelectric actuator assembly and the piston coupled thereon linearly travel through the chamber for expelling fluid from the chamber and through the orifice.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
In the following description, for purposes of explanation and not limitation, specific details are set forth such as particular architectures, interfaces, techniques, etc. in order to provide a thorough understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. That is, those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. In some instances, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail. All statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Thus, for example, it will be appreciated by those skilled in the art that block diagrams herein can represent conceptual views of illustrative circuitry embodying the principles of the technology. The functions of the various elements including functional blocks labeled as “processors” or “controllers” may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared or distributed. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may include, without limitation, digital signal processor (DSP) hardware, read only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage.
A piezoelectric actuator assembly 30 is positioned in housing 22 for imparting the linear motion to piston 28. In the illustrated example embodiment, piezoelectric actuator assembly 30 can be coupled to piston 28 by one or more coupling members or struts 32. The piezoelectric actuator assembly 30 comprises one or more piezoelectric actuator members, as well as a piezoelectric activation circuit 34.
Loading port 27 is covered with a lid 36 or closure member lid.The covering of loading port 27 with lid 36 occurs after the desired fluid, the piston 28, and the piezoelectric actuator assembly 30 are inserted (in this order) into fluid chamber 24. In the example, non-limiting configuration shown in
The piezoelectric activation circuit 34 of piezoelectric actuator assembly 30 serves to apply electrical signals (e.g., pulses) to the one or more piezoelectric actuators of piezoelectric actuator assembly 30. Piezoelectric materials can be defined by demonstration of the direct piezoelectric effect, which is the ability to polarize under an applied strain. The corollary to this effect is the inverse piezoelectric effect, which is a material's ability to strain under an applied electric field. This physical response to a stimulus is rooted in the displacement of ionic charges within a crystal structure. The PZT (lead zirconate titanate) component is a piezoelectric material, as this class of materials exhibits the piezoelectric effect. Most commercially available PZT materials are polycrystalline, and therefore the displacement of ionic charges takes place in domains where all polarization vectors are aligned. These domains are initially oriented through application of a strong DC field (“poling”), which only partially aligns the dipoles due to their polycrystalline nature. Complete domain alignment is theoretically possible in single crystal PZTs.
The electrical signals applied by piezoelectric activation circuit 34 to piezoelectric actuator assembly 30 cause the piezoelectric actuator(s) comprising piezoelectric actuator assembly 30 to selectively and repeatedly deform and then rebound. For example, if the piezoelectric actuator assembly 30 has an essentially circular or disk configuration, the diameter of the piezoelectric member(s) change(s) in accordance with application of the electrical signals. As such, the piezoelectric member(s) transition between a dome-like deformed state of smaller diameter (in which the edges of piezoelectric actuator assembly 30 do not contact or grip the inside wall of housing 22) and one or more states of larger diameter(s) in which the edges of piezoelectric actuator assembly 30 do contact or grip the inside wall of housing 22. The timing of the electrical signals is controlled in a manner whereby the piezoelectric actuator assembly 30 selectively grips, then reaches along an interior wall of housing 22 further toward orifice 26, and then grips again and reaches again and again. With the repeated gripping and reaching, the piezoelectric actuator assembly 30 and the piston 28 mounted thereto successively crawl toward orifice 26. As piston 28 travels toward orifice 26, fluid is expelled from fluid chamber 24.
In one example implementation, the fluid dispenser housing 22(3) takes the form of a syringe such as that shown in
In the example implementation of
Preferably both first piezoelectric actuator 501 and second piezoelectric actuator 502 have a compliant periphery or complaint member, such as an O-ring 52, disposed about its periphery to facilitate selective contact with the interior wall of housing 22.
In an illustrated example embodiment, the first piezoelectric actuator 501 and the second piezoelectric actuator 502 can each acquire plural states in accordance with polarity and magnitude of an applied voltage. For instance, an example piezoelectric actuator can acquire or assume an essentially flat position at +300 positive volts; a slight crown or slight deflection at zero or at nominal volts; and, a significant or perhaps even greatest deflection at −100 volts.
Thus, in the example embodiment, these three states or positions of the piezoelectric actuator can be assumed or acquired in accordance with the activating signals (e.g., driving voltage) applied to each. The piezoelectric activation circuit 34(4) applies activating signals to first piezoelectric actuator 501 and second piezoelectric actuator 502 in a predetermined pattern to cause the piezoelectric actuator assembly 30(4)and the piston 28 coupled thereto to assume successively the five actuator assembly figurations respectively shown in
In the first piezoelectric actuator assembly configuration of
In the second piezoelectric actuator assembly configuration of
In the third piezoelectric actuator assembly configuration of
In the fourth piezoelectric actuator assembly configuration of
In the fifth piezoelectric actuator assembly configuration of
The piezoelectric actuator(s) comprising the piezoelectric actuator assemblies described herein can take the form of a multi-layered laminate (also known as a ruggedized laminated piezoelectric member). The multi-layered laminate can comprise a piezoelectric wafer which is laminated by an adhesive between a metallic substrate layer and an outer metal layer. Electrical leads for activating the piezoelectric wafer can be connected to electrodes which may be sputtered or otherwise formed on opposite sides of the piezoelectric wafer, or connected to the metallic substrate layer and outer metal layer. Example structures of the multi-layered piezoelectric laminate and processes for fabricating the same are described in or discernable from one or more of the following (all of which are incorporated herein by reference in their entirety): PCT Patent Application PCT/US01/28947, filed 14 Sep. 2001; U.S. patent application Ser. No. 10/380,547, filed Mar. 17, 2003, entitled “Piezoelectric Actuator and Pump Using Same”; U.S. patent application Ser. No. 10/380,589, filed Mar. 17, 2003; and U.S. Provisional Patent Application 60/670,692, filed Apr. 13, 2005, entitled “PIEZOELECTRIC DIAPHRAGM ASSEMBLY WITH CONDUCTORS ON FLEXIBLE FILM”, all of which are incorporated herein by reference.
Construction and operation of the piezoelectric activation circuits described herein is understood from drive electronics such as those described in U.S. patent application Ser. No. 10/816,000, filed Apr. 2, 2004 by Vogeley et al., entitled “Piezoelectric Devices and Methods and Circuits for Driving Same”, which is incorporated herein by reference in its entirety, or by documents referenced and/or incorporated by reference therein.
Fabrication of a piezoelectric actuator with an aperture or other central feature is understood with reference, e.g., to patent application Ser. No. 60/670,650, filed Apr. 13, 2005, entitled VALVING PIEZOELECTRIC DIAPHRAGM FOR PUMP, and U.S. patent application Ser. No. 11/104,667, filed Apr. 13, 2005, entitled ELECTRICALLY DRIVEN MECHANICAL ACTUATORS AND METHODS OF OPERATING SAME, both of which are incorporated herein by reference in their entirety.
Although various embodiments have been shown and described in detail, the claims are not limited to any particular embodiment or example. None of the above description should be read as implying that any particular element, step, range, or function is essential. It is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements.
This application claims the benefit and priority of U.S. Provisional Patent Application 60/723,480, filed Nov. 1, 2005, entitled “PIEZOELECTRIC ACTUATION OF PISTON WITHIN DISPENSING CHAMBER”, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60723480 | Nov 2005 | US |