Disclosed example embodiments of a sensor device use piezoelectric polymer film sensor technology supported on a plate that experiences a force applied by an associated part forming machine. The disclosed examples ensure that the compression forces that occur during the part forming (e.g., wire crimping) are in series with the sensor device, minimizing any shunting effect and eliminating edge loading condition characteristics associated with traditional sensing arrangements. Additionally, the disclosed examples provide for boosting an output signal level per unit of measured force.
Referring to
The example sensor device 30 includes a plate 32 that supports at least one piezoelectric polymer film 34. One example piezoelectric polymer film comprises polyvinylidene difluoride (PVDF). In the example of
The piezoelectric polymer film elements 34A and 34B are sandwiched between the plate portions 36 and 38 in this example. In examples where each of the plate portions 36 and 38 are electrically conductive, the polymer film 34 is used to isolate them from each other to avoid shorting out the positive and negative sides of the polymer film. In some examples, the piezoelectric polymer film has an electrically negative side and an oppositely facing, electrically positive side. Isolating metal plate portions avoids the plates shorting out the film, which would otherwise happen if the metal plate portions contact each other and contact the positive and negative sides of the film, respectively. In one example, two piezoelectric polymer films are placed adjacent each other with the positive sides of the films facing each other. In such an example, the metal plate portions only contact the outwardly facing negative sides of the films so that there is no concern with shorting out the films.
The piezoelectric polymer film elements 34A and 34B provide an electrical output that is indicative of a force incident on the plate 32 during a part forming process. As can be appreciated from
In one example, the outputs from the piezoelectric polymer film elements 34A and 34B are summed using suitable electronics or software configured for such signal processing to provide a higher output value per unit of detected force compared to that from either element, alone. The summing also avoids any cancellation effects if there is an offset or misaligned incident force.
As can best be appreciated from
The illustrated arrangement also eliminates any need for a mounting bolt as was required with previous crimp force monitors that relied on sensor rings. Such a mounting bolt has the drawback that it can shunt a portion of an applied force in a traditional sensor, which introduces inaccuracies. Using a piezoelectric polymer film as schematically shown, therefore, provides an improved sensor device.
With at least one piezoelectric polymer film sensing element between the plate portions 36 and 38, the complete surface of the plate 32 becomes a sensing surface. The surface of the plate 32 is essentially a sensing table or platform. This arrangement ensures that compression forces that occur during a part forming process are completely in series with the sensing elements. This minimizes any shunting effect and eliminates edge loading conditions.
Traditional single axis crystal or ceramic sensors cannot correct for directionality of loading because they are designed to measure forces applied in an axial direction. If one side of a force ring is loaded higher than the other side (e.g., in the case of edge loading with a bending moment), the resulting generated charge distributes evenly about the top and bottom electrodes with a cancellation effect. The overall effect is that a single force ring sensor offset to one side cannot distinguish finer process variation (e.g., slight rocking of an applicator tool) from actual failure when a small gauge terminal is being used in the forming process. The illustrated example of
Additionally, it boosts the output signal per unit of input force. The inherent properties of a piezoelectric polymer such as PVDF provide improved signal-to-noise ratios when compared to conventional piezoelectric crystals (e.g., quartz) and piezoelectric ceramics (e.g., PZT). In a simple compressive mode, a piezoelectric material voltage output in response to an applied force is governed by the piezo stress constant (g31). PZT, for example, typically has a g31=10×10−3 Vm/N while a piezoelectric polymer has a g31=216×10−3 Vm/N. Accordingly, a piezoelectric polymer film arrangement as schematically shown in
The example arrangement provides improved robustness and reliability by design because the piezoelectric polymer film sensor elements 34A and 34B are mechanically integrated into the plate 32. In the illustrated example, the sensor film elements are sealed between the plate portions 36 and 38. In one sense, the piezoelectric polymer film sensor elements 34A and 34B can be considered a gasket sandwiched between the first plate portion 36 and the second plate portion 38. This example eliminates any requirement for maintaining an air gap of the kind that previously has been required to isolate a force ring.
As shown in
Such an arrangement provides several advantages. First, the power for the sensor device is regulated at the sensor. High speed data capture local to the sensing elements eliminates the effect of noise introduced by any cables between the plate 32 and another data processing element. The piezoelectric polymer sensor output is converted from analog to digital format local to the sensing elements and exported to another device such as a computer in a convenient manner, for example, using an industry standard compliant communication interface. Such an arrangement allows for providing signature analysis software algorithms in such a computer and does not require it to be part of crimp force monitor hardware. One advantage to such an arrangement is that the signature analysis software may be on one machine that receives information from a variety of sensor devices rather than requiring such software on each of the sensor devices.
In one example, the electronics 60 include a microprocessor that is programmed to analyze the signal signature from the piezoelectric polymer film sensing element or elements and to provide an indication of the corresponding part or process quality based on the analyzed signal signature. In such an example, the capability of providing a quality indication directly from the plate assembly eliminates any need to transmit large amounts of data from the sensor device. It allows for processing the output pass and fail decision internal to the sensor rather than having to provide signal signature information to a remotely located device. This allows for the process of making a quality determination to occur much faster.
The example of
For example, a low force is associated with small gauge wire crimping applications. In one example, a 90 kilogram peak force is associated with some smaller gauge wire crimping applications. The illustrated example allows for selecting the lower range output (e.g., 66). The electronics 60 have a calibration range scaled according to the selected output. In the case of a 90 kilogram peak force, the output 66 may have a calibration range scaled from 0 to 450 kilogram peak force. A calibration range for the output 64 may be like the typical calibration range of up to 2250 kilogram peak force, which is useful for example with standard wire gauge crimping applications that have a 650 kilogram expected peak force. Providing different calibration ranges for the different outputs 66 and 64 allows the example sensor device to effectively scale the output for various types of part forming processes including a wider variety of wire gauges used in crimping applications, for example. Additionally, providing multiple outputs 64 and 66 and correspondingly different calibration ranges allows for optimum flexibility when using the sensor device 30 and allows for quick changeover in a manufacturing environment when different part forming processes are carried out using the same machinery.
The multiple ranges for the outputs provide an output relative to force with sufficient amplitude to minimize the effect of induced noise associated with any cables used to connect the sensor device 30 to another device such as a computer, which may be several meters away. Using different output ranges in this example improves the signal-to-noise ratio.
One aspect of the outputs 64 and 66 in some examples is that they are configured as industry standard connectors that allow for coaxial cable connections, USB connections, Ethernet connections or serial bus connections, for example. Being able to customize the outputs 64 and 66 in this way allows the example sensor device to be directly connected to a manufacturing machine control system without the need for a separate monitor or analyzing device.
Another example arrangement is shown in
In each of the above examples, the electronics 60 for processing signals from the at least one piezoelectric polymer film 34 were supported on the plate 32 of the sensor device 30. The example of
The ability of the piezoelectric polymer film sensor element 34 or elements 34A and 34B and the ability to provide multiple range sensor outputs yields an output relative to force with sufficient amplitude to minimize the effect of induced noise associated with the connection 70. In some cases, the electronics 72 may be up to three meters away from the plate 32 and a coax cable used for such a connection may tend to introduce noise. Utilizing the approach of this description and a piezoelectric polymer film allows for improving the signal-to-noise ratio, which allows for the example device to be used for a wider range of manufacturing processes.
The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
This application claims priority to U.S. Provisional Application No. 60/849,068 which was filed on Oct. 3, 2006.
Number | Date | Country | |
---|---|---|---|
60849068 | Oct 2006 | US |