This invention relates in general to pillows and more specifically to a pillow structure having a cavity in the pillow structure and openings from the outside of the structure to the cavity so that users can rest face-down on the structure and place their hands and arms into the structure and be able to view an item placed into a cavity in the middle of the pillow structure through the opening for their face.
There are many bedding products, including mattresses and pillows designed to increase a user's comfort while lying down to sleep or rest or perform sedentary activities. Some major concerns for people lying down or sleeping are related to breathing, pressure, stress, alignment, and overall comfort. These concerns can be greater for overweight or taller users, athletic users, and pregnant women.
Most pillows are designed to provide support for the user's head and neck while the user lays down on their back or side. Some designs are created to keep the user's spine in alignment while the user sleeps on their side or back. These pillows may be designed with curves upward to provide further support in the area at the base of the skull for the user sleeping on their back or at the neck and jawline of the user sleeping on their side. Some pillows are manufactured out of special materials to provide support or flexibility and to contour to the user's unique shape. However, not all people prefer to lay down or sleep on their back or side, and the above mentioned specially designed pillows are not comfortable for a user who chooses to sleep on their front facing the pillow.
Some people prefer to sleep or rest face-down to increase their comfort and alleviate their concern with breathing, loss of circulation, and pressure. For example, some people sleep face down because they are uncomfortable sleeping on their back due to breathing problems, such as a closing of their airway or sleep apnea. Some people sleep face down because they find that sleeping on their side will cause their arms to fall asleep or their spine to feel misaligned. Many people toss and turn throughout the night trying to get comfortable or reposition their body to relieve some stress on their arms, hips, neck, head, and back.
Sleeping face-down on a standard pillow can cause issues with airflow, breathing, and temperature control. Sleeping facing down can also cause problems with blood circulation in the arms if the arms are pressed under the body. It can also cause breathing problems or issues with air flow or circulation when the user is facing the pillow. Further, issues with temperature control can be caused by breathing into a pillow pressed against the user's face. Some users turn their head sideways when sleeping face-down to increase airflow and temperature control. This can cause a strain on the user's neck, arms, and back if the user turns their head to sleep with their current pillows. Pillows have been designed to help provide a place for an adult's face to lay, or a hole, which allows room for the user to breathe, for example U.S. Design Pat. No. D277,059 (Boone).
Some users take stress off their neck when they sleep on their front by placing their arms or hands under the pillow to prop the pillow up to. This can cause a loss of blood circulation to the arms or hands with their arm placed under the pressure of the body, head, or pillow. One attempt to solve this problem of creating space under a pillow, is U.S. Pat. No. 3,883,906 (Sumpter), which provides tunnel-like openings for the arms of a sleeper. Sumpter provides that the user's arms would be extended above the user's head and parallel to their body underneath the pillow. The problems described above also occur when the user tries to perform sedentary tasks when resting on their front facing a pillow structure. For example, users seek a comfortable way to perform sedentary tasks, such as reading email or typing on an electronic device, reading books, or performing tasks on their mobile devices, cell phones, or tablets while resting. These tasks can include many different tasks on various devices or objects, such as reading and writing emails and text messages; watching videos, such as sports, movies and television shows; surfing the internet; reading the news and gossip; shopping online; and other tasks requiring limited ability to move. With the proliferation of smaller devices capable of performing these tasks and other tasks, people are more likely to perform these tasks on a smaller device and at various locations. Although these tasks may take place while the user is seated, such as on an airplane, or at a desk, or at a table, these tasks may alternately take place while the user is leaning forward while seated or while the user is lying down. Many people perform these tasks in bed. Some people are not comfortable lying on their back while holding a book or mobile device, cell phone, or tablet above them for an extended period of time. Holding an object above your face for an extended period of time can be uncomfortable. Some people are not comfortable lying on their side for an extended period of time holding a book or device. Lying on one's side limits the ability of one arm or hand to hold the book and turn the page or to touch the device. Further, many new devices contain technology that automatically turns the image on the device based on how the device is oriented, assuming the user is not lying sideways, so that a user reading a website or looking at a picture or video with their head turned sideways must awkwardly turn (or change the settings on their device).
Another problem people have is trying to rest or perform sedentary activities comfortably while seated. This is particularly the case while users are seated on an airplane or at a desk or table. Some pillows have been designed to help support the user's head and neck, but these do not provide the desired amount of support or stability. Some users lean forward and cross their arms and rest their head against their arms, turning their head to the side. This position allows for some level of comfort if the user can comfortably do so while bending at the waist. In many locations, bending at the waist is not a comfortable option, including on an airplane. Also, by turning their head, the user's spine is not aligned. Some users lean their head to the side or try to keep their head back against a headrest, but during their rest their head may lean forward or to a different side if not given the desired support. Leaning the head to the side for too long will also cause pain, stiffness, or soreness for the user's neck. By turning their head, the user's spine is not aligned and the user cannot comfortably rest or sleep. Based on the restricted size of seats, leg space, and lap space for user's sitting on airplanes, users seek a comfortable alternative to the available options. Users are particularly sedentary on airplanes, but the inventive pillow structure would be similarly useful for users seated at a desk or table.
Another problem people have while lying down is comfortably listening to audio through headphones. Some people listen to music, books “on tape,” audio with video, or other sounds such as “white noise” while resting. People place headphones over their ears or place earbuds into their ears while leaning forward in a seated position or while lying down. Many headphones that cover the user's ears or earbuds inserted into the ear are not comfortable when the user's head is against a pillow or against the user's arm or another object. Pressure from an object against the headphones or earbuds, even from a relatively soft object such as a pillow, can cause discomfort to the user.
Designing a comfortable pillow structure that allows the user to rest facing down towards a pillow structure, while the user's arms and/or hands are comfortably placed underneath the user's head at an angle substantially perpendicular to the user's body would be a useful invention as it would allow the user to rest comfortably and position their arms in a manner that allowed flexibility in the user's movements and allow the user to perform sedentary activities. Designing a pillow structure with a cavity in the middle of the pillow structure for the user to place an object such as a book or device, and providing at least one opening for the user's face and at least two openings for the user's arms and/or hands that meet at the cavity would be a useful invention allowing the user to perform sedentary activities while comfortably resting. Designing a pillow structure with space in at least one opening to the cavity for wires, power cords, or headphones or earbuds would be a useful invention. Designing a pillow structure with a source of light for viewing objects placed in the cavity in the middle of the pillow structure the would be a useful invention.
The invention features a pillow structure for the user to rest facing down toward the pillow structure. The pillow structure has a top surface, at least two sides, a bottom, and a cavity in the middle of the pillow structure. The inventive pillow structure has a cavity in the middle of the structure, at least one opening located substantially on the top of the pillow structure for the user's face, at least two side openings in the sides of the pillow structure for the user's hands and arms to be placed within the cavity. The inventive pillow's cavity can be accessed from the outside of the pillow from the at least one opening on the top surface and from the at least two openings on the sides. The cavity may also be accessed from other openings of the pillow structure. All these openings may increase air flow and may provide a space for a light source and power source. Any opening may be large enough for the insertion of useful objects or devices into the pillow structure, such as wires, cords, and headphones to extend through the openings into the cavity.
A first embodiment of the inventive pillow structure 100 is shown in
The top surface of the pillow structure 105 contains at least one opening 106 in the top surface. The user 155 can place her face into the opening in the top surface 106. There are at least two sides 110 to the pillow structure 100. There are at least two openings 120 in the at least two sides 110. The at least two openings in the sides 120 provide access to a cavity in the middle of the pillow structure 100. (The cavity will be described in the description of
The perpendicular angle of the user's arms 170 when placed in the openings in the sides 120 provides additional comfort and the ability to view objects or devices 190 in the user's hands 175 when the user's hands 175 are directly below the user's face 155. By designing the pillow structure with side openings 120 that provide access to the cavity in the middle of the pillow structure, the user can lean their body 160 into the pillow structure and place their arms 170 horizontally underneath their head in a position substantially perpendicular to their body 160 position without the stress of the user's body-weight against their arms. The side openings 120 provide an inventive way for the user to place the user's arms 170 underneath their face 155 and support their weight with other parts of their body 160 against the top surface 105 of the pillow structure.
The user can place their arms 170 into the openings in the sides 120, and place their arms 170 underneath their face 155. In this embodiment, the user's arms 170 are substantially perpendicular to their body 160, providing a comfortable way to rest without pressure on the user's arms 170 caused by the weight of the user's body 160. The openings in the side 120 may be structurally supported by other materials such as plastic, foam, metal, or wood, providing additional support for the weight of the user's face 155 and body 160 on top surface of the pillow structure. Said side openings 120 can be any shape or size, so long as the material making up the pillow structure can allow the side openings to be sized that large. The pillow structure 100 may be filled with plastic, foam, feathers, air, or any material strong enough to support the weight from the user's face 155 and the front of the user's body 160 leaning against the top surface 105 of the pillow structure while still maintaining the cavity in the middle of the pillow structure and at least two side openings 120. Said side openings 120 can be circular shaped to the contours of the user's arm 170. Said side openings 120 may be open at the bottom, as demonstrated by the first embodiment as shown in
The head-side of the pillow structure 115 in the first embodiment has at least one opening 117, which provides access to the cavity. This opening in the head-side 117 provides additional air flow and circulation from outside the pillow structure 100. This opening in the head-side 117 can be used to insert other objects, such as a book or device 190. This opening in the head-side 117 can be used for other reasons that provide additional utility to the pillow structure 100, including providing a space for illumination for a user reading a book, a power source for a user using a device, a space for wires or cords, such as wires for a headsets or earbuds. The opening in the head-side 117 can be used for a user to place their hand 175 or arm 170 out of the pillow structure 100.
The overall shape of the pillow structure 100 in the first embodiment is angled at a gradual incline so that the user's face 155 is at a slightly higher elevation than the user's body 160 and legs 165. The gradual incline allows for the user's body 160 to be supported throughout the pillow structure 100. This gradual incline allows for room for the cavity in the pillow structure beneath the user's face 155. This also allows for room for the user's arms 170 and hands 175 to fit under the user's face 155.
The opening in the top surface 206 is not circular in this embodiment, but instead has a figure-eight shape with a substantially circular-shaped rim 207 for the user's face 155 and a substantially oval-shaped rim 208 extended downward from the circular-shaped rim 207. The substantially oval-shaped rim 208 provides more air flow and circulation for a user's face 155 when the user is facing down into the opening at the top surface 206 and breathing into the cavity 240. The substantially oval-shaped rim 208 provides room for a user to insert one arm 170 into the opening at the top surface 206 if the user turns sideways. The sides 210 of the pillow structure are sloped in this embodiment in a concave shape. The sides 210 can be rounded, straight, concave, convex, or any other shape or combination of shapes. In another embodiment, the sides 210 may be straight down from the top surface 205 down to the base.
A second embodiment of the inventive pillow structure is shown in
The top surface 1305 of the pillow structure in the second embodiment is angled at a slight and gradual incline for the comfort of the user leaning forward into the pillow structure.
The pillow structure 1300 in the second embodiment does not contain any openings in the head-side of the pillow structure.
The pillow structure 1400 in this embodiment is substantially round and circular in shape. The at least two side openings 1420 in the sides provide access from the outside of the sides of the pillow structure to the cavity in the middle of the pillow structure 1440. The at least one opening in the top surface 1406 provides access to a cavity 1440. The cavity 1440 can be accessed from the outside of the pillow from the at least one opening on the top surface 1406 and from the at least two openings on the sides 1420. The at least two side openings 1420 provide space for the insertion of an object into the cavity 1440 in the middle of the pillow structure 1400, such as a mobile device, phone, tablet, gaming device, or other device. The side opening 1420 could also provide space for a power cord or wire for headphones. The cavity 1440 in the middle of the pillow structure can be various sizes and shapes to accommodate various objects or devices. The pillow structure 1400 may contain additional side openings or head-side openings for objects, cords, headphones, or wires to be inserted into the cavity 1440. The pillow structure 1400 may have additional side openings or head-side openings to provide space to illuminate the cavity 1440, or to increase air circulation or flow in the cavity 1440 or in the side openings 1420. This embodiment has an indented edge 1409 where the bottom of the rounded top surface 1405 meets the at least two sides 1410. The at least two sides 1410 are continuous, without delineations, since the pillow structure 1400 is circular with a circular base 1545. A different embodiment could have delineated sides 1410. The indented edge 1409 may not exist if the embodiment has a smooth transition where the top surface 1405 and the sides 1410 meet, such as the embodiment shown in
It is not expected that the invention be restricted to the exact embodiments disclosed herein. Modifications can be made without departing from the inventive concept. For example, other materials can be used to manufacture the pillow structure other than those listed. The scope of the invention should be construed in view of the claims.
This application is a divisional of U.S. application Ser. No. 13/902,741 filed on May 24, 2013, the contents of which are incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
2107962 | Sheasby | Feb 1938 | A |
2551727 | Costello | May 1951 | A |
2688142 | Jensen | Sep 1954 | A |
3009172 | Eidam | Sep 1961 | A |
3366106 | Yao | Jan 1968 | A |
3883906 | Sumpter | May 1975 | A |
3897102 | Lemaire | Jul 1975 | A |
D271834 | Huntsinger | Dec 1983 | S |
D277059 | Boone | Jan 1985 | S |
4821355 | Burkhardt | Apr 1989 | A |
D309542 | Glenn | Jul 1990 | S |
D337914 | McDonald | Aug 1993 | S |
5269035 | Hartunian | Dec 1993 | A |
5369824 | Powell | Dec 1994 | A |
5400449 | Satto | Mar 1995 | A |
D364464 | Gigante | Nov 1995 | S |
5479667 | Nelson | Jan 1996 | A |
5632050 | Zajas | May 1997 | A |
5644809 | Olson | Jul 1997 | A |
5652981 | Singer-Leyton | Aug 1997 | A |
5865181 | Spence, Jr. | Feb 1999 | A |
5893183 | Bechtold, Jr. | Apr 1999 | A |
D414974 | Marrone, II | Oct 1999 | S |
5960494 | Gilliland | Oct 1999 | A |
6128797 | Shaffer | Oct 2000 | A |
6142844 | Klauber | Nov 2000 | A |
6151734 | Lawrie | Nov 2000 | A |
D471050 | Haubner | Mar 2003 | S |
6671907 | Zuberi | Jan 2004 | B1 |
6842924 | Walters | Jan 2005 | B1 |
7020918 | Tinsley | Apr 2006 | B1 |
D578220 | Ebarb | Oct 2008 | S |
D585139 | Andrews | Jan 2009 | S |
7788751 | Diemer | Sep 2010 | B1 |
7997276 | Goff | Aug 2011 | B2 |
8006335 | Andermann | Aug 2011 | B1 |
8069515 | Tingey | Dec 2011 | B1 |
D686026 | Wagner | Jul 2013 | S |
8549683 | Ratner | Oct 2013 | B2 |
D715580 | Ganjavian | Oct 2014 | S |
D718074 | Savolainen | Nov 2014 | S |
20020177946 | Ueno | Nov 2002 | A1 |
20020184706 | Riach | Dec 2002 | A1 |
20030172462 | Hoggatt | Sep 2003 | A1 |
20040064893 | Sharp | Apr 2004 | A1 |
20080303318 | Hamilton | Dec 2008 | A1 |
20090302659 | Goddu | Dec 2009 | A1 |
20100242179 | Berke | Sep 2010 | A1 |
20100300455 | Goff | Dec 2010 | A1 |
20110296615 | Tingey | Dec 2011 | A1 |
20130276236 | Rasmussen | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150335180 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13902741 | May 2013 | US |
Child | 14819641 | US |