The disclosure generally relates to liners for appliances, particularly pigmented liners for refrigeration applications, and methods for making them.
Liners having particular colors, hues, tints and the like are desired for many appliance-related applications, such as refrigeration appliances. As appliance designers have recently placed more emphasis on interior design and lighting (e.g., given the lower energy usage of light-emitting diode (LED) sources), the importance of interior aesthetics has increased for many consumers. Similarly, appliance manufacturers often emphasize aesthetics, including through interior design approaches, in attempting to obtain brand differentiation from their competitors.
Liners employed in appliances, including refrigeration appliances, are often produced with extrusion processes. As these liners often are fabricated from two or more layers, conventional approaches to adding color to these liners often involve adding pigments to each extruder employed in making a layer employed in the liner. As pigments are added to multiple extruders, the complexity, repeatability and manufacturing cost of matching colors increases significantly for a liner that comprises two or more layers having pigments. Further, as significant loadings of pigments in these multi-layer liners are often employed, down-stream processes, e.g., thermo-forming, to incorporate the liners into an end product can lead to local discoloration and yield losses. Further, multiple and cost-intensive extrusion runs are often required to fabricate a liner having multiple, extruded layers with pigments that matches a particular desired color, tint or hue. Still further, these approaches for making a liner having multiple, extruded pigmented layers require one or more adhesives to bond the layers, which increases cost and can decrease manufacturing yield.
Accordingly, there is a need for methods of making liners, particularly pigmented liners for refrigeration appliances, which are repeatable, with high manufacturing flexibility, and low in cost. There is also a need for pigmented liners that do not require or otherwise employ internal adhesives, have a high reliability and can be configured according to various design aesthetics.
According to one aspect of the disclosure, a method of making a liner for an appliance is provided that includes: mixing a polymeric capping layer precursor and a pigment additive; forming the capping layer precursor and the pigment additive into a capping layer at a capping layer formation temperature; and rolling the capping layer into a polymeric base layer to form a liner, each of the capping layer and the base layer at about the capping layer formation temperature. Further, the liner comprises a capping region and a base region, the capping region comprising the pigment additive.
According to another aspect of the disclosure, a method of making a liner for an appliance is provided that includes: mixing a polymeric capping layer precursor and a pigment additive; forming the capping layer precursor and the pigment additive into a capping layer at a capping layer formation temperature; and rolling the capping layer, a barrier layer and a polymeric base layer together to form a liner, each of the capping layer, the barrier layer and the base layer at about the capping layer formation temperature. Further, the liner comprises a capping region, a barrier region and a base region, the capping region comprising the pigment additive.
According to a further aspect, a liner for an appliance is provided that includes: a polymeric liner comprising a monolayer, the monolayer comprising: a base region comprising a high-impact polystyrene material; and a capping region comprising a high-impact polystyrene material and a pigment additive, the capping region disposed over the base region. Further, the base region and the capping region are joined with substantially no interfaces between them.
These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention there are shown in the drawings certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessary to scale. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.
Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
In this specification and the appended claims, the singular forms “a,” “an” and “the” include the plural reference unless the context clearly dictates otherwise.
While the concepts of the present disclosure are susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the concepts of the present disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
As outlined in various exemplary forms, methods of making liners are outlined in the disclosure that are repeatable, with high manufacturing flexibility, and low in cost. These methods can be employed to fabricate pigmented liners suitable for various appliances, including refrigeration appliances. Also outlined in the disclosure are configurations for liners, e.g., the pigmented liners made from these methods, which do not require or otherwise employ internal adhesives, have a high reliability and can be configured according to various design aesthetics.
Referring now to
As shown in
Referring again to the liner 100a depicted in
Referring again to the liner 100a depicted in
As also shown in
As shown in
According to an implementation of the liner 100b depicted in
Still further, the liner 100b depicted in
According to an embodiment of the liner 100b, the barrier base 33 of the barrier region 30 can be formed from one or more precursor materials including high-impact polystyrene (HIPS), polystyrene (PS), styrenic polymers, acrylonitrile butadiene styrene (ABS), and combinations of these materials. In preferred embodiments, the precursor material(s) selected for use in the barrier base 33 are thermoplastics, suitable for use in an extrusion process. As also depicted in
Referring again to the liners 100a, 100b, a preferred implementation of these liners is configured such that the base region 10 and the capping region 50 (i.e., for liner 100a) or the base region 10, barrier region 30 and the capping region 50 (i.e., for liner 100b) are joined with substantially no interfaces between them. That is, a cross-section of the liner 100a, 100b when viewed under low magnification will not reveal any indications of an interface or interfaces between the base region 10, the barrier region 30 and/or the capping region 50. Advantageously, the lack of any appreciable interfaces between the capping region 50, barrier region 30 and/or the base region 10 significantly reduces the likelihood that these regions will delaminate during subsequent processing (e.g., thermo-forming of the liner 100a, 100b into a refrigeration appliance 200, such as depicted in
Referring now to
Referring again to
Referring once again to
In some implementations, the rolling step 330 is conducted with the capping layer and the polymeric base layer configured between a set of two or more rollers (not shown) that are set at a predetermined rolling pressure. Further, the rollers can be heated to about the capping layer formation temperature, e.g., between about 275° F. to about 400° F. That is, the capping layer comprising pigment additive, as formed in the preceding extruding step 320, is rolled during the rolling step 330 with a polymeric base layer through a set of rollers. The pressure applied by the rollers, and the fact that the rollers are set to approximately the capping layer formation temperature, ensures that that the capping layer and the polymeric base layer are merged together during the rolling step 330 into the liner.
According to an embodiment, the method 300a of making a liner depicted in
According to some implementations of the method 300a of making a liner depicted in
Referring now to
In some aspects of the method 300b, the rolling step 330 of the method 300b is conducted at about the capping layer formation temperature. Accordingly, the rolling step 330 can involve rolling the capping layer, the barrier layer and the polymeric base layer together, at about the capping layer formation temperature, to form a liner (e.g., liner 100b). By rolling the capping layer, barrier layer and the polymeric base layer together at about the same temperature in which they were extruded or otherwise processed in earlier steps, the rolling step 330 ensures that these features are joined together with substantially no interfaces between them. According to an embodiment, the rolling step 330 of the method 300b is conducted by obtaining the capping layer, as it exists at the capping layer formation temperature during the preceding extruding step 320, and rolling it into the polymeric base layer and the barrier layer.
In some aspects of the method 300b, the liner (e.g., liner 100b) produced according to the method can be characterized as a monolayer given that there are substantially no interfaces between the capping region, barrier layer region and the base region within the liner. In some embodiments, the liner (e.g., liner 100b) that results from the rolling step 330 comprises a capping region (e.g., capping region 50), a barrier region (e.g., barrier region 30) and a base region (e.g., base region 10), the capping region comprising the pigment additive. According to some aspects, the rolling step 330 is conducted to form a liner that comprises substantially no interfaces between the capping region, barrier region and the base region.
Many variations and modifications may be made to the above-described embodiments of the disclosure without departing substantially from the spirit and various principles of the disclosure. For example, the principles associated with the methods of making a liner and the liner configurations of the disclosure can be employed in fabricating liners for use in various appliances, such as portable refrigerators, coolers, storage containers, etc. These methods and liner configurations can also be applied in the development of exterior surfaces of various appliances and other household items with various design aesthetics and coloration features. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.
To the extent any amendments, characterizations, or other assertions previously made (in this or in any related patent applications or patents, including any parent, sibling, or child) with respect to any art, prior or otherwise, could be construed as a disclaimer of any subject matter supported by the present disclosure of this application, Applicant hereby rescinds and retracts such disclaimer. Applicant also respectfully submits that any prior art previously considered in any related patent applications or patents, including any parent, sibling, or child, may need to be re-visited.
This application is a divisional of U.S. patent application Ser. No. 16/398,413, filed on 30 Apr. 2019 (now U.S. Pat. No. 11,175,090, issued 16 Nov. 2021), which is a divisional of U.S. patent application Ser. No. 15/369,282, filed on 5 Dec. 2016 (now U.S. Pat. No. 10,352,613, issued 16 Jul. 2019), the contents of which are relied upon and incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1849369 | Frost | Mar 1932 | A |
1921576 | Muffly | Aug 1933 | A |
2191659 | Hintze | Feb 1940 | A |
2432042 | Richard | Dec 1947 | A |
2451884 | Stelzer | Oct 1948 | A |
2729863 | Kurtz | Jan 1956 | A |
3066063 | Ecklund et al. | Nov 1962 | A |
3290893 | Haldopoulos | Dec 1966 | A |
3338451 | Kesling | Aug 1967 | A |
3353301 | Heilweil et al. | Nov 1967 | A |
3353321 | Heilweil et al. | Nov 1967 | A |
3408316 | Mueller et al. | Oct 1968 | A |
3597850 | Jenkins | Aug 1971 | A |
3607169 | Coxe | Sep 1971 | A |
3632012 | Kitson | Jan 1972 | A |
3633783 | Aue | Jan 1972 | A |
3634971 | Kesling | Jan 1972 | A |
3670521 | Dodge, III et al. | Jun 1972 | A |
3769770 | Deschamps et al. | Nov 1973 | A |
3862880 | Feldman | Jan 1975 | A |
3868829 | Mann et al. | Mar 1975 | A |
3875683 | Waters | Apr 1975 | A |
3910658 | Lindenschmidt | Oct 1975 | A |
3933398 | Haag | Jan 1976 | A |
3935787 | Fisher | Feb 1976 | A |
3960631 | Weiss et al. | Jun 1976 | A |
4005919 | Hoge et al. | Feb 1977 | A |
4170391 | Bottger | Oct 1979 | A |
4196950 | Churchill et al. | Apr 1980 | A |
4242241 | Rosen et al. | Dec 1980 | A |
4260876 | Hochheiser | Apr 1981 | A |
4303730 | Torobin | Dec 1981 | A |
4303732 | Torobin | Dec 1981 | A |
4330310 | Tate, Jr. et al. | May 1982 | A |
4396362 | Thompson et al. | Aug 1983 | A |
4529368 | Makansi | Jul 1985 | A |
4583796 | Nakajima et al. | Apr 1986 | A |
4681788 | Barito et al. | Jul 1987 | A |
4781968 | Kellerman | Nov 1988 | A |
4865875 | Kellerman | Sep 1989 | A |
4870735 | Jahr et al. | Oct 1989 | A |
4914341 | Weaver et al. | Apr 1990 | A |
5084320 | Barito et al. | Jan 1992 | A |
5094899 | Rusek, Jr. | Mar 1992 | A |
5118174 | Benford et al. | Jun 1992 | A |
5121593 | Forslund | Jun 1992 | A |
5168674 | Molthen | Dec 1992 | A |
5171346 | Hallett | Dec 1992 | A |
5227245 | Brands et al. | Jul 1993 | A |
5251455 | Cur et al. | Oct 1993 | A |
5269601 | Williams et al. | Dec 1993 | A |
5340208 | Hauck et al. | Aug 1994 | A |
5375428 | LeClear et al. | Dec 1994 | A |
5500287 | Henderson | Mar 1996 | A |
5500305 | Bridges et al. | Mar 1996 | A |
5505810 | Kirby et al. | Apr 1996 | A |
5509248 | Dellby et al. | Apr 1996 | A |
5532034 | Kirby et al. | Jul 1996 | A |
5532315 | Bonekamp et al. | Jul 1996 | A |
5533311 | Tirrell et al. | Jul 1996 | A |
5599081 | Revlett et al. | Feb 1997 | A |
5600966 | Valence et al. | Feb 1997 | A |
5768837 | Sjoholm | Jun 1998 | A |
5792801 | Tsuda et al. | Aug 1998 | A |
5826780 | Nesser et al. | Oct 1998 | A |
5834126 | Sheu | Nov 1998 | A |
5866247 | Klatt et al. | Feb 1999 | A |
5918478 | Bostic et al. | Jul 1999 | A |
5950395 | Takemasa et al. | Sep 1999 | A |
5952404 | Simpson et al. | Sep 1999 | A |
6013700 | Asano et al. | Jan 2000 | A |
6063471 | Dietrich et al. | May 2000 | A |
6163976 | Tada et al. | Dec 2000 | A |
6164739 | Schulz et al. | Dec 2000 | A |
6187256 | Aslan et al. | Feb 2001 | B1 |
6209342 | Banicevic et al. | Apr 2001 | B1 |
6210625 | Matsushita et al. | Apr 2001 | B1 |
6244458 | Frysinger et al. | Jun 2001 | B1 |
6266970 | Nam et al. | Jul 2001 | B1 |
6294595 | Tyagi et al. | Sep 2001 | B1 |
6485122 | Wolf et al. | Jan 2002 | B2 |
6428130 | Banicevic et al. | Aug 2002 | B1 |
6430780 | Kim et al. | Aug 2002 | B1 |
6519919 | Takenouchi et al. | Feb 2003 | B1 |
6589646 | Morgenstern | Jul 2003 | B1 |
6629429 | Kawamura et al. | Oct 2003 | B1 |
6655766 | Hodges | Dec 2003 | B2 |
6689840 | Eustace et al. | Feb 2004 | B1 |
6736472 | Banicevic | May 2004 | B2 |
6860082 | Yamamoto et al. | Mar 2005 | B1 |
7008032 | Chekal et al. | Mar 2006 | B2 |
7197792 | Moon | Apr 2007 | B2 |
7197888 | LeClear et al. | Apr 2007 | B2 |
7207181 | Murray et al. | Apr 2007 | B2 |
7234247 | Maguire | Jun 2007 | B2 |
7263744 | Kim et al. | Sep 2007 | B2 |
7360371 | Feinauer et al. | Apr 2008 | B2 |
7475562 | Jackovin | Jan 2009 | B2 |
7517031 | Laible | Apr 2009 | B2 |
7614244 | Venkatakrishnan et al. | Nov 2009 | B2 |
7665326 | LeClear et al. | Feb 2010 | B2 |
7703217 | Tada et al. | Apr 2010 | B2 |
7703824 | Kittelson et al. | Apr 2010 | B2 |
7757511 | LeClear et al. | Jul 2010 | B2 |
7794805 | Aumaugher et al. | Sep 2010 | B2 |
7845745 | Gorz et al. | Dec 2010 | B2 |
7938148 | Carlier et al. | May 2011 | B2 |
7992257 | Kim | Aug 2011 | B2 |
8049518 | Wern et al. | Nov 2011 | B2 |
8074469 | Hamel et al. | Dec 2011 | B2 |
8079652 | Laible et al. | Dec 2011 | B2 |
8108972 | Bae et al. | Feb 2012 | B2 |
8157338 | Seo et al. | Apr 2012 | B2 |
8162415 | Hagele et al. | Apr 2012 | B2 |
8182051 | Laible et al. | May 2012 | B2 |
8197019 | Kim | Jun 2012 | B2 |
8266923 | Bauer et al. | Sep 2012 | B2 |
8382219 | Hottmann et al. | Feb 2013 | B2 |
8434317 | Besore | May 2013 | B2 |
8439460 | Laible et al. | May 2013 | B2 |
8491070 | Davis et al. | Jul 2013 | B2 |
8516845 | Wuesthoff et al. | Aug 2013 | B2 |
8590992 | Lim et al. | Nov 2013 | B2 |
8717029 | Chae et al. | May 2014 | B2 |
8752921 | Gorz et al. | Jun 2014 | B2 |
8763847 | Mortarotti | Jul 2014 | B2 |
8764133 | Park et al. | Jul 2014 | B2 |
8776390 | Hanaoka et al. | Jul 2014 | B2 |
8840204 | Bauer et al. | Sep 2014 | B2 |
8881398 | Hanley et al. | Nov 2014 | B2 |
8905503 | Sahasrabudhe et al. | Dec 2014 | B2 |
8943770 | Sanders et al. | Feb 2015 | B2 |
8944541 | Allard et al. | Feb 2015 | B2 |
9009969 | Choi et al. | Apr 2015 | B2 |
RE45501 | Maguire | May 2015 | E |
9056952 | Eilbracht et al. | Jun 2015 | B2 |
9074811 | Korkmaz | Jul 2015 | B2 |
9080808 | Choi et al. | Jul 2015 | B2 |
9102076 | Doshi et al. | Aug 2015 | B2 |
9103482 | Fujimori et al. | Aug 2015 | B2 |
9125546 | Kleemann et al. | Sep 2015 | B2 |
9140480 | Kuehl et al. | Sep 2015 | B2 |
9140481 | Cur et al. | Sep 2015 | B2 |
9170045 | Oh et al. | Oct 2015 | B2 |
9170046 | Jung et al. | Oct 2015 | B2 |
9188382 | Kim et al. | Nov 2015 | B2 |
8955352 | Lee et al. | Dec 2015 | B2 |
9221210 | Wu et al. | Dec 2015 | B2 |
9228386 | Thielmann et al. | Jan 2016 | B2 |
9267727 | Lim et al. | Feb 2016 | B2 |
9303915 | Kim et al. | Apr 2016 | B2 |
9328951 | Shin et al. | May 2016 | B2 |
9353984 | Kim et al. | May 2016 | B2 |
9410732 | Choi et al. | Aug 2016 | B2 |
9423171 | Betto et al. | Aug 2016 | B2 |
9429356 | Kim et al. | Aug 2016 | B2 |
9448004 | Kim et al. | Sep 2016 | B2 |
9463917 | Wu et al. | Oct 2016 | B2 |
9482463 | Choi et al. | Nov 2016 | B2 |
9506689 | Carbajal et al. | Nov 2016 | B2 |
9518777 | Lee et al. | Dec 2016 | B2 |
9568238 | Kim et al. | Feb 2017 | B2 |
D781641 | Incukur | Mar 2017 | S |
D781642 | Incukur | Mar 2017 | S |
9605891 | Lee et al. | Mar 2017 | B2 |
9696085 | Seo et al. | Jul 2017 | B2 |
9702621 | Cho et al. | Jul 2017 | B2 |
9759479 | Ramm et al. | Sep 2017 | B2 |
9777958 | Choi et al. | Oct 2017 | B2 |
9791204 | Kim et al. | Oct 2017 | B2 |
9833942 | Wu et al. | Dec 2017 | B2 |
10907888 | Csapos et al. | Feb 2021 | B2 |
11175090 | Buzzi | Nov 2021 | B2 |
20020004111 | Matsubara et al. | Jan 2002 | A1 |
20020114937 | Albert et al. | Aug 2002 | A1 |
20020144482 | Henson et al. | Oct 2002 | A1 |
20030041612 | Piloni et al. | Mar 2003 | A1 |
20030056334 | Finkelstein | Mar 2003 | A1 |
20030157284 | Tanimoto et al. | Aug 2003 | A1 |
20030167789 | Tanimoto et al. | Sep 2003 | A1 |
20030173883 | Koons | Sep 2003 | A1 |
20040144130 | Jung | Jul 2004 | A1 |
20040226141 | Yates et al. | Nov 2004 | A1 |
20050042247 | Gomoll et al. | Feb 2005 | A1 |
20050229614 | Ansted | Oct 2005 | A1 |
20060064846 | Espindola et al. | Mar 2006 | A1 |
20060094804 | Lachowicz | May 2006 | A1 |
20060261718 | Miseki et al. | Nov 2006 | A1 |
20060266075 | Itsuki et al. | Nov 2006 | A1 |
20070264468 | Boyd et al. | Nov 2007 | A1 |
20070266654 | Noale | Nov 2007 | A1 |
20080044488 | Zimmer et al. | Feb 2008 | A1 |
20080048540 | Kim | Feb 2008 | A1 |
20080138458 | Ozasa et al. | Jun 2008 | A1 |
20080196441 | Ferreira | Aug 2008 | A1 |
20090032541 | Rogala et al. | Feb 2009 | A1 |
20090131571 | Fraser et al. | May 2009 | A1 |
20090205357 | Lim et al. | Aug 2009 | A1 |
20090302728 | Rotter et al. | Dec 2009 | A1 |
20090322470 | Yoo et al. | Dec 2009 | A1 |
20100206464 | Teo et al. | Aug 2010 | A1 |
20100218543 | Duchame | Sep 2010 | A1 |
20100287843 | Oh | Nov 2010 | A1 |
20100287974 | Cur et al. | Nov 2010 | A1 |
20110011119 | Kuehl et al. | Jan 2011 | A1 |
20110023527 | Kwon et al. | Feb 2011 | A1 |
20110095669 | Moon et al. | Apr 2011 | A1 |
20110215694 | Fink et al. | Sep 2011 | A1 |
20110220662 | Kim et al. | Sep 2011 | A1 |
20110309732 | Horil et al. | Dec 2011 | A1 |
20120011879 | Gu | Jan 2012 | A1 |
20120060544 | Lee et al. | Mar 2012 | A1 |
20120099255 | Lee et al. | Apr 2012 | A1 |
20120240612 | Wuesthoff et al. | Sep 2012 | A1 |
20120280608 | Park et al. | Nov 2012 | A1 |
20130026900 | Oh et al. | Jan 2013 | A1 |
20130043780 | Ootsuka et al. | Feb 2013 | A1 |
20130221819 | Wing | Aug 2013 | A1 |
20130270732 | Wu et al. | Oct 2013 | A1 |
20130285527 | Choi et al. | Oct 2013 | A1 |
20130293080 | Kim et al. | Nov 2013 | A1 |
20130328472 | Shim et al. | Dec 2013 | A1 |
20140009055 | Cho et al. | Jan 2014 | A1 |
20140097733 | Seo et al. | Apr 2014 | A1 |
20140166926 | Lee et al. | Jun 2014 | A1 |
20140190978 | Bowman et al. | Jul 2014 | A1 |
20140196305 | Smith | Jul 2014 | A1 |
20140216706 | Melton et al. | Aug 2014 | A1 |
20140232250 | Kim et al. | Aug 2014 | A1 |
20140346942 | Kim et al. | Nov 2014 | A1 |
20150011668 | Kolb et al. | Jan 2015 | A1 |
20150015133 | Carbajal et al. | Jan 2015 | A1 |
20150017386 | Kolb et al. | Jan 2015 | A1 |
20150059399 | Hwang et al. | Mar 2015 | A1 |
20150115790 | Ogg | Apr 2015 | A1 |
20150159936 | Oh et al. | Jun 2015 | A1 |
20150176888 | Cur et al. | Jun 2015 | A1 |
20150184923 | Jeon | Jul 2015 | A1 |
20150190840 | Muto et al. | Jul 2015 | A1 |
20150224685 | Amstutz | Aug 2015 | A1 |
20150241115 | Strauss et al. | Aug 2015 | A1 |
20150241118 | Wu | Aug 2015 | A1 |
20150283795 | Kim et al. | Oct 2015 | A1 |
20150285551 | Aiken et al. | Oct 2015 | A1 |
20160084567 | Fernandez et al. | Mar 2016 | A1 |
20160116100 | Thiery et al. | Apr 2016 | A1 |
20160123055 | Ueyama | May 2016 | A1 |
20160161175 | Benold et al. | Jun 2016 | A1 |
20160178267 | Hao et al. | Jun 2016 | A1 |
20160178269 | Hiemeyer et al. | Jun 2016 | A1 |
20160235201 | Soot | Aug 2016 | A1 |
20160240839 | Umeyama et al. | Aug 2016 | A1 |
20160258671 | Allard et al. | Sep 2016 | A1 |
20160290702 | Sexton et al. | Oct 2016 | A1 |
20160348957 | Hitzelberger et al. | Dec 2016 | A1 |
20170038126 | Lee et al. | Feb 2017 | A1 |
20170157809 | Deka et al. | Jun 2017 | A1 |
20170176086 | Kang | Jun 2017 | A1 |
20170184339 | Liu et al. | Jun 2017 | A1 |
20170191746 | Seo | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
626838 | Sep 1961 | CA |
201748744 | Feb 2011 | CN |
102153829 | Aug 2011 | CN |
102645071 | Aug 2012 | CN |
102717578 | Oct 2012 | CN |
202973713 | Jun 2013 | CN |
103407228 | Nov 2013 | CN |
104816478 | Aug 2015 | CN |
105115221 | Dec 2015 | CN |
204963379 | Jan 2016 | CN |
4110292 | Oct 1992 | DE |
4409091 | Sep 1995 | DE |
19914105 | Sep 2000 | DE |
102011051178 | Dec 2012 | DE |
0645576 | Mar 1995 | EP |
1602425 | Dec 2005 | EP |
1624263 | Feb 2006 | EP |
2543942 | Jan 2013 | EP |
2878427 | Jun 2015 | EP |
2991698 | Dec 2013 | FR |
04165197 | Jun 1992 | JP |
04309778 | Nov 1992 | JP |
11159693 | Jun 1999 | JP |
2000320958 | Nov 2000 | JP |
2002068853 | Mar 2002 | JP |
3438948 | Aug 2003 | JP |
2005069596 | Mar 2005 | JP |
2005098637 | Apr 2005 | JP |
2006161834 | Jun 2006 | JP |
2006200685 | Aug 2006 | JP |
2008190815 | Aug 2008 | JP |
2013050267 | Mar 2013 | JP |
2013076471 | Apr 2013 | JP |
20050095357 | Sep 2005 | KR |
100620025 | Sep 2006 | KR |
20070065743 | Jun 2007 | KR |
20090026045 | Mar 2009 | KR |
20150089495 | Aug 2015 | KR |
9920961 | Apr 1999 | NO |
2061925 | Jun 1996 | RU |
2077411 | Apr 1997 | RU |
2081858 | Jun 1997 | RU |
2132522 | Jun 1999 | RU |
2162576 | Jan 2001 | RU |
2166158 | Apr 2001 | RU |
2187433 | Aug 2002 | RU |
2234645 | Aug 2004 | RU |
2252377 | May 2005 | RU |
2253792 | Jun 2005 | RU |
2349618 | Mar 2009 | RU |
2414288 | Mar 2011 | RU |
2422598 | Jun 2011 | RU |
142892 | Jul 2014 | RU |
2529525 | Sep 2014 | RU |
2571031 | Dec 2015 | RU |
203707 | Dec 1967 | SU |
476407 | Jul 1975 | SU |
547614 | May 1977 | SU |
648780 | Feb 1979 | SU |
1307186 | Apr 1987 | SU |
9614207 | May 1996 | WO |
9721767 | Jun 1997 | WO |
9920964 | Apr 1999 | WO |
2001060598 | Aug 2001 | WO |
0202987 | Jan 2002 | WO |
2002052208 | Jul 2002 | WO |
02060576 | Aug 2002 | WO |
03072684 | Sep 2003 | WO |
2004010042 | Jan 2004 | WO |
2006045694 | May 2006 | WO |
2006073540 | Jul 2006 | WO |
2007033836 | Mar 2007 | WO |
2007106067 | Sep 2007 | WO |
2008065453 | Jun 2008 | WO |
2008077741 | Jul 2008 | WO |
2008118536 | Oct 2008 | WO |
2008122483 | Oct 2008 | WO |
2009013106 | Jan 2009 | WO |
2009112433 | Sep 2009 | WO |
2010007783 | Jan 2010 | WO |
2010127947 | Nov 2010 | WO |
2011058678 | May 2011 | WO |
2012152646 | Nov 2012 | WO |
2013116103 | Aug 2013 | WO |
2013116302 | Aug 2013 | WO |
2014038150 | Mar 2014 | WO |
2014121893 | Aug 2014 | WO |
2014184393 | Nov 2014 | WO |
2013140816 | Sep 2015 | WO |
2016082907 | Jun 2016 | WO |
2017029782 | Feb 2017 | WO |
Entry |
---|
Heifei Midea Refrigerator Co. (CN 103407228 machine translation), (Nov. 27, 2013). |
Cai et al., “Generation of Metal Nanoparticles By Laser Ablation of Microspheres,” J. Aerosol Sci., vol. 29, No. 5/6 (1998), pp. 627-636. |
Raszewski et al., “Methods for Producing Hollow Glass Microspheres,” Powerpoint, cached from Google, Jul. 2009, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20210381753 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16398413 | Apr 2019 | US |
Child | 17407572 | US | |
Parent | 15369282 | Dec 2016 | US |
Child | 16398413 | US |