A piezoactuator in a piezoelectric actuator unit having means for extending the service life thereof is disclosed.
Ways to protect a piezoactuator from environmental influences are significant if the service life of the piezoactuator is to be maintained as long as possible.
German patent document DE 102006025177 A1 discloses a piezoactuator located in a metal tube. A pressure transfer medium made of microporous or foam, mesh, or fabric elements is present between the metal tube and the piezoactuator.
In various embodiments, a piezoactuator is protected from harmful environmental influences.
A piezoelectric actuator unit comprises a piezoactuator and a casting compound enclosing the piezoactuator. The casting compound is disposed in a sleeve comprising a hydrophobic material.
It has been determined experimentally that penetration of moisture in a piezoactuator can significantly decrease the service life thereof. The hydrophobic material of the sleeve of the actuator unit presented here has the advantage of keeping that moisture away from the piezoactuator. The proportion of hydrophobic material in the sleeve can be selected so high that no moisture or nearly no moisture can reach the piezoactuator.
The piezoactuator or the piezoelectrical multilayer component preferably comprises a stack of piezoceramic layers that can contain a PZT ceramic, and electrode layers preferably contain one of the following materials: silver, palladium, platinum, copper, or nickel.
Preferably, an external contact is applied to each of the two side faces of the stack. The external contacts can contain a material contained in the electrode layers. The external contacts can be designed as pins or as layers or series of layers. Each external contact contacts a stack of electrode layers, wherein the electrode layers of each stack contact the external contact with one end each, extending to the corresponding side faces of the stack.
According to one embodiment, the sleeve comprises a material undergoing bonding to the casting compound, whereby as few as possible hollow spaces arise between the casting compound and the sleeve.
It is preferred that the sleeve is made of materials that are chemically stable, such that they do not undergo any chemical reaction with at least one part of the piezoactuator, even if they were to diffuse from the sleeve to the corresponding part of the piezoactuator. Particularly preferable is that the hydrophobic material comprises the chemically stable property. Each external surface of a piezoceramic layer, as well as each surface of an external contact, is considered as at the least one part of the piezoactuator. The sleeve can thus be designed such that it does not contain any material undergoing a chemical reaction with a piezoceramic material or with an electrically conductive material of an external contact.
The proportion of hydrophobic material in the sleeve is preferably selected such that the sleeve has a maximum humidity absorption of 0.1% by weight to 0.3% by weight, preferably 0.2% by weight, at room temperature and a humidity of between 30 and 60%.
The sleeve preferably contains a material comprising a thermoplastic polyester, such as polybutylene terephthalate (PBT). It has been found that this material has hydrophobic properties, and simultaneously provides the sleeve with a sufficient mechanical strength or stability for stabilizing the shape of the casting compound and is resistant to temperatures that can occur, for example, in the engine compartment of a motor vehicle. Polybutylene terephthalate as the material contained in the sleeve further has the advantage that, due to its chemical stability, subsets thereof do not dissociate to the piezoactuator and chemically contaminate the piezoactuator.
According to one embodiment of the actuator unit, the sleeve comprises both hydrophobic material and a material reinforcing the mechanical strength of the sleeve, such as glass fiber. Glass fibers in the sleeve have the advantage of increasing the mechanical strength and the temperature resistance of the sleeve.
The glass fibers are preferably present in the sleeve at a proportion of 20% to 40% by weight, preferably 30% by weight.
The elastic modulus of the sleeve based on tensile stresses is preferably between 9000 MPa and 11000 MPa, preferably 10000 MPa. The breaking stress of the sleeve is preferably between 130 MPa and 140 MPa, preferably 135 MPa.
According to one embodiment of the actuator unit, the casting compound present between the piezoactuator and the sleeve comprises a material that does not decompose when in contact with a fuel, such as gasoline or diesel fuel, or the fuel has no corrosive effect on the material.
According to one embodiment, casting compound comprises a silicone elastomer.
The casting compound can contain additives, such as silica sand and/or a bonding agent. The bonding agent improves the adhesion of the casting compound on the outside of the piezoactuator and the inside of the sleeve.
According to one embodiment, the sleeve is injection molded.
The subject matters described are explained in more detail using the following embodiment examples and figures, wherein:
The following list of reference numbers can be used in conjunction with the drawings.
The actuator unit A shown in
The actuator unit A presented in
Number | Date | Country | Kind |
---|---|---|---|
10 2008 003 821 | Jan 2008 | DE | national |
This application is a continuation of co-pending International Application No. PCT/DE2009/000006, filed Jan. 9, 2009, which designated the United States and was not published in English, and which claims priority to German Application No. 10 2008 003 821.0, filed Jan. 10, 2008, both of which applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5305507 | Dvorsky et al. | Apr 1994 | A |
5720264 | Oosuka et al. | Feb 1998 | A |
5894651 | Dvorsky et al. | Apr 1999 | A |
5920145 | Wu et al. | Jul 1999 | A |
6316863 | Schuh et al. | Nov 2001 | B1 |
6626152 | Deangelis et al. | Sep 2003 | B1 |
6781289 | Heinz et al. | Aug 2004 | B2 |
7024737 | Schuh et al. | Apr 2006 | B2 |
7061160 | Leo et al. | Jun 2006 | B2 |
7545082 | Nakajima | Jun 2009 | B2 |
20020046746 | Nakabayashi et al. | Apr 2002 | A1 |
20050199745 | Berlemont | Sep 2005 | A1 |
20070080076 | Livache et al. | Apr 2007 | A1 |
20090304957 | Jamil et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
198 18 036 | Nov 1999 | DE |
100 42 734 | Mar 2002 | DE |
10 2006 026 247 | Dec 2006 | DE |
10 2006 025 177 | Dec 2007 | DE |
WO 2007128948 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110057548 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/DE2009/000006 | Jan 2009 | US |
Child | 12831043 | US |