1. Field of the Invention
This invention relates to musical instrument transducers and specifically to a piezoelectric transducer for stringed musical instruments.
2. Description of the Prior Art
At present, piezoelectric transducers for guitars can be broken down into two prominent types:
1) Transducers that are located in the bridge saddle slot of the guitar with the saddle of the instrument situated on top of the transducer, and a subgroup of that design where the transducer is integrated within the saddle itself. These transducers receive vibration from string actuation acting almost entirely upon the bridge saddle and do not pick up the actual tonal qualities, vibrations or resonances, or the acoustic instrument body structure. The transducers in this group are also generally complex to manufacture, can be complicated to install in an instrument, and can be fragile in structure. Furthermore, the sound quality produced by these transducers does not accurately reproduce the acoustic nature of the instrument that the transducer is installed within. Transducers of these types are described in U.S. Pat. No. 4,491,051 to Barcus, U.S. Pat. No. 4,727,634 to Fishman, U.S. Pat. No. 4,774,867 to Fishman and U.S. Pat. No. 5,155,285 to Fishman.
2) Transducers that are attached to the soundboard or bridge plate of the musical instrument. Transducers in this second group are generally better in being able to more accurately reproduce the acoustic tonal qualities of the instrument but are usually not able to provide quality feedback rejection. These soundboard transducers that seek to overcome the low feedback threshold are often very complex, difficult and costly to manufacture, and difficult to install into an instrument or to retrofit into an existing instrument. A transducer to this type is described in U.S. Pat. No. 6,605,771 to Baggs.
It is an aspect of the present invention to provide an improved piezoelectric transducer, preferably for use with a stringed musical instrument such as a steel string or classical guitar. Another aspect of the present invention is to provide an improved transducer which provides the conversion of string vibrations into electrical signals that substantially exactly correspond with the character of such string vibrations.
A further aspect of the present invention is to provide an improved musical instrument transducer which is simple in construction and may be easily and inexpensively fabricated.
Another aspect of the present invention is to provide an improved musical instrument transducer that is readily useable for retrofitting to existing stringed instruments without requiring major modification thereto.
A further aspect of the present invention is to provide an improved musical instrument transducer that does not interfere with the normal sound characteristics, adjustments or playing action of the instrument during instrument string actuation when it is installed.
In another aspect of the invention, a means for more accurate sound reproduction is provided. Although the present invention is adapted for use with a steel string guitar or nylon string guitar, it may be used in association with other stringed musical instruments such as a banjo, mandolin, arch-top guitar, violin, bass or other musical instrument having a vibrating and/or moving soundboard or other resonating surface.
In yet a further aspect, the invention provides a transducer that attaches or adheres to the bridge plate or soundboard of an instrument generally in the area directly under the saddle. Due to its design, the transducer preferably reproduces the real acoustic tonal qualities and resonances of an acoustic instrument. Also, due to its design, the transducer provides improved feedback control and feedback rejection over prior art devices.
In another aspect, there is provided a piezoelectric transducer comprising a base unit; a piezoelectric unit, including a piezoelectric element housed within a shielding enclosure; and a multi-conductor cable connected to said piezoelectric element for transmitting signals produced by said piezoelectric element.
In another aspect, there is provided A piezoelectric transducer for a stringed musical instrument, securable to a resonating surface of said instrument, comprising a piezoelectric unit raised above said resonating surface by a supporting lower base unit, said piezoelectric unit having a piezoelectric element surrounded by and attached on one surface to a suitable RF shielding medium.
Further details of the invention will be described or will become apparent in the course of the following detailed description.
The invention will now be described with reference to the accompanying drawings of preferred and alternative embodiment(s), by way of example only. In the drawings:
The invention is directed at a piezoelectric transducer for stringed musical instruments. Turning to FIGS. 1 to 4, a first embodiment of a piezoelectric transducer in accordance with the invention is shown.
Turning to
A shielded multi-conductor cable 18 connects electrically to both top 20 and bottom 22 surfaces of the piezoelectric element 13 within the upper piezoelectric unit 12.
In use, as a musician, plucks, strums or bows the strings of the musical instrument, the movement of the strings imparts a vibration through the bridge or other string supporting structure of the instrument to the soundboard and the transducer. The movement of the strings causes the bridge (or whatever vibrating support structure the transducer is mounted to) to vibrate which is then translated to the transducer. The transducer then generates a voltage as a result of the vibrations received from the interaction between the transducer and the bridge (or whatever vibrating support structure the transducer is mounted to), the vibration of the soundboard and/or the vibrations of the musical instrument bracing.
The vibration of the piezoelectric element 13 in the transducer 10 (which is somewhat regulated by the vibration transmission qualities of the adhesive attaching the transducer to the musical instrument 28) generates a voltage in response to the mechanical vibrations. This voltage is then transmitted through the lead wires 36 and 38 to the amplifying means in order to amplify the sound produced by the musical instrument 28. Due to the design of the transducer, the sounds which are produced by the transudcer are of better quality than prior art transudcers.
Turning to
The base unit 56 is mounted to bracing 62 of a musical instrument 64, in t he present embodiment via a pair of cutouts 58. The mounting is assisted by a mounting material 66 such as mastic putty.
Turning to
In the present embodiment, a conducting cable 110, comprising a pair of lead wires 112 and 114, is connected to the brass strip 104 and the piezoelectric element 102 via the lead wires 112 and 114, respectively to transmit voltages produced by the piezoelectric element 102 when the musical instrument is being used. As shown, the lead wires 112 and 114 are preferably soldered 116 to the brass strip 104 and the piezoelectric element 102.
Although described as a piezoelectric crystal, the piezoelectric element may also be a piezo-polymer film, or sensor material, or any other material that may provide the electrical output and signal qualities necessary for differing uses and applications of the transducer.
Although the attachment of the piezoelectric element to the enclosure and the two lead wires is preferably performed via a soldering process, it will be understood that other means of attaching the piezoelectric element to these parts such as a conducting adhesive are contemplated. A conducting adhesive is simply an adhesive which not only adheres two surfaces but allows for the transmission of signals between the two surfaces, namely the piezoelectric element and the lead wires or enclosure.
In an alternative embodiment, the lead wires may be connected to a preamplifier prior to being connected to the means for amplifying the signals.
Although the base unit 16 is preferably made of wood, in other embodiments, the base unit 16 may be made of any medium such as plastic, aluminum, or fiber as necessary to provide proper vibration transmission properties and support for the piezoelectric unit 12.
As described above, the base unit is preferably attached to the piezoelectric unit 12 via a double-sided adhesive. However, the base unit may also be attached to the piezoelectric unit 12 with cyanoacrylate adhesive, epoxy or any other form of adhesive, adhesive sheet or means of mechanical fastening as may be necessary which provides vibration transmissions from the base unit 16 to the piezoelectric unit 12.
Although shown in
Although described as two separate parts, the piezoelectric unit 12 and the base unit 16 may be a single unit combining the base and piezoelectric unit into one integrated structure containing all elements of the invention conferring all required vibration transmission properties and RF shielding. Furthermore, although the piezoelectric unit and the base unit are shown to be of similar length/width, it will be understood that the sizes of the piezoelectric unit and the base unit need not be the same.
Further, other embodiments may have multiple or differing base units and multiple piezoelectric units with the base units set in various arrays such as a “T” shape or any other shape. In the multiple piezoelectric unit embodiments, the units may be mounted to separate transverse bracing of the musical instrument in order to sample the vibrations from multiple locations when the instrument is being played. It will also be understood that multiple single piezoelectric unit transducers may be mounted to the same bracing while not affecting the sound transmission quality.
The present invention comprises a piezoelectric unit that is raised above the mounting surface by a supporting lower base unit. The preferred embodiment of the piezoelectric unit has a piezoelectric element that is surrounded by and attached on one surface to an RF shielding medium of brass. In other embodiments the RF shielding medium may be of conductive plastic or other such materials that may provide suitable sound transmission characteristics and shielding properties to the contained piezoelectric element. Furthermore, in other embodiments, the transducer may not include the RF shielding medium, or enclosure.
An advantage of the invention is that it is much less complex, more economical to produce and is easily retrofitted to existing instruments.
Another advantage of the invention is the design of the base unit (such as the arches) which allows the base unit to move freely and to act in a spring-like fashion than a solid base unit without cutouts. A further advantage is that the mounting of the transducer to the bridge plate is seen as a “soft” mounting which isolates the transducer from the vibrating surface in a controlled manner and allows the transducer to move relatively freely in relation to the instrument.
Another advantage of the invention is that the cutouts of the base unit impart more focused vibrational energy to the piezoelectric unit than would a solid base unit (although a solid base may be contemplated). Other embodiments of the invention may vary the shape of the cut outs in the base unit to allow for the increase or decrease in vibration transmission as might be required. Still other embodiments of the invention may vary the amount of spring action imparted by the base unit to the piezoelectric unit depending upon the requirements of the application.
Another advantage is that the adhesive used to attach the base unit to the piezoelectric unit contributes to the vibration control and transmission properties from the lower base unit to the piezoelectric unit.
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
This application claims the benefit of U.S. Provisional Application No. 60/605,523, filed Aug. 31, 2004, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60605523 | Aug 2004 | US |