1. Field of the Invention
The present invention relates to systems and methods for lifting a residential house or other building and placing it onto an elevated foundation. More specifically, the present invention relates to the pile cap connectors used to secure the deep pile foundation to a lifted a residential house or other building.
2. The Relevant Technology
Revised FEMA (Federal Emergency Management Agency)/NFIP (National Flood Plan Insurance Program) requirements (2012-2013; pending finalization in 2014) will require hundreds of thousands of residential houses, in United States coastal flood hazard zones, to be lifted and placed onto elevated foundations in order to qualify for NFIP coverage. Presently, the conventional industry standard process for lifting a residential house and placing it onto an elevated concrete block or a helical micropile foundation, with a two-to-six foot deep concrete grade berm, has a cycle time of approximately 28 days.
Coastal construction requirements are different from inland construction. Flood levels, velocities, and wave action in coastal areas tend to make coastal flooding more damaging than inland flooding. Further, coastal erosion may undermine buildings and destroy land, roads, utilities, and infrastructure. Wind speeds are typically higher in coastal areas and require stronger engineered building connections and more closely spaced nailing of building sheathing, siding, and roof shingles. Wind-driven rain, corrosion, and decay are also frequent concerns in coastal areas.
In general, homes in coastal areas must be designed and built to withstand higher loads and more extreme conditions. Homes in coastal areas also require more maintenance and upkeep. Coastal buildings must be designed to withstand coastal forces and conditions. Coastal buildings must be built as designed and sited so that erosion does not undermine the building or render it uninhabitable. A well-built but poorly sited building may be undermined. Even if a building is set back or situated farther from the coastline, it must be capable of resisting high winds and other hazards that may occur at the site.
Using recommended building practices for constructing new homes in coastal area is important and may avoid many future problems. For example, building at a site away from eroding shorelines and high-hazard areas is advisable. Also, flat or low-sloped porch roofs, overhangs, and gable ends are subject to increases uplift in high winds. Buildings that are both tall and narrow are subject to overturning. Each of these problems may be avoided through the design process by making the building more resistant to high winds.
To qualify for flood insurance, the lowest floor must be elevated above the Design Flood Elevation (DFE), i.e., the bottom of the lowest horizontal structural member supporting the lowest floor must be above the DFE. Also, an open foundation is required in certain flood hazard zones, i.e., VE zones, and may not be obstructed below the elevated portion of the building. Further the foundation must be deep enough to resist the effects of scour and erosion, i.e., strong enough to resist wave, current, flood, and debris forces and capable of transferring wind and seismic forces on upper stories to the ground.
Additionally, the connection of the walls and floor to the foundation must be sound and any building materials below the DFE should be flood-resistant materials. All exposed materials should be moisture-resistant and decay-resistant and any metals should have enhanced corrosion protection.
These and other recommended building practices are advisable for new building construction in coastal areas. Needless to say, for existing homes and other buildings in coastal areas, the new FEMA/NFIP requirements present difficult and serious problems. Existing homes may be rendered uninhabitable and/or ineligible for flood insurance. On the other hand, flood insurance premiums may be reduced by up to 60% by exceeding minimum siting, design, and construction practices.
As noted above, hundreds of thousands of existing buildings must be lifted and placed unto elevated foundations that comply with the requirements to qualify for flood insurance. The challenges to placing an existing structure (residential home or business building) onto requirement-compliant foundation include constructing the foundation underneath the lifted structure where there may be low ceiling tolerance, load testing one or more of the pipe piles of the foundation, and securing the foundation to the lifted structure.
Accordingly, a need exists for a new system and method for time- and cost-effectively lifting and securing existing homes and other buildings onto foundations that are requirement compliant and may withstand flood conditions better than traditional timber, helical or block foundations. Such systems and methods are disclosed herein.
The exemplary embodiments of the present invention have been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available technology.
This invention involves deep pile foundation construction methodology for existing residential homes and other buildings and may also involve deep pile foundation construction for homes and other buildings under construction. The methodology comprises furnishing and installing pressure grouted displacement piles (“PGD piles) in the deep pile foundation by capping the PGD piles under low ceiling or open site conditions. Further, the PGD piles may be placed at locations as approved on engineering drawings. The pile cap connectors of the present invention are particularly suitable for securing retrofitted elevated foundations to homes or other buildings that have been lifted and are to be placed onto and secured to elevated foundations in order to qualify for NFIP coverage. However, the exemplary pile cap connectors may be used for open site construction as well.
Whereas, the present conventional, industry standard process for lifting a residential home and placing it onto an elevated concrete block or helical micropile foundation, with a two-to-six foot deep concrete grade berm, takes approximately 28 days to complete, the construction method that utilizes the pile cap connectors of the present invention reduces the cycle time for lifting and anchoring a residential home onto a foundation to approximately 7 to 10 days and provides a sturdier, more durable foundation than conventional methods, allowing for dynamic load testing of any of the PGD piles included in the foundation without disrupting the construction timetable.
Prior to installation of the PGD piles, the site should be made ready for installation. For an existing home or building, the utilities are disconnected and the home or building is lifted onto stable stacks of wood cribbing using standard industry practices so that the lowest part of the home or building is approximately 10 to 12 feet above grade. The cribbing should be spaced so that the low-overhead equipment (e.g., a skid steer or a post driver) may maneuver between the cribbing stacks. Typically, a distance of 80 to 90 inches will be sufficient distance between cribbing stacks to allow low-overhead equipment to maneuver under the base of the elevated home or building. One or more soil borings should be performed to a depth specified by the engineer on the site so that the engineer may determine the specific locations for each of the PGD piles needed to support the existing home or building or the home or building under construction. Any existing foundation should be demolished and removed so that the site may be cleared of all construction debris and the ground surface may be leveled and worked to support low-overhead equipment. The locations for the piles may be measured and paint-marked on suitable grade as determined by proper surveying equipment and according to the foundation design plan. If any excavation is necessary within the area to be occupied by bearing piles, that excavation should be completed before driving the piles. Also, a small starter hole may be hand dug at each pile location to receive the distal end of the first pile segment.
Additionally, prior to installation of the PGD piles, the piles or pile segments should be stored a suitable distance from the construction activity to prevent incidental damage to the equipment, the piles, and any persons. To optimize the structural integrity of the foundation, the piles should be free of damage before being installed. It is preferred that the PGD piles used are made by or for American Piledriving Equipment, Inc. which are made of steel casing pipe segments in 5 to 40 foot lengths with diameters of 4.5 inches, 5.5 inches, 7 inches, 9.625 inches, 11.75 inches and 13.375 inches and comply with ASTM A328/A328M-07 standards for deep foundation systems, although it should be understood that other suitable PGD piles may be used.
Before installation, each pile should be made ready for installation and carefully transported to the installation location. The PGD piles of American Piledriving Equipment, Inc. have protective plastic caps on each end of the pile shaft segment. Such protective plastic caps should not be removed until moved into driving position. The starter pile segment has a socket end with threads, a drive tip end, helical blades, and at least one grout port. Other pile shaft segments each have a socket end and a drive end and each end has threads. To connect the pile segments together, a drivable coupler is used.
A drivable coupler is either pre-attached to the socket end of starter pile segment or may be manually attached to the socket end of the starter pile segment. With a safety chain inserted, the drivable coupler at the socket end of the starter pile segment may be manually set into a pile drill head that has a grout line attachment. The pile drill head may be suspended from an appropriately sized excavator for open site conditions or from the low-overhead equipment (e.g., a skid-steer) for use under low ceiling conditions. The starter pile segment may then be moved into place over the marked location and lowered into place.
Once it is determined that the starter pile segment is in the proper location and orientation and the surroundings are clear the starter pile segment may be drilled down until the remaining shaft portion of the segment is approximately one foot above grade. The drill socket may then be disconnected from the starter pile segment.
The next pile shaft segment may then be transported into position using the same procedure as described above for the starter pile segment. Once the next pile shaft segment is in position, a laborer manually aligns the drive end of the next pile shaft segment with the threads of the starter pile segment and turns the next pile segment until its threads catch enough with the threads of the installed starter pile segment. After the next pile segment is inserted and deemed within the thread, a drivable coupler is threaded onto the socket end of the next pile segment and the pile drill head engages the drivable coupler to drill the next pile shaft segment into the portion of the starter pile segment that remained above grade. This causes the next pile shaft segment to catch into the starter pile segment and irreversibly locks both segments together. A grout plug may then be inserted into the socket end of the pile shaft segment so that simultaneously with the drilling, grout may be pumped under pressure into the interior of the pile segments to fill the interior and exit out the one or more grout ports. As the pile segments are drilled down, grout encases the pile segments in a mixture of the grout and the soil disturbed by the helical blades of the starter pile.
In a similar manner, subsequent pile shaft segments are added to the pile and encased in grout until the pile toe reaches the depth specified by engineering for the pile depth. Typically, the last pile shaft segment is driven to a depth that has about three feet above grade, with its shaft being grout filled to approximately one inch below the threaded coupler section. Also, all grout, if any, should be removed from the threads. This height is desirable for on-site dynamic load testing of the pile, and if each pile is driven to this height and grout filled as mentioned then each pipe pile may be dynamic load tested. The grout within the pile and encasing the pile is allowed to cure. Additionally, during pile installation, cylindrical grout samples are collected, cured and compressive strength-tested at 7, 10, and 28 days post-collection in accordance with ASTM C39/C39M.
In the interest of brevity, the nature of PGD pile components and the driving of the PGD piles are described here in a summary format. However, a more detailed description of this aspect of the invention is disclosed in the patent applications of American Piledriving Equipment, Inc. and published as United States Patent Application Publication Nos. US2013/0272799 and US2014/0056652 (herein sometimes referred to as the “APE applications”). These published APE applications and each of the published patents and patent applications to which these APE applications claim priority are hereby incorporated in their entirety into this application by this reference, and as if fully set forth herein. Again, it should be understood that PGD piles other than those described in these published applications may be used without departing from the scope and spirit of this invention.
Each piling should be drilled in this manner to ensure: 1) proper interlocking of each pile shaft segment, and 2) that the grout-soil mixture is evenly distributed along the entire borehole, totally encasing the below grade piling surface. Each pile should be driven continuously and without interruption to the specified depth or until the specified bearing capacity is obtained so that the concrete grout does not cure during installation.
If the installed pile is to be dynamically load tested, the pile may be prepared for such testing and the grout is allowed to cure. Because such dynamic load testing leaves the pile in a condition suitable for use, may be conducted under low ceiling conditions, and is considerably less expensive and less time-consuming to perform, such dynamic load testing may be performed on up to all of the installed piles that comprise the deep foundation for an elevated home or building. The manner in which the pile is prepared and dynamically tested is disclosed in detail in the applicant's patent application filed concurrently with this application. The disclosure of the concurrently filed application titled “High Strain Dynamic Load Testing Procedure” (U.S. patent application Ser. No. 14/289,600, filed May 28, 2014) is hereby incorporated in its entirety into this application by this reference, and as if fully set forth herein.
Dynamic load testing is conducted to determine bearing capacity, dynamic pile tensile and compressive stresses (both axial and averaged over the pile cross section), pile integrity, and hammer performance parameters. These and other possible determinations resulting from dynamic load testing may be helpful in establishing compliance with flood insurance mandated requirements and other engineering requirements, as well as simple peace of mind for the owner of the building supported by dynamically load tested piles.
If the installed pile is not to be tested or after dynamic load testing has been completed on the pile, a pile cap connector of the present invention may be inserted onto the top of the installed pile. The pile cap connector may have one of several configurations and serves to connect the pipe pile to a support beam or girder for the house or building. Some pile cap connectors may be configured to accept the run of the support beam or girder while others may be configured to accept the end of a support beam or girder. Still other pile cap connectors may have height adjustability. The manner in which exemplary pile cap connectors may be height adjustable is disclosed in detail herein.
Once a pile cap connector is set to design height and secured to each pile, the support beams or girders may be secured to the various pile caps. In situations where the array of piles forming the deep pile foundation involve an elevated home or building, the home or building may then be lowered onto and secured to the support beams or girders to create a strong, continuous load path between the building and the ground.
These and other features of the present invention will become more fully apparent from the following description, or may be learned by the practice of the invention as set forth hereinafter.
In order that the manner in which the above-recited and other features and advantages of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The presently preferred embodiments of the present invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the present invention, as represented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of presently preferred embodiments of the invention.
The word “exemplary” is used exclusively herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
In this application, the phrases “connected to”, “coupled to”, and “in communication with” refer to any form of interaction between two or more entities, including mechanical, capillary, electrical, magnetic, electromagnetic, pneumatic, hydraulic, fluidic, and thermal interactions.
The phrases “attached to”, “secured to”, and “mounted to” refer to a form of mechanical coupling that restricts relative translation or rotation between the attached, secured, or mounted objects, respectively. The phrase “slidably attached to” refer to a form of mechanical coupling that permits relative translation, respectively, while restricting other relative motions. The phrase “attached directly to” refers to a form of securement in which the secured items are in direct contact and retained in that state of securement.
The term “abutting” refers to items that are in direct physical contact with each other, although the items may not be attached together. The term “grip” refers to items that are in direct physical contact with one of the items firmly holding the other. The term “integrally formed” refers to a body that is manufactured as a single piece, without requiring the assembly of constituent elements. Multiple elements may be integrally formed with each other, when attached directly to each other from a single work piece. Thus, elements that are “coupled to” each other may be formed together as a single piece.
The exemplary methods described herein relate to constructing more effective deep pile foundations for existing residential homes and other buildings more efficiently, in less time, and cost-effectively. Although the methodolgy is particularly suitable for existing homes or buildings, much of the methodolgy is equally suitable for providing deep pile foundations for homes and other buildings under construction. For purposes of this application the term “building” includes all types of buildings, including but not limited to residential homes, commercial buildings, outbuildings, garages, cottages, sheds, boat houses, and any other type of building that would justify having a deep pile foundation.
The methodology comprises furnishing and installing pressure grouted displacement piles (“PGD piles) that may be dynamically load tested and capping the PGD piles under low-overhead or open site conditions. Further, the PGD piles may be placed at locations as approved on engineering drawings. The methods of the present invention are particularly suitable for dynamic load testing retrofitted elevated foundations for homes or other buildings that must be lifted and placed onto elevated foundations in order to qualify for NFIP coverage. However, with slight modification, a person of ordinary skill in the art may also implement the principles of the invention for use with open site construction as well.
The known conventional, industry standard process for lifting a residential home and placing it onto an elevated concrete block or helical micropile foundation, with a two-to-six foot deep concrete grade berm, takes approximately 28 days to complete, is costly, and has limited foundational integrity. On the other hand, the methods of the present invention reduce the cycle time needed to lift and anchor a residential home or other building onto a deep pile foundation that may be dynamically loaded tested to approximately 7 to 10 days. Also, the dynamically load tested deep pile foundation provided is a sturdier, more durable foundation than foundations created using conventional methods.
Prior to installation of the PGD piles, the site should be made ready for installation. For an existing home or building, the utilities are disconnected and the home or building is lifted onto stable stacks of wood cribbing using standard industry practices so that the lowest part of the home or building is approximately 10 to 12 feet above grade. The cribbing should be spaced so that low-overhead equipment (e.g., a skid steer or a post driver) may maneuver between the cribbing stacks. Typically, a distance of 80 to 90 inches will be sufficient distance between cribbing stacks to allow low-overhead equipment to maneuver under the base of the elevated home or building. However, a predetermined distance of less than 80 inches may be suitable if the low-overhead equipment is more narrow than typical or exhibits superior maneuverability in tight space. Since dislodging a cribbing stack may be catastrophic, it is better to err on the side of a larger predetermined distance than to test the bounds of a narrower distance. The appropriate predetermined distance between cribbing stacks will likely be determined by engineering requirements for the particular home or building.
To understand the likely pile driving conditions and how the soil may interact with the PGD piles, one or more soil borings should be performed to a depth specified by the engineer on the site so that the engineer may determine the specific locations for each of the PGD piles needed to support the existing home or building 10 or the home or building under construction. Also, any existing foundation should be demolished and removed so that the site may be cleared of all construction debris and the ground surface may be leveled and worked to support low-overhead equipment 18.
The locations for the piles, as determined by the engineer on the site, may be identified by measurement and may be paint-marked on suitable grade 16 as determined by proper surveying equipment and according to the foundation design plan. If any excavation is necessary within the area to be occupied by bearing piles, that excavation should be completed before driving the piles. Also, a small starter hole may be hand dug at each pile location to receive the drive end of the first pile segment.
Additionally, prior to installation of the PGD piles, the piles or pile segments should be stored a suitable distance from the construction activity to prevent incidental damage to the equipment, the piles, and any persons. To optimize the structural integrity of the foundation, the piles should be free of damage before being installed. It is preferred that the PGD piles used are made by or for American Piledriving Equipment, Inc. which are made of steel casing pipe segments in 5 to 40 foot lengths with diameters of 4.5 inches, 5.5 inches, 7 inches, 9.625 inches, 11.75 inches, and 13.375 inches and comply with ASTM A328/A328M-07 standards for deep foundation systems, although it should be understood that other suitable PGD piles may be used. Of course, for pipe piles installed beneath an elevated home or building 10, steel casing pipe segments of 5 foot length are particularly suitable; however, if a building 10 is elevated 12 feet or more, slightly longer segments may be used. Segments that are longer than the elevated height A of the building 10 may only be used in open site constructions.
Before installation, each pile segment 20 should be made ready for installation and carefully transported to the installation location. The PGD piles 24 of American Piledriving Equipment, Inc. have protective plastic caps (not shown) on the threaded ends of each pile segment 20. Such protective plastic caps should not be removed until moved into driving position. The starter pile segment 26 has a shaft portion 27, a socket end 28 with threads 30, a drive tip end 32, helical blades 34, and at least one grout port 36. Other pile shaft segments 38 (as shown in
As shown in
With a safety chain inserted, the drivable coupler 26 at the socket end 28 of the starter pile segment 26 may be manually set into a pile drill head 19 that has a grout line attachment (not shown in this application in the interest of brevity, but described and illustrated in the APE applications expressly incorporated herein by reference). The pile drill head 19 may be suspended from an appropriately sized excavator for open site conditions or from low-overhead equipment 18, such as a skid-steer with a drill 17 attachment, for use under low-overhead conditions. The starter pile segment 26 may then be moved into place over the marked location and lowered into place.
Once it is determined that the starter pile segment 26 is in the proper location and orientation and the surroundings are clear, the starter pile segment 26 may be drilled down until the shaft portion 27 of the starter pile segment 26 is approximately one foot above grade 16. The pipe drill head 19 (which may include a socket to engage and drive the drive ring 44) may then be disconnected from the starter pile segment 26 so that the starter pile segment 26 may receive the threaded end of the next pile segment 20.
Turning now to
In a similar manner, subsequent pile segments 20 may be added to the string of pile segments 20 comprising the pipe pile 24, until the desired length for the pipe pile 24 is achieved. Each pipe pile 24 comprises a starter pile segment 26 and an uppermost pile segment 52 and any number of pile shaft segments 38 intermediate thereof, spanning from drive tip end 32 to a top end 54 of the uppermost pile segment 52.
Before the combination of the starter pile segment 26 and the first pile shaft segment 38 is drilled down, a grout plug (not shown, see the APE applications for exemplary grout plugs and other grout delivery components) may then be inserted into the socket end 40 of the pile shaft segment 38. This will enable the delivery of grout 58 simultaneously with the drilling. With the grout plug in place and the pile drill head 19 engaging the uppermost drive ring 44, grout 58 may be pumped under pressure into the interior of the pile segments 20 to fill the interior (see
In a similar manner, each subsequent pile shaft segment 38 is added to the pipe pile 24 and encased in the grout-soil mixture 60 until the pile toe 62 reaches the depth specified by engineering for the pile depth, as shown in
Where acceptable, a quick-curing grout 58 may be used to assist with reducing the overall time to construct the deep pile foundation.
As mentioned above, for brevity, the nature of PGD pile 24 components and the driving of the PGD piles 24 are described herein in a summary format. However, a more detailed description of this aspect of the invention is disclosed in the APE applications. Again, it should be understood that PGD piles other than those described in these published applications may be used without departing from the scope and spirit of this invention. For example, in some situations such as to elevated smaller buildings, pipe piles 24 without pressure grouting may be suitable to use.
Each PGD pile 24 should be drilled in this manner to ensure: 1) proper interlocking of each pile shaft segment 38, and 2) that the grout-soil mixture 60 is evenly distributed along almost all of the subterranean portion of the PGD pile 24, encasing the below-grade 16 PGD pile 24 surface. Each PGD pile 24 should be driven continuously and without interruption to the specified depth or until the specified bearing capacity is obtained so that the concrete grout 58 does not cure during installation.
If the installed PGD pile 24 is to be dynamically load tested, the PGD pile 24 may be prepared for such testing and the grout 58 and grout-soil mixture 60 are allowed to cure. Because such dynamic load testing leaves the PGD pile 24 in a condition suitable for use, may be conducted under low-overhead conditions, and is considerably less expensive and less time-consuming to perform, such dynamic load testing may be performed on any of the installed PGD piles 24 and even all of the installed PGD piles 24 that comprise the deep pile foundation for an elevated home or building 10. By testing all of the installed PGD piles 24, the load capacity of the deep pile foundation may be determined with more certainty than heretofore was available. The manner in which the PGD pile 24 is prepared and dynamically load tested is disclosed in detail in the applicant's patent application filed concurrently with this application. As mentioned above, the disclosure of the concurrently filed application (U.S. patent application Ser. No. 14/289,600, filed May 28, 2014) titled “High Strain Dynamic Load Testing Procedure” has been incorporated in its entirety into this application by the previous reference.
Dynamic load testing may be conducted to determine bearing capacity, dynamic pile tensile and compressive stresses (both axial and averaged over the pipe pile 24 cross section), pile integrity, and hammer performance parameters. These and other possible determinations resulting from dynamic load testing may be helpful in establishing compliance with flood insurance mandated requirements and other engineering requirements, as well as simple peace of mind for the owner of the building 10 supported by dynamically load tested piles. For brevity, a summary of procedures performed to prepare for dynamically load testing a pipe pile 24 will be discussed below with reference to
If the installed pipe pile 24 is not to be tested or after dynamic load testing has been performed on the pipe pile 24, a pile cap connector 63 may be inserted onto the top of the installed pipe pile 24. Each of the pile cap connectors 63 may be or include pile caps 64 having one of several configurations and each pile cap connector 63 serves to connect the pipe pile 24 to a support beam or girder 66 for supporting the house or building 10.
Some pile caps 64 may be configured to accept the run of the support beam or girder 66 (see
Similarly,
The pile cap connector 63 with the adjustable piling extension 82 of
The extension shaft 84 has an end plate 93 with a central bore 95 that allows the screw spindle 86 to pass therethrough and a hollow portion 94 that receives the sliding supports 90 for sliding engagement. The handwheel nut 92 abuts against the end plate 93. The extension shaft 84 also has a pile receiving end 96 that slips over the top end 54 of the pipe pile 24. In one embodiment, the top end 54 is prepared to receive the extension shaft 82 by securing a top end plate 98 to the top end 54 of the pipe pile 24. The pile receiving end 96 may also have set bolt holes 100 for receiving set bolts 102 to removably secure the extension shaft 84 to the pipe pile 24. Of course, it should also be understood that the extension shaft 84 may be more permanently secured to the pipe pile 24 by welding or any other suitable means.
The adjustable piling extension 82 may be made to various lengths C to reduce the need for an overly long screw spindle 86 and to accommodate the entire pipe pile assembly spanning the full distance of predetermined elevation A (see
The T-nut 113 has a flange head 115 and a body 117 with internal threads (not shown) for engaging the screw spindle 68 in threaded engagement. The extension shaft 84 has an inside diameter that accepts the flange head 115 of the T-nut 113 so that the T-nut 113 may be secured to the extension shaft 84 in any suitable manner, such as by adhesive or welding. The extension shaft 84 has a pile receiving end 96 for securement to the pipe pile 24 in any suitable manner. For example, the pile receiving end 96 may have set bolt holes 100 for receiving set screws 102 (not shown) or holes 80 that may accept a weld plug. The length of the pile cap connector 63 is adjustable by rotating the T-nut 113 about the screw spindle 68 either before or after the T-nut 113 is secured to the extension shaft 84.
The threaded end cap 101 has a stop plate 97, an interior wall (not shown), and exterior threads 99 that may engage the pipe pile 24 in threaded engagement. The sliding support 90 is secured to the screw spindle 86 in any suitable manner so that the sliding support 90 slidably engages the interior wall of the threaded end cap 101 and stabilizes the screw spindle 86. The connecting collar 119 abuts and is secured to the stop plate 97 in any suitable manner.
The adjusting screw 91 has indentations 111 for receiving a spanner wrench. Hence, the length of the pile cap connector 63 is adjustable by using a spanner wrench to rotate the adjusting screw 91 about the screw spindle 86. With this exemplary embodiment the locking plates 121 may be connected to both the adjusting nut 91 and the connecting collar 119 by securing bolts (not shown) through slots 123 in the locking plates 121 into bolt holes 125 in the adjusting nut 91 and the connecting collar 119 to inhibit the further rotation of the adjusting nut 91 after the desired overall length of the pile cap connector 63 is achieved.
The extension shaft 84 has a pile receiving end 96 and an interior wall (not shown) defining a diameter that receives both the top of the pipe pile 24 and the sliding support 90. The sliding support 90 is secured to the screw spindle 86 in any suitable manner so that the sliding support 90 slidably engages the interior wall of the extension shaft 84 and stabilizes the screw spindle 86. The connecting collar 119 abuts and is secured to the extension shaft 84 in any suitable manner.
The adjusting screw 91 has indentations 111 for receiving a spanner wrench. Hence, the length of the pile cap connector 63 is adjustable by using a spanner wrench to rotate the adjusting screw 91 about the screw spindle 86. With this exemplary embodiment the locking plates 121 may be connected to both the adjusting nut 91 and the connecting collar 119 by securing bolts (not shown) through slots 123 in the locking plates 121 into bolt holes 125 in the adjusting nut 91 and the connecting collar 119 to inhibit the further rotation of the adjusting nut 91 after the desired overall length of the pile cap connector 63 is achieved.
Referring now to
The test cap 104 comprises an strike plate 110, a pipe insert 112 attached to (or integral with) the underside of the strike plate 110 by welding or any other suitable means, and a connecting sleeve 114 also attached to the underside of the strike plate 110 by welding or any other suitable means. In one embodiment (not shown), the inner surface of the connecting sleeve 114 has threads to engage threads 30 of the uppermost pile segment 52 of PGD pile 24 in threaded engagement. The test cap 104 is temporarily placed over the top end 54 of the PGD pile 24, the pipe insert 112 extending into a hollow region internal of the PGD pile 24 to align the test cap 104 over the PGD pile 24 and to inhibit the test cap 104 from dislodging during testing. The strike plate 110 of the test cap 104 provides a platform for impact contact by a drop weight and readies the pipe pile 24 for dynamic load testing using the drop weight.
Sensor bores 106 are provided in the uppermost pile segment 52 of pipe pile 24 into which sensors (shown in
Although the sensor bores 106 may be drilled and tapped after the pipe pile 24 has been driven, in one embodiment, the pattern of sensor bores 106 are prepared in advance of the uppermost pile segment 52 being drill driven and filled with grout 58. With this embodiment, the sensor bores 106 are drilled and tapped prior to installation of the uppermost pile segment 52. Grease or silicone may be applied to temporary bolts 108 and the temporary bolts 108 may be tightened into each of the sensor bores 106. This may prevent the temporary bolts 108 from bonding with the grout 58 and creates a seal for the drilled sensor bores 106 so that grout 58 does not escape through the sensor bores 106. After the grout 58 cures the temporary bolts 108 may be removed and sensors (see
Typically, the sensors used for dynamic load testing comprise at least one accelerometer and at least one strain gage. Although other types of sensors may be used to obtain additional or different readings. With the exemplary pattern 105 of sensor bores 106 of
To optimize the value of the information determined from the readings, there may be a space 116 between the underside of the test insert 112 and the top of the grout 58 elevation 118, as shown in
The test pipe pile 24 should be free of mud, debris, concrete, etc. so to provide a smooth clean surface for attachment of sensors. The total height H of the pipe pile 24 should be at least 28 to 30 inches above grade so that the sensors may be positioned at least one diameter of the pipe pile 24 below the test cap 104.
Additionally, a refined wave equation analysis may be performed at Box 136. Using information from Box 130 and Box 132, the GRLWEAP™ program 138 (written and developed by GRL Engineers, Inc., 30725 Aurora Road, Cleveland, Ohio 44139) calculates a relationship between bearing capacity, pile stress and blow count. This relationship is often called the bearing graph. Hence, once the blow count is known from pile installation logs, the bearing graph yields the bearing capacity. This approach requires no further measurements other than blow count.
After dynamic pile monitoring and/or dynamic load testing has been performed, the refined wave equation analysis may be performed by inputting the PDA 128 and CAPWAP 134 calculated parameters. With many of the dynamic parameters verified by dynamic tests, a more reliable basis for a safe and sufficient driving criterion is achieved. Importantly, such dynamic load testing may be performed under low-overhead conditions.
As mentioned above, the disclosure of the concurrently filed application (U.S. patent application Ser. No. 14/289,600, filed May 28, 2014) titled High Strain Dynamic Load Testing Procedure has been incorporated in its entirety into this application by the previous reference. For brevity, a summary of procedures performed to prepare for dynamically load testing a pipe pile 24 has been described with reference to
The pipe piles 24 may be finished in various ways to a desired aesthetically pleasing look. The exterior of any pipe pile 24 may be enclosed with wood framed or masonry enclosures that are compliant with local and/or FEMA regulations. The enclosure finishes may include but are not limited to manufactured stone veneer, brick, stucco, a synthetic stucco like exterior insulation and finishing systems (EIFS), epoxy coating and/or other wood framed enclosures with or without cladding.
While specific exemplary embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise configuration and components disclosed herein. Various modifications, changes, and variations which will be apparent to those skilled in the art may be made in the arrangement, operation, and details of the exemplary embodiments of the present invention disclosed herein without departing from the spirit and scope of the invention.
The present invention may be embodied in other specific forms without departing from its structures, methods, or other essential characteristics as broadly described herein and claimed hereinafter. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 14/289,584 titled “Deep Pile Foundation Construction Methodology for Existing and New Buildings” and also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/828,599 that was filed on May 29, 2013, for an invention titled “Deep Pile Foundation Construction Methodology for Existing Residential Homes.” The aforementioned patent application and provisional patent application are expressly incorporated into this application by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3852970 | Cassidy | Dec 1974 | A |
4581863 | Thaler | Apr 1986 | A |
4614070 | Idland | Sep 1986 | A |
4695203 | Gregory | Sep 1987 | A |
5018905 | Kinder | May 1991 | A |
5123209 | Nally | Jun 1992 | A |
5176472 | Kinder | Jan 1993 | A |
5516069 | Hanna | May 1996 | A |
5575591 | Vanderklaauw | Nov 1996 | A |
5904447 | Sutton et al. | May 1999 | A |
5934836 | Rupiper et al. | Aug 1999 | A |
5980160 | Vanderklaauw | Nov 1999 | A |
6263622 | Griffin | Jul 2001 | B1 |
6347489 | Marshall, Jr. | Feb 2002 | B1 |
6349512 | Berkey | Feb 2002 | B1 |
6379085 | Vanderklaauw | Apr 2002 | B1 |
6386295 | Suver | May 2002 | B1 |
6684577 | Dimitrijevic | Feb 2004 | B2 |
6821056 | Mansour | Nov 2004 | B1 |
6923599 | Kelso | Aug 2005 | B2 |
6942430 | Suver | Sep 2005 | B1 |
6971821 | Mansour et al. | Dec 2005 | B1 |
7097388 | Mansour et al. | Aug 2006 | B1 |
7950876 | Suver | May 2011 | B2 |
7967531 | Collina et al. | Jun 2011 | B2 |
9027898 | Holmboe | May 2015 | B1 |
20030159839 | Perko | Aug 2003 | A1 |
20040037653 | Kelso | Feb 2004 | A1 |
20060067794 | Mitchell | Mar 2006 | A1 |
20090026430 | McDonald et al. | Jan 2009 | A1 |
20120155968 | Byun et al. | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2009-209557 | Sep 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20140356076 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61828599 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14289584 | May 2014 | US |
Child | 14289595 | US |