O'Brochta et al., “Transposable Elements and Gene Transformation in Non-Drosophilid Insects”, Insect Biochemistry Molecular Biology, vol. 26(8-9), pp. 739-753, 1996. |
Lis et al., “New Heat Shock Puffs and β-Galactosidase Activity Resulting from Transformation of Drosophila with an hsp70-LacZ Hybrid Gene”, Cell, vol. 35, pp. 403-410, 1983( Part 1). |
Lohe et al., “Germline Transformation of Drosophila virilis with the Transposable Element mariner”, Genetics, vol. 143, pp. 365-374, 1996. |
Loukeris et al., “Gene Transfer into the Medfly, Ceratitis capitata with a Drosophila hydei Transposable Element”, Science, vol. 270, pp. 2002-2005, 1995. |
Lozovskaya et al., “Germline Transformation of Drosophila virilis Mediated by the Transposable Element hobo”, Genetics, vol. 142, pp. 173-177, 1996. |
O'Brochta et al., “Hermes, a Functional Non-Drosophilid Insect Gene Vector From Musca domestica”, Genetics, vol. 142, pp. 907-914, 1996. |
Pirrotta et al., “Muliple upstream regulatory elements control the expression of the Drosophila white gene”, EMBO Journal, vol. 4(13A), pp. 3501-3508, 1985. |
Ashburner et al., “Prospects for the genetic transformation of arthropods”, Insect Molecular Biology, vol. 7(3), pp. 201-213, 1998. |
Bhadra et al., “Interactions Among Dosage-Dependent Trans-Acting Modifiers of Gene Expression and Position-Effect Variegation in Drosophila”, Genetics, vol. 150, pp. 251-263, 1998. |
Coates et al., “Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti”, Genetics, vol. 95, pp. 3748-3751, 1998. |
Chalfie et al., “Green Fluorescent Protein as a Marker for Gene Expression”, Science, vol. 63, pp. 802-805, 1994. |
Cormack et al., “ACS-optimized mutants of the green fluorescent protein (GFP)”, Science, vol. 173, pp. 33-38, 1996. |
Davis et al., “A Nuclear GFP that Marks Nuclei in Living Drosophila Embryos; Maternal Supply Overcomes a Delay in the Appearance of Zygotic Fluorescence”, Developmental Biology, vol. 170, pp. 726-729, 1995. |
Elick et al., “PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome”, Genetica, vol. 97, pp. 127-139, 1996. |
Franz et al., “Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain”, Proc. Natl. Acad. Science, vol. 91, pp. 4746-4750, 1994. |
Gomez et al., “A Drosophila melanogaster hobo-white+ vector mediates low frequency gene transfer in D. virilis with full interspecific white+ complementation”, Insect Molecular Biology, vol. 6(2), pp. 165-171, 1997. |
Hazelrigg et al., “Transformation of white Locus DNA in Drosophila: Dosage Compensation, zeste Interaction, and Position Effects”, Cell, vol. 36, pp. 469-481, 1984. |
Jacobson et al., “Molecular structure of a somatically unstable transposable element in Drosophila”, Proc. Natl. Acad. Science, vol. 83, pp. 8684-8688, 1986. |
Jasinskiene et al., “Stable transformation of the yellow fever mosquito, Aedes aegypti, with the Hermes element from the housefly”, Genetics, pp. 3743-3747, 1998. |
Lanford et al., “Induction of Nuclear Transport with a Synthetic Peptide Homologous to the SV40 Antigen Transport Signal”, Cell, vol. 46, pp. 575-582, 1986. |
Lee et al., “Structure and Expression of Ubiquitin Genes of Drosophila melanogaster”, Molecular and Cellular Biology, vol. 8 (11), pp. 4727-4735, 1988. |
Lidholm et al., “The Transposable Element mariner Mediates Germline Transformation in Drosophila melanogaster”, Genetics, vol. 134, pp. 859-868, 1993. |
Franz et al., “Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons”, Nucleic Acids Research, vol. 19 (23), p. 646, 1991. |
Prasher et al., “Primary structure of the Aequorea victoria green-fluorescent protein”, Gene, vol. 111, pp. 229-233, 1992. |
Rubin et al., “Genetic Transformation of Drosophila with Transposable Element Vectors”, Science, vol. 218, pp. 348-353, 1982. |
Smith et al., “hobo Enhancer Trapping Mutagenesis in Drosphila Reveals an Insertion Specificity Different from P Elements”, Genetics, vol. 135, pp. 1063-1076, 1993. |
Wang et al., “Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis”, Nature, vol. 369, pp. 400-403, 1994. |
Warren et al., “The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac, and Tam3 (hAT) element family”, pp. 87-97, 1994. |
Ahmed et al., “Use of ordered deletions in genome sequencing”, Gene, vol. 197, pp. 367-373, 1997. |
Cary et al., “Transposon Mutagenesis of Baculoviruses: Analysis of Trichoplusia ni Transposon IFP2 Insertions within the FP-Locus of Nuclear Polyhedrosis Viruses”, Virology, vol. 172, pp. 156-169, 1989. |
Yang et al., “Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein”, Nucleic Acids Research, vol. 24 (22), pp. 4592-4593, 1996. |
Handler et al., “The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly”, Proc. Natl. Acad. Science USA, vol. 95, pp. 7520-7525, 1998. |