Piezoelectric fuel injectors

Information

  • Patent Application
  • 20080047529
  • Publication Number
    20080047529
  • Date Filed
    August 22, 2007
    16 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
A method for controlling a piezoelectric actuator of a fuel injector for controlling the quantity of fuel injected into the cylinders of an internal combustion engine controls the voltage across the injector in accordance with a voltage/charge vs. time profile in which the injector is driven at high current up to a level required to start injection, and then at lower current, resulting in a lower voltage/charge vs. time gradient, until the point where full charge is achieved. This results in a reduced variation in minimum delivery pulse and a reduction in the slope of the gain curve, as compared with conventional arrangements in which the voltage/charge vs. time gradient is constant. Alternatively, the injector may be driven at high current up to the charge level required to switch to hydraulic lift amplification. Any point of current change between these extremes may also be used with good effect. In alternative arrangements, a voltage/charge hold or zero current phase or even a negative current phase may be introduced between the two current phases. The charge across the actuator may be controlled, with the effect of varying voltage, or the voltage may be controlled directly.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The background to the invention has already been described with reference to:



FIG. 1(
a) which shows a voltage/charge vs. time waveform for a known piezoelectric fuel injector;



FIG. 1(
b) which shows fuel quantity delivered vs. time graphs corresponding to the voltage/charge vs. time waveforms in FIG. 1(a), and



FIG. 2 which shows a corresponding waveform and graph for a piezoelectric fuel injector where the current through the actuator is increased compared to FIGS. 1(a) and 1(b).


Preferred embodiments of the present invention will now be described with reference to the accompanying drawings, in which:



FIG. 3 shows a corresponding voltage/charge vs. time waveform and fuel delivery vs. time graph for a piezoelectric fuel injector in accordance with a first embodiment of the present invention;



FIG. 4 shows a corresponding voltage/charge vs. time waveform and fuel delivery vs. time graph for a piezoelectric fuel injector in accordance with a second embodiment of the present invention;



FIG. 5 shows a corresponding voltage/charge vs. time waveform and fuel delivery vs. time graph for a piezoelectric fuel injector in accordance with a third embodiment of the present invention; and



FIG. 6 shows a corresponding voltage/charge vs. time waveform and fuel delivery vs. time graph for a piezoelectric fuel injector in accordance with a fourth embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


FIG. 3 illustrates a voltage/charge vs. time waveform and corresponding fuel quantity delivered vs. time graph in accordance with a first embodiment of the present invention. The voltage/charge vs. time waveform is representative of a waveform applied to a fuel injector of the type described in EP 1174615 A, as described previously, which has a piezoelectric actuator coupled to a valve of the injector via a two-stage motion amplifier. With the waveform of FIG. 3, the piezoelectric fuel injector is driven with a high current up to the charge level 6 required to start an injection, and the current is subsequently reduced to a lower level, resulting in a lower voltage/charge gradient, until the point 17 where full charge is achieved. As can be seen from the fuel quantity delivered vs. time graph in FIG. 3, this results in a reduced variation 18 in the minimum fuel delivery pulse and also reduces the slope of both the first and second regions of the fuel delivery curve. This results in a smaller variation in the fuelling quantity both in a pilot section 21 and a steep section 22 of the fuel delivery curve. The charge level 6 at which the change in current takes place may be chosen to be at the maximum level required to initiate an injection in an aged injector. Alternatively, the level of the charge at which the current changes may be adapted during the life of the injector from an initial level 5 to an aged level 6. This may be achieved either using a known aging characteristic, or using feedback from a sensor associated with the engine, such as an accelerometer, cylinder pressure sensor or exhaust emissions sensor.



FIG. 4 illustrates a voltage/charge vs. time waveform and corresponding fuel quantity delivered vs. time graph in accordance with a second embodiment of the present invention. In this case, the injector is driven with a high current up to the charge level 16 required to switch to hydraulic lift amplification and with a lower current up to the full charge level 17.


This results in a reduction of the minimum delivery pulse variability 18, shortens the time spent in the mechanical lift mode and reduces the slope of the fuel delivery curve in a steep section 24. This strategy also gives low variability in the pilot section 23 and the steep section 24 of the fuel delivery curve, but gives a smaller range of deliveries in the mechanical lift mode. As before, the charge level at which the current change takes place may be adapted throughout the life of the injector.


Any point of current change between the extremes indicted by FIGS. 3 and 4 may also be used with good effect. The point of current change may also fall outside of the range indicated, but with reduced benefits. Whilst the description has been mainly in relation the injector of EP 1174615 A, it will be appreciated that the strategy may be applied to the injector of EP 0995901 A or any other direct acting injector, with the difference that there is no mechanical lift mode, so the first low slope section of the fuel delivery curve will be absent, or less pronounced. Whilst two distinct current levels have been indicated, the current level may also be switched in a continuous manner, or in several discrete steps, as long as there is a high level at or near the start of injection followed by a lower level at some point in the needle lift. Also whilst the description has been mainly aimed at reducing the variability created by drift of the minimum delivery pulse, it will be appreciated that the reduction of fuel delivery curve slopes also reduces the sensitivity to variations created by differences in the nozzle flow rate as shown on FIG. 1(b).



FIGS. 5 and 6 illustrate voltage/charge vs. time waveforms and corresponding fuel quantity delivered vs. time graphs in accordance with third and fourth embodiments of the present invention, respectively, and which represent variations of the embodiments illustrated in both FIGS. 3 and 4. In FIG. 5 a voltage/charge hold or zero current phase 25 is introduced between the other two current phases. In FIG. 6 a negative current phase 26 is introduced between the other two current phases. In both cases these may be used to further reduce the slope of the fuel delivery curve and thus the variability of fuelling.


In each of FIGS. 3 to 6, negative-gradient slopes are shown (dashed lines) which illustrate termination of the fuel injection prior to the maximum voltage/charge level.


This technique may also be used in the driving of a variable-orifice nozzle which opens up different nozzle spray hole areas by operating different valves depending on the needle lift. High current phases followed by low current phases may be used either for the opening of the first stage only, or for the opening of both stages.


It will be appreciated that the method is appropriate for either voltage-control strategies, where the voltage across the actuator is controlled directly in a closed loop strategy, or for charge-control methods, where the charge (current) across the actuator is controlled in an open loop strategy with the effect of varying the voltage across the actuator.

Claims
  • 1. A method for controlling the voltage across a piezoelectric fuel injector in accordance with a voltage or charge vs. time waveform which defines: (a) a first gradient during a first portion of a fuel injection cycle which extends from a time at which a nozzle of the injector is fully closed to a time at which the nozzle is partially open; and(b) a second gradient during a second portion of the injection cycle which extends from a time at which the nozzle is partially open to a time at which the nozzle is fully open;
  • 2. A method as claimed in claim 1, wherein the second portion of the injection cycle commences at the same time that the first portion terminates.
  • 3. A method as claimed in claim 1, wherein the voltage or charge vs. time waveform further defines a third gradient during an intermediate portion of the injection cycle after the first portion and before the second portion.
  • 4. A method as claimed in claim 3, wherein the third gradient is substantially zero.
  • 5. A method as claimed in claim 3, wherein the sign of the third gradient is opposite to that of the first and second gradients.
  • 6. A method as claimed in claim 1, wherein the second portion of the injection cycle terminates at the point where the voltage across the injector is at a maximum value.
  • 7. A method as claimed in claim 1, including controlling the level of current or charge supplied to the piezoelectric fuel injector, thereby to control the voltage across the piezoelectric fuel injector.
  • 8. A method as claimed in claim 1, wherein the predetermined voltage point is the point where the voltage across the injector is sufficient to start fuel injection.
  • 9. A method as claimed in claim 1, wherein the predetermined voltage point is the point where the voltage across the injector is the maximum level required to initiate an injection in an aged injector.
  • 10. A method as claimed in claim 1, wherein the predetermined voltage point is the point where the voltage across the injector is a value which varies with the age of the injector.
  • 11. A method as claimed in claim 10, including determining the point at which the first portion of the injection cycle terminates using a known ageing characteristic.
  • 12. A method as claimed in claim 10, including determining the point at which the first portion of the injection cycle terminates using feedback from a sensor within an engine with which the injector is associated.
  • 13. A method for controlling the voltage across a piezoelectric fuel injector having a piezoelectric actuator for controlling an injector valve, the method including initially lifting the valve away from a seating to commence injection under mechanical lift amplification between the actuator and the valve and subsequently moving the valve further away from the seating under hydraulic lift amplification between the actuator and the valve, wherein the voltage is controlled in accordance with a voltage or charge vs. time waveform which defines: (a) a first gradient during a first portion of a fuel injection cycle which extends from a time at which a nozzle of the injector is fully closed to a time at which the nozzle is partially open; and(b) a second gradient during a second portion of the injection cycle which extends from a time at which the nozzle is partially open to a time at which the nozzle is fully open;
  • 14. A method as claimed in claim 13, wherein the second portion of the injection cycle commences at the same time that the first portion terminates.
  • 15. A method as claimed in claim 13, wherein the voltage or charge vs. time waveform further defines a third gradient during an intermediate portion of the injection cycle after the first portion and before the second portion.
  • 16. A method as claimed in claim 15, wherein the third gradient is substantially zero.
  • 17. A method as claimed in claim 15, wherein the sign of the third gradient is opposite to that of the first and second gradients.
  • 18. A method as claimed in claim 13, wherein the second portion of the injection cycle terminates at the point where the voltage across the injector is at a maximum value.
  • 19. A method as claimed in claim 13, including controlling the level of current or charge supplied to the piezoelectric fuel injector, thereby to control the voltage across the piezoelectric fuel injector.
  • 20. A method as claimed in claim 13, wherein the predetermined voltage point is the point where the voltage across the injector is sufficient to cause the injector to switch to hydraulic lift amplification.
  • 21. A method as claimed in claim 13, wherein the predetermined voltage point is the point where the voltage across the injector is greater than that which is sufficient to start fuel injection but less than that required to cause the injector to switch to hydraulic lift amplification.
  • 22. A control circuit for implementing a method in accordance with claim 1 or 13.
  • 23. A carrier medium for carrying a computer readable code for controlling a processor, computer or control circuit to carry out the method of claim 1 or 13.
Priority Claims (1)
Number Date Country Kind
0616713.4 Aug 2006 GB national