Pig pumping units.
Oil refineries frequently include many kilometers of pipes that require cleaning, as for example in fired heaters, where oil is heated during the refining process. One well established cleaning technique is to run a pig through the pipes under hydraulic pressure to clean the pipes. Pigs are typically polyurethane or strangulated foam cylinders or balls that are studded with scraping elements. The inventor has been a pioneer in the art of pigging, and has obtained U.S. Pat. No. 6,569,255 for a Pig and method for cleaning tubes, U.S. Pat. No. 6,391,121 for a Pig and method for cleaning tubes, U.S. Pat. No. 6,359,255 for a Pipe inspection device and method, U.S. Pat. No. 6,170,493 for a Method of cleaning a heater, U.S. Pat. No. 5,685,041 for a Pipe pig with abrasive exterior, U.S. Pat. No. 5,379,475 for a Scraper for a Pipe Pig, U.S. Pat. No. 5,358,573 fora Method of cleaning a pipe with a cylindrical pipe pig having pins in the central portion, U.S. Pat. No. 5,318,074 for a Plug for a furnace header, U.S. Pat. No. 5,265,302 for a Pipeline Pig and U.S. Pat. No. 5,150,493 for a Pipeline Pig.
The inventor's own U.S. Pat. No. 9,296,025 provides a pumping unit which allows at least four passes to be made simultaneously with a single pumping unit. A single engine is used to drive two pumps, each connected into separate pumping circuits. Fluid flow in each of the pumping circuits is controlled by respective flow control elements on the pumping circuits, as for example a variable flow valve. Operation of the pumping unit requires an operator for each engine (two people) plus a person to handle the pigs, a total of three workers.
It is highly desirable to be able to do a required amount of pumping with a pig pumping unit on a single trailer. Space on a trailer is highly constrained. Water pumps take up space, and in order to receive adequate head of water at the water pumps' suction, the water pumps should be located at a low height in the trailer. These space and positioning constraints make it difficult to power multiple pumps per engine.
A pig pumping unit is provided that has at least a first engine; a first gearbox and a second gearbox, the first gearbox connected to the first engine, the second gearbox connected to and driven by the first gearbox; at least a first pump, a second pump and a third pump, the first gearbox connected to the first pump and the second gearbox connected to drive the second pump and third pump; one or more clean water tanks; one or more dirty water tanks; and at least a first pumping circuit fluidly connected to the first pump, a second pumping circuit fluidly connected to the second pump and a third pumping circuit fluidly connected to the third pump, wherein each pumping circuit is fluidly connected to the clean water tank and dirty water tank.
In a further embodiment, a pig pumping unit is provided that has at least a first engine; a first gearbox connected to the first engine; at least a first pump, a second pump and a third pump connected to and driven by the first gearbox; one or more clean water tanks; one or more dirty water tanks; and at least a first pumping circuit fluidly connected to the first pump, a second pumping circuit fluidly connected to the second pump and a third pumping circuit fluidly connected to the third pump, wherein each pumping circuit is fluidly connected to the clean water tank and dirty water tank.
In various embodiments, there may be include any of the following features: a fourth pump connected to and driven by the second gearbox, and a fourth pumping unit fluidly connected to the fourth pump and fluidly connected to the clean water and dirty water tank; at least a second engine, a third gearbox and a fourth gearbox, the third gearbox connected to the second engine, the fourth gearbox connected to and driven by the third gearbox, at least a fourth pump, a fifth pump and a sixth pump, the third gearbox connected to drive the fourth pump and the fourth gearbox connected to drive the fifth pump and sixth pump, and at least a fourth pumping circuit fluidly connected to the fourth pump, a second pumping circuit fluidly connected to the fifth pump and a sixth pumping circuit fluidly connected to the sixth pump, wherein each pumping circuit is fluidly connected to the clean water tank and dirty water tank; a seventh pump connected to and driven by the second gearbox, and a seventh pumping circuit fluidly connected to the seventh pump, wherein the seventh pumping circuit is fluidly connected to the clean water tank and dirty water tank; an eighth pump connected to and driven by the fourth gearbox, and an eighth pumping circuit fluidly connected to the eighth pump, wherein the eighth pumping circuit is fluidly connected to the clean water tank and dirty water tank; a fourth pump connected to and driven by the first gearbox, and a fourth pumping unit fluidly connected to the first pump and fluidly connected to the clean water and dirty water tank; at least a second engine, a second gearbox connected to the second engine, at least a fourth pump, a fifth pump and a sixth pump connected to and driven by the second gearbox, and at least a fourth pumping circuit fluidly connected to the fourth pump, a fifth pumping circuit fluidly connected to the fifth pump and a sixth pumping circuit fluidly connected to the sixth pump, wherein each pumping circuit is fluidly connected to the clean water tank and dirty water tank; a seventh pump connected to and driven by the second gearbox, and a seventh pumping circuit fluidly connected to the seventh pump, wherein the seventh pumping circuit is fluidly connected to the clean water tank and dirty water tank; an eighth pump connected to and driven by the fourth gearbox, and an eight pumping circuit fluidly connected to the eighth pump, wherein the eighth pumping circuit is fluidly connected to the clean water tank and dirty water tank.
There is also provided a pig pumping unit that has at least a first engine, one or more clean water tanks, one or more dirty water tanks, and plural hydraulic pumping units connected to the first engine. Each of the plural hydraulic pumping units may have a hydraulic pump connecting to the first engine to be driven by the first engine, a hydraulic circuit connected to the hydraulic pump to be driven by the hydraulic pump, a hydraulic motor connected to the hydraulic circuit to be driven by the hydraulic circuit, a water pump connected to the hydraulic motor to be driven by the respective motor; and a pumping circuit fluidly connected to the water pump, the pumping circuit fluidly connected to the clean water tank and dirty water tank.
In various embodiments, there may be provided any one or more of the following features: there may be at least a second engine, and additional plural hydraulic pumping units connected to the second engine, the additional plural hydraulic pumping units being as described above, but with the hydraulic pump of each being connected to the second engine instead of the first engine. Each hydraulic circuit may have a bypass valve connected to it and configured to be responsive to a control signal to partially or wholly bypass the hydraulic motor connected to that hydraulic circuit. Each hydraulic motor may be connected to the water pump of the same hydraulic pumping unit via a respective gearbox. The plural hydraulic pumping units connected to the first engine, or to each engine if there are plural engines, may number for example 2, 3, 4, 5 or 6 hydraulic pumping units.
These and other aspects of the device and method are set out in the claims.
Embodiments will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite article “a” before a claim feature does not exclude more than one of the feature being present. Each one of the individual features described here may be used in one or more embodiments and is not, by virtue only of being described here, to be construed as essential to all embodiments as defined by the claims.
A pig pumping unit is usually carried on the trailer of a tractor-trailer unit. In a conventional pumping unit, the engine compartment is typically located over the wheels of the trailer with a fuel tank and operator cabin at the other end, and clean and dirty water tanks in between.
A first set of embodiments of a pig pumping unit uses gearboxes to redirect the mechanical energy of an engine to the water pumps so that they may be located low on the trailer and still all be connected to receive mechanical energy from the engine.
As shown in
The first engine 14 is connected to a first gearbox 26 and a second gearbox 28 is connected to and driven by the first gearbox 26 for example by a drive shaft. At least three pumps P1-P3 are driven by the first engine 14 using the gearboxes. A first pump P1 is connected to and driven by the first gearbox 26, and the second gearbox 28 is a splitter gearbox which allows the second gearbox 28 to drive the second pump P2 and third pump P3. Water from the clean water tank 20 may be supplied into a water bank from which clean water is pumped by the pumps P1-P3 for use as a pig drive fluid. First pump P1 is fluidly connected to first pumping circuit 30A, second pump P2 is fluidly connected to second pumping circuit 30B, and third pump P2 is fluidly connected to second pumping circuit 30C. The first pumping circuit 30A may be fluidly connected to a first pipe to be cleaned, the second pumping circuit 30B may be fluidly connected to a second pipe to be cleaned and the third pumping circuit 30C may be fluidly connected to a second pipe to be cleaned. Thus, three pipes may be cleaned using a single engine.
The operation and configuration of the valved pumping circuits 30A, 30B, 30C may be for example as described in the inventor's own patent, U.S. Pat. No. 9,296,025 B2. Valve banks 32 may be stacked in the trailer 12 near first engine 14. Bypass valves and flow meters may be stacked between each section of valve banks 32.
The pumping unit 10 may include a radiator 34 to cool the interior of the trailer 12.
As shown in
In an embodiment, a seventh pump P7 may also be connected to and driven by the second gearbox 28, and controlled in the same way as pumps P2 and P3. In a further embodiment, an eighth pump P8 may be connected to and driven by the fourth gearbox 40, and controlled in the same way as pumps P5 and P6. Each of seventh pump P7 and eighth pump P8 may be fluidly connected to its respective pumping circuit 30D and 42D and through its pumping circuit to the clean water tank 20 and dirty water tank 22.
Thus, a single trailer may hold a 6 pump pumping unit or an 8 pump pumping unit, also known as a six pass pumping unit and an eight pass pumping unit. Two engines and 8 pumps may be used in conjunction with the dirty water tank and the clean water tank to clean up to eight pipes at once. Pumps may be disengaged from and reconnected to the engines 14 and 36 to allow anywhere between 1 and 8 passes to be performed using the pumping unit 10 at any given time. Thus, the pig pumping unit 10 allows eight passes to be performed at once, and reduces the amount of equipment used in a large pigging operation, including by reducing the number of engines, water tanks, trailers and personnel required.
In an alternative embodiment, as shown in
As shown in
In an embodiment, a seventh pump Q7 may also be driven by the first gearbox 54, and connected to the first gearbox 54 and controlled in the same way as pumps Q1, Q2 and Q3. In a further embodiment, an eighth pump Q8 may be connected to and driven by the second gearbox 64, and controlled in the same way as pumps Q4, Q5 and Q6. Seventh pump Q7 and eighth pump Q8 may be connected to respective pumping circuits 56D and 66D and through respective pumping circuits to the clean water tank 58 and dirty water tank 60. Thus, a single trailer may hold a six pass pumping unit and an eight pass pumping unit, while only having two engines, a single clean water tank 58 and dirty water tank 60, and a single gearbox for each engine.
Each gearbox may drive pumps using a take-off for each pump. A clutch located between each engine and gearbox may control the transmission of power and motion between the engine and gearbox. Between each gearbox and respective pumps there may be levers to move the meshing gears of the respective gearboxes for disengaging each of the pumps from respective gearboxes. The gearboxes may act as speed increasers to drive each of the pumps at a faster rate than would be possible with an engine alone. For example, if the engine runs at 2100 rpm, the pumps may run at 4600 rpm. Where a second gearbox is driven by first gearbox, the second gearbox may further increase the speed of pumps driven by the second gearbox as compared to the speed of pumps driven by the first gearbox.
The engines may be any suitable engine, such as a diesel engine used for powering heavy duty machinery, an example being a Caterpillar C15™ engine, and the pumps may be any pump suitable for use in a pig pumping unit.
Other clutch and drive shaft configurations may be used to configure a single engine to drive three or four pumps.
Each pumping circuit in operation may be connected to a different pipe, and the pipe is cleaned using the pumping of fluid through the pumping circuit and through the pipes using the pumps. As disclosed in the inventor's own prior patents, pipes may be cleaned by running pigs through specific sections repeatedly by reversing flow using the valve banks 32 etc. as operated by the operators. Flow bypass and diversion may also be accomplished by the operators in conventional manner. Location of the pigs may be determined from the pressure recorders. As the pigs pass bends in the pipes being cleaned, the pressure spikes, which is observable to the operator. When to switch from flowing return fluid to the clean water tank or the dirty water tank may be determined by visual inspection by the operator looking out of the window of the operator's cabin 18 at the flow of water from the return conduits.
A single operator may manage four pipes being cleaned at a time, so that two operators in a pumping unit having eight pumps may manage eight pipes being cleaned at a time. A single pig handler may be used for four pumping circuits, so that the total staff required to perform eight passes at a time is 4 and only a single trailer is required.
Additional embodiments may drive the water pumps using hydraulic motors powered by hydraulic pumps. The hydraulic pumps may be smaller than the water pumps, the the hydraulic circuits they power may be smaller in cross section than the suctions and outputs of the water pumps, and do not need to be located at a low height. Thus, they can be positioned much more flexibly than the water pumps, and in particular, multiple hydraulic pumps can be positioned to be driven mechanically by a single engine much more easily than multiple water pumps.
The top end of each valve bank portion in the embodiment shown in
Immaterial modifications may be made to the embodiments described here without departing from what is covered by the claims.
Number | Date | Country | Kind |
---|---|---|---|
CA 2940924 | Sep 2016 | CA | national |
This application is a continuation of and claims priority to U.S. patent application Ser. No. 17/497,972 that was filed on Oct. 10, 2021, which is a continuation of and claims priority to U.S. patent application Ser. No. 16/329,646 that was filed on Feb. 28, 2019, which is the National Stage entry of PCT/CA2017/051037, filed Sep. 1, 2017, which claims priority to Canadian Application No. 2,940,924, filed Sep. 1, 2016, all of which are fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2282143 | Carter | May 1942 | A |
3212116 | Gentry | Oct 1965 | A |
3883431 | Ishii et al. | May 1975 | A |
4203712 | Uehara | May 1980 | A |
4724007 | Barry et al. | Feb 1988 | A |
5018544 | Boisture et al. | May 1991 | A |
5150493 | Sivacoe | Sep 1992 | A |
5195479 | Hasetoh et al. | Mar 1993 | A |
5265302 | Sivacoe | Nov 1993 | A |
5358573 | Sivacoe | Oct 1994 | A |
5379475 | Sivacoe | Jan 1995 | A |
5431545 | Knight et al. | Jul 1995 | A |
5685041 | Sivacoe | Nov 1997 | A |
5752810 | Hein | May 1998 | A |
5783256 | Matsuda et al. | Jul 1998 | A |
5927901 | Graves | Jul 1999 | A |
5951248 | Hall | Sep 1999 | A |
6170493 | Sivacoe | Jan 2001 | B1 |
6289878 | Blass | Sep 2001 | B1 |
6359645 | Sivacoe | Mar 2002 | B1 |
6367572 | Maletschek et al. | Apr 2002 | B1 |
7836964 | Groonwald et al. | Nov 2010 | B2 |
9296025 | Sivacoe | Mar 2016 | B2 |
20080223410 | Molloy et al. | Sep 2008 | A1 |
20100051061 | Guillon | Mar 2010 | A1 |
20160207081 | Sivacoe | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2590980 | Dec 2008 | CA |
103511217 | Jan 2014 | CN |
0877165 | Nov 1998 | EP |
Entry |
---|
From www.jbj.co.uk/splittergearboxes.html: Splitter Gearboxes/Multiple Power Take-Off Units; Aug. 8, 2016, pp. 1-3. |
Information pamphlet of JBJ Technologies Limited: Pump Drives; pp. 1-42 (Nov. 2019). |
Number | Date | Country | |
---|---|---|---|
20230182180 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17497972 | Oct 2021 | US |
Child | 18105793 | US | |
Parent | 16329646 | US | |
Child | 17497972 | US |