Pilot operated spool valve

Information

  • Patent Grant
  • 8387659
  • Patent Number
    8,387,659
  • Date Filed
    Friday, March 28, 2008
    16 years ago
  • Date Issued
    Tuesday, March 5, 2013
    11 years ago
Abstract
A spool valve assembly includes a spool that is moveable by differential pressure across the spool.
Description
BACKGROUND OF THE INVENTION

This invention relates in general to valves for controlling fluid flow in a hydraulic or pneumatic system. More particularly, this invention relates to an improved spool valve assembly.


Valves are widely used for controlling the flow of a fluid from a source of pressurized fluid to a load device or from a load device to a pressure vent. Frequently, a pump, or other device, is provided as the source of pressured fluid. The flow of the fluid is selectively controlled by a valve to control the operation of the load device.


One type of valve is a microvalve. A microvalve system is a MicroElectroMechanical System (MEMS) relating in general to semiconductor electromechanical devices.


MEMS is a class of systems that are physically small, having features with sizes in the micrometer range. A MEMS device is a device that at least in part forms part of such a system. These systems have both electrical and mechanical components. The term “micromachining” is commonly understood to mean the production of three-dimensional structures and moving parts of MEMS devices.


MEMS originally used modified integrated circuit (computer chip) fabrication techniques (such as chemical etching) and materials (such as silicon semiconductor material) to micromachine these very small mechanical devices. Today there are many more micromachining techniques and materials available.


The term “microvalve”, as used in this application, means a valve having features with sizes in the micrometer range, and thus by definition is at least partially formed by micromachining. The term “microvalve device”, as used in this application, means a device that includes a microvalve, and that may include other components. It should be noted that if components other than a microvalve are included in the microvalve device, these other components may be micromachined components or standard (macro) sized (larger) components.


Various microvalve devices have been proposed for controlling fluid flow within a fluid circuit. A typical microvalve device includes a displaceable member or valve movably supported by a body and operatively coupled to an actuator for movement between a closed position and a fully open position. When placed in the closed position, the valve blocks or closes a first fluid port that is placed in fluid communication with a second fluid port, thereby preventing fluid from flowing between the fluid ports. When the valve moves from the closed position to the fully open position, fluid is increasingly allowed to flow between the fluid ports.


One type of microvalve is the micro spool valve. The micro spool valve typically consists of a main valve body disposed in a chamber formed in an intermediate layer of multilayer valve housing. A variety of ports through the layers of the housing provide fluid communication with the chamber. The main valve body is moveable in the chamber to selectively allow fluid communication though the chamber by blocking particular ports depending on the desired result. In operation, a differential pressure is exerted across the main valve body to move the main valve body into a desired position. Typically, the differential pressure is controlled by a pilot valve.


Another type of microvalve, often used as a pilot valve, consists of a beam resiliently supported by the body at one end. In operation, an actuator forces the beam to bend about the supported end of the beam. In order to bend the beam, the actuator must generate a force sufficient to overcome the spring force associated with the beam. As a general rule, the output force required by the actuator to bend or displace the beam increases as the displacement requirement of the beam increases.


In addition to generating a force sufficient to overcome the spring force associated with the beam, the actuator must generate a force capable of overcoming the fluid flow forces acting on the beam that oppose the intended displacement of the beam. These fluid flow forces generally increase as the flow rate through the fluid ports increases.


As such, the output force requirement of the actuator and in turn the size of the actuator and the power required to drive the actuator generally must increase as the displacement requirement of the beam increases and/or as the flow rate requirement through the fluid ports increases.


One specific type of microvalve system is the pilot operated microvalve. Typically, such a microvalve device includes a micro spool valve that is pilot operated by a microvalve of the type as described above. For Example, U.S. Pat. Nos. 6,494,804, 6,540,203, 6,637,722, 6,694,998, 6,755,761, 6,845,962, and 6,994,115 disclose pilot operated microvalves, the disclosures of which are herein incorporated by reference.


SUMMARY OF THE INVENTION

This invention relates to an improved spool valve arrangement for controlling fluid flow in a hydraulic or pneumatic system.


The spool valve assembly includes a pilot operated spool valve that is moveable by differential pressure across the valve. In one embodiment, the spool valve assembly includes a spool disposed in a chamber. A first volume of fluid at a control pressure is disposed between a first spool end and a first chamber end. A second volume of fluid at a reference pressure is disposed between a second spool end and a second chamber end. The reference pressure varies as the position of the spool valve varies, due to a concurrent throttling effect of the spool valve. In another embodiment, the spool valve assembly includes a micro pilot valve that sets a command pressure in response to which a spool of a main spool valve moves. A cross-sectional flow area of a port of the main spool valve changes in proportion to the actuation of the micro pilot valve.


Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a spool valve assembly according to a first embodiment of the present invention.



FIG. 2 is a perspective view from below of the mounting structure of FIG. 1.



FIG. 3 is a semi-transparent perspective view of the assembly of FIG. 1.



FIG. 4 is a cross-sectional view of the assembly of FIG. 3 taken along line 4-4.



FIG. 5 is a cross-sectional view of the assembly of FIG. 3 taken along line 5-5.



FIG. 6 is a cross-sectional view of the main spool valve of FIG. 5 in a fully open position.



FIG. 7 is a cross-sectional view of the main spool valve of FIG. 5 in an intermediate position.



FIG. 8 is a cross-sectional view of the main spool valve of FIG. 5 in a fully closed position.



FIG. 9 is an enlarged cross-sectional view of FIG. 7.



FIG. 10 a cross-sectional view of a main spool valve of a spool valve assembly according to a second embodiment of the present invention showing the main spool valve in a fully closed position.



FIG. 11 is a cross-sectional view of the main spool valve of FIG. 10 in an intermediate position.



FIG. 12 is a cross-sectional view of the main spool valve of FIG. 10 in a fully open position.



FIG. 13 is an enlarged cross-sectional view of FIG. 11.



FIG. 14 is a perspective view of a main spool valve of a spool valve assembly according to a third embodiment of the present invention showing the main spool valve having two main input ports and two main output ports.



FIG. 15 is a perspective view of a main spool valve of a spool valve assembly according to a fourth embodiment of the present invention showing the main spool valve having four main input ports and four main output ports.



FIG. 16 is a perspective view of a main spool valve of a spool valve assembly according to a fifth embodiment of the present invention showing the main spool valve having eight main input ports and eight main output ports.



FIG. 17 is a cross-sectional schematic view of a spool valve assembly according to a sixth embodiment of the present invention illustrating the fluid pressures in an intermediate position.



FIG. 18 is a front perspective schematic view of the spool valve assembly of FIG. 17.



FIG. 19 is a back perspective schematic view of the spool valve assembly of FIG. 17.



FIG. 20 is a semi-transparent perspective schematic view of a spool valve assembly according to a seventh embodiment of the present invention.



FIG. 21 is a cross-sectional schematic view of a spool valve assembly according to an eighth embodiment of the present invention illustrating the fluid pressures in an fully open position



FIG. 22 is a semi-transparent perspective schematic view of a spool valve assembly according to a ninth embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

There is shown in FIGS. 1 and 3-5 a spool valve assembly 10 according to a first embodiment of the present invention. Note that elements with similar structure and function through out all of the Figures are labeled with similar identifiers (reference numbers). The assembly 10 includes a macro-sized main spool valve 12 that is driven by a micro pilot valve 14. Although the assembly 10 has been described as including the macro-sized main spool valve 12 and the micro pilot valve 14, it must be understood that the assembly 10 may includes any main spool valve or pilot valve suitable for the application in which the assembly 10 is to be used. In operation, the main spool valve 12 follows the movement of the pilot valve 14. That is to say that a change in the open-closed position of the pilot valve 14 is match by a linearly equivalent change in the open-closed position of the spool valve 12. In the present example, a direct linear relationship, if the micro pilot valve 14 is half-open, the spool valve 12 will be half-open, etc. This is true regardless of pressure and flow conditions under which the assembly 10 is operating. The assembly 10 is preferably an electronically adjustable. As compared to other valve assemblies, the assembly 10 is preferably capable of handling high flows for it's size, and also preferably has a quick response.


The main spool valve 12 is a normally open valve. Although, it must be understood that the main spool valve 12 may be a normally closed, or otherwise normally positioned valve. The spool valve 12 is best shown in FIGS. 4 and 5 in a fully open position.


The main spool valve 12 is disposed in a block valve housing 16, although such is not required. The main spool valve 12 may be placed in any suitable environment.


The micro pilot valve 14 is secured to the valve housing 16 via a mounting structure 18, as best shown in FIG. 2, although such is not required. It must be understood that the pilot valve 14 may be suitably arranged anywhere in any manner in the assembly 10 as so desired.


The valve housing 16 includes a variety of passageways and port for connecting different portions of the device 10 to other portions of a fluid circuit or with each other.


As best shown in FIG. 5, the main spool valve 12 includes a spool 20 disposed within a sleeve 22 disposed with a chamber 24 formed in the valve housing 16. In one preferred embodiment, the spool 20 is a 6 mm diameter spool. The sleeve 22 includes a plurality of primary flow ports, including primary input ports 26 and primary output ports 28. As shown in FIG. 4, the primary flow enters the chamber 24 at P1 and exits the chamber 24 at P2. Referring again to FIG. 5, the pilot valve 14 will set a command pressure at C1 and in response, the spool 20 will move and set a corresponding reference pressure at R1. Preferably, the total stroke of the spool 20 is 1.0 mm, although such is not required. The sleeve 22 also includes at least one reference input port 30 and one reference output port 32. Most preferably, the reference input port 30 and the reference output port 32 two holes of 1.0 mm diameter. in series.


A plurality of optional ball check valves 34 are pressed into a series of passageways in the mount 18 and the housing 16 to provide additional flow control as desired.


In a preferred embodiment, the micro pilot valve 14 is an open center 3-way valve. The pilot valve 14 controls the command pressure on the spool 20 as indicated at C1. The spool 20 of the main spool valve 12 will move to a position that replicates the control pressure in the reference pressure on the end of the spool 20 as indicated at R1. This action modulates the open area of main flow of the spool valve 12 between the main input ports 26 and the main output ports 28.


There is shown in FIG. 6 the main spool valve 12 in a fully open position. In the case of a normally closed (closed in the unactuated state) pilot valve, this represents a power off example to the pilot valve. In this example, pressure from a supply source goes to the normally closed input port of the micro pilot valve 14. A lower pressure return is open to the output port of the micro spool valve 14. The pressure at C1 is the return pressure. The spool 20 is positioned toward the low pressure at C1 and the main spool valve 12 is fully open to main flow MF between the main input ports 26 and the main output ports 28. The input reference port 30 is closed to the reference pressure R1. The output reference port 32 is open to the reference pressure R1.


There is shown in FIG. 7 the main spool valve 12 in an intermediate position. In the present example, this represents a mid-power setting of the pilot valve. The pilot valve 14 is partially open giving an intermediate (to the supply and return) pressure in the command pressure C1. The main flow MF through the spool valve 12 is partially open. There is a feedback flow FF between the reference input port 30 and the reference output port 32 that sets the reference pressure R1. Preferably, the reference pressure R1 exists in the center of the spool 20 and in end grooves 36 of the spool 20.



FIG. 8 is a cross-sectional view of the main spool valve of FIG. 5 in a fully closed position. In the present example, this represents the pilot valve at full power: The pilot valve 14 is fully open to the source pressure generating maximum command pressure C1. The spool 20 of the main spool valve 12 is urged toward the reference pressure R1 and thus the main flow through the spool valve 12 is closed. The feedback flow is also closed only connecting the reference pressure R1 with the reference input port 30, resulting in supply pressure at the reference pressure R1.


The examples described with reference to FIGS. 6-8 are described with reference to a normally closed pilot valve with a normally open main spool valve. It must be understood, however, that a spool valve assembly according to the invention may include any desired combination of normally open, normally, closed or otherwise normally positioned valves.


It should be noted that in the preferred embodiment the command pressure C1 is essentially ported from the pilot valve 14 to the end of the spool 20 at the command pressure C1 to actuate movement of the spool 20. It must also be understood that in the preferred embodiment the feedback flow FF passes through the spool 20 to reduce leakage between the command pressure C1 and the reference pressure R1. This is useful in the replication of the movement of the spool 20 relative to the position of the pilot valve 14 and the power applied to the pilot valve 14.


There is shown in FIG. 9 an enlarged view of FIG. 7.


There is shown in FIG. 10 a main spool valve 112 of a spool valve assembly according to a second embodiment of the present invention where the spool valve 112 is a normally closed valve and the pilot valve (not shown) is a normally closed valve. The main spool valve 112 is shown in FIG. 10 in a fully closed position. In this example, this case represents a power off state for the pilot valve. A pilot input port of the pilot valve is closed to a high pressure source while a pilot output port of the pilot valve is open to a low pressure return. A volume of fluid at control pressure C2 is in communication with the low pressure return via the pilot valve. A spool 120 of the spool valve 112 is drawn toward the volume at control pressure C2. Thus, the spool valve 112 is closed to a main flow. A feedback flow is closed between a reference input port 130 and a reference output port 132.


There is shown in FIG. 11 the main spool valve 112 in an intermediate position. In this example, this represents a mid power actuation for the pilot valve. The pilot input port will be partially open to the high pressure source and the pilot output port will be partially open to the low pressure return. Thus, the pilot valve provides an intermediate (to the supply pressure and return pressure) pressure command pressure C1 to the spool valve 112. The spool 120 is drawn toward a reference pressure R2. The spool valve 120 is partially open to the main flow MF between main input ports 126 and main out put ports 128. The spool valve 120 is partially open to the feedback flow FF.


There is shown in FIG. 12 the main spool valve 112 in a fully open position. In the present example, this case is a full power actuation of the pilot valve 114. The pilot input port is fully to the supply source and the pilot output port is fully closed to the low pressure return. Thus, the command pressure C2 is equal to the high pressure supply. The spool 120 is urged toward the reference pressure R2. The main flow is fully open. The reference pressure is in full communication with the high pressure supply source and fully closed to the low pressure return.


Preferably, in the present example, a pressurized volume of fluid exists within the spool 120 to reduce leakage between the command pressure C2 and the reference pressure R2. This is useful in replication of the pilot valve position by the main spool.


There is shown in FIG. 13 an enlarged view of FIG. 11.


According to several embodiments of the present invention, the flow capacity of a main flow may be adjusted, as desired, by the adjusting number and/or size of apertures provided in a spool sleeve.


There is shown in FIG. 14 a main spool valve 212 according to a third embodiment of the present invention having a sleeve 222 including two main input ports 226 (one shown) and two main output ports (one shown). Preferably, the apertures form the main input ports 226 and the main output ports 228 are 1.0 mm diameter, although the apertures may be any desired diameter.


There is shown in FIG. 15 a main spool valve 312 according to a fourth embodiment of the present invention having a sleeve 322 including four main input ports 326 (two shown) and four main output ports (two shown). Preferably, the apertures form the main input ports 326 and the main output ports 328 are 1.0 mm diameter, although the apertures may be any desired diameter.


There is shown in FIG. 16 a main spool valve 412 according to a fifth embodiment of the present invention having a sleeve 422 including eight main input ports 426 (four shown) and eight main output ports (four shown). Preferably, the apertures form the main input ports 426 and the main output ports 428 are 1.0 mm diameter, although the apertures may be any desired diameter.


There is shown in FIG. 17-19 a spool valve assembly 510 according to a sixth embodiment of the present invention illustrating the fluid pressures in an intermediate position.


There is shown in FIG. 20 a spool valve assembly 610 according to a seventh embodiment of the present invention.


There is shown in FIG. 21 a spool valve assembly 710 according to an eighth embodiment of the present invention illustrating the fluid pressures in an fully open position


There is shown in FIG. 22 a spool valve assembly 810 according to a ninth embodiment of the present invention.


In one aspect of the present invention, a valve device includes control structure for controlling the size of a main flow opening. For example, in the illustrated cases of both normally open and normally closed spool valves, any disturbing force trying to change the size of one of the main flow orifices is countered by feed back.


Although, a valve assembly according to one embodiment of the present invention is made of a metal such as aluminum or stainless steel, it must be understood that the valve assembly may be made of ceramics or any material suitable for the application in which the valve is to be used.


The relationships between the cross-sectional port flow areas and the system pressure can be illustrated by the following mathematical equations 1 and 3.










P
2

=



P
1



A
1
2



(


A
1
2

+

A
2
2


)






Equation





1







where P2 is the pressure of the command volume C1 set by the pilot valve 14 (note that the pressure of the reference volume R1 will also be C1), P1 is the pressure of the fluid provided by a supply source through the primary input P1, A1 is the cross-sectional flow area of the pilot input port, and A2 is the cross-sectional area or the pilot output port.


The following Equation 2 is achieved by rearranging Equation 1.











A
2


A
1


=




P
1

-

P
2



P
2







Equation





2







Additionally,










P
2

=



P
1



A
3
2



(


A
3
2

+

A
4
2


)






Equation





3







where A3 is the cross-sectional flow area of the reference input port 30, and A4 is the cross-sectional area of the reference output port 32.


The following Equation 4 is achieved by rearranging Equation 3.












A
4


A
3


=




P
1

-

P
2



P
2










Thus
,





Equation





4








A
2


A
1


=


A
4


A
3






Equation





5







Showing that the ratio of the cross-sectional flow areas of the pilot input port and the pilot output port is equal to the ratio of the cross-sectional flow areas of the reference input port 30 and the reference output port 32.


While the principle and mode of operation of this invention have been explained and illustrated with regards to particular embodiments, it must, however, be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.

Claims
  • 1. A spool valve assembly for controlling fluid flow comprising: a body defining: a chamber having first and second endsa spool input port for fluid communication into the chamber;a spool output port for fluid communication out of the chamber;a reference inlet port for fluid communication into the chamber anda reference outlet port for fluid communication out of the chamber; anda spool having first and second ends disposed in the chamber for sliding movement between a first position which allows fluid flow from the spool input port to the spool output port and a second position which restricts fluid flow from the spool input port to the spool output port, the spool being positioned by differential pressure across the spool between a first volume of fluid, at a command pressure, disposed between the first spool end and the first end of the chamber and a second volume of fluid, at a reference pressure, disposed between the second spool end and the second end of the chamber, the reference inlet port and the reference outlet port both being in selective fluid communication with the second volume of fluid, one of the reference inlet port and the reference outlet port having a first flow capacity when the spool is in the first position and the one of the reference inlet port and the reference outlet port having a second flow capacity when the spool is in the second position, such that the reference pressure is changed by changing the position of the spool.
  • 2. The spool valve assembly of claim 1 wherein the body includes a spool valve sleeve, supporting the spool.
  • 3. The spool valve assembly of claim 1, further comprising: a command port adapted to receive a command pressure signal;the reference inlet port being adapted to be connected to a source of fluid at a first pressure;the reference outlet port being adapted to be connected to a region of fluid at a second pressure, less than the first pressure; andthe first end of the spool cooperating with the body to define the first volume of fluid to have a variable size between the first end of the spool and the first end of the chamber, the first volume being in continuous fluid communication with the command port,the second end of the spool cooperating with the body to define the second volume of fluid to have a variable size between the second end of the spool and the second end of the chamber, the spool being movable between the first position, adjacent the first end of the chamber, and the second position, adjacent the second end of the chamber while substantially preventing fluid leakage through the chamber between the first volume of fluid and the second volume of fluid, the spool permitting fluid communication between the spool input port and the spool output port when the spool is in the first position, the spool blocking fluid communication between the spool input port and the spool output port when the spool is in the second position, the spool progressively decreasing fluid communication between the reference outlet port and the first volume of fluid and progressively increasing fluid communication between the reference inlet port and the first volume of fluid as the spool is moved from the first position thereof toward the second position thereof to cause pressure to rise in the second volume of fluid as the spool is moved from the first position toward the second position thereof, the spool being moved by a difference in pressures between the first volume of fluid and the second volume of fluid.
  • 4. The spool valve assembly of claim 3, further comprising a pilot microvalve which is selectively actuated to send a pressure command to the first volume of fluid, wherein a cross-sectional flow area of a port of the spool valve changes in proportion to the actuation of the pilot microvalve.
  • 5. The spool valve assembly of claim 3, wherein the body comprises: a valve housing; anda sleeve disposed in the valve housing, within the chamber, the spool input port and the spool output port being formed in the sleeve.
  • 6. The spool valve assembly of claim 1, further comprising a pilot microvalve which is selectively actuated to send a pressure command to the first volume of fluid, wherein a cross-sectional flow area of a port of the spool valve changes in proportion to the actuation of the pilot microvalve.
  • 7. The spool valve assembly of claim 6, further comprising a longitudinal fluid bore defined in the spool, the bore providing fluid communication a location in a fluid flow path between the reference inlet port and the reference outlet port to provide the selective fluid communication between the reference inlet port and the second volume, and to provide the selective fluid communication between the reference outlet port and the second volume, such that the reference pressure in the second volume changes in response to changes in the position of the spool.
  • 8. The spool valve assembly of claim 7, further comprising: a first region of the spool, intermediate the first end and the second end of the spool, that cooperates with the spool input port and the spool output port to varying fluid flow between the spool input port and the spool output port; anda groove formed in an outer surface of the spool at a location between the first region of the spool and the first end of the spool, the groove being in fluid communication with the longitudinal fluid bore.
  • 9. The spool valve assembly of claim 8, wherein the pilot valve is a microvalve.
  • 10. The spool valve assembly of claim 6, wherein the pilot valve is an open center 3-way valve.
  • 11. The spool valve assembly of claim 10, further comprising a longitudinal fluid bore defined in the spool, the bore providing fluid communication a location in a fluid flow path between the reference inlet port and the reference outlet port to provide the selective fluid communication between the reference inlet port and the second volume, and to provide the selective fluid communication between the reference outlet port and the second volume, such that the reference pressure in the second volume changes in response to changes in the position of the spool.
  • 12. The spool valve assembly of claim 11, further comprising: a first region of the spool, intermediate the first end and the second end of the spool, that cooperates with the spool input port and the spool output port to varying fluid flow between the spool input port and the spool output port; anda groove formed in an outer surface of the spool at a location between the first region of the spool and the first end of the spool, the groove being in fluid communication with the longitudinal fluid bore.
  • 13. The spool valve assembly of claim 12, wherein the pilot valve is a microvalve.
  • 14. The spool valve assembly of claim 1, further comprising: a pilot valve having: a pilot input port; anda pilot output port, at least one of the cross-sectional flow area through the pilot input port and the cross-sectional flow area through the pilot output port being varied as the pilot valve is operated,the spool cooperating with the body to define a fluid passageway from the spool input port to the spool output port,at least one of the cross-sectional flow area through the spool input port and the cross-sectional flow area through the spool output port being varied as the spool moves,the command pressure in the first volume of fluid being controlled by the pilot valve,the spool moving in response to changing command pressures from the pilot valve such that a ratio of the cross-sectional flow area of the spool input port to the spool output port is maintained substantially equal to a ratio of the cross-sectional flow area of the pilot input port to the pilot output port.
  • 15. The spool valve assembly of claim 14, the spool valve further comprising: the spool input port being adapted to be connected to a source of fluid at a first pressure,the spool output port being adapted to be connected to a region of fluid at a second pressure, less than the first pressure; andthe spool being movable between a first position adjacent the first end of the chamber and a second position adjacent the second end of the chamber while substantially preventing fluid leakage through the chamber between the first volume at the command pressure and the second volume at the reference pressure, the spool permitting fluid communication between the spool input port and the spool output port when the spool is in the first position, the spool blocking fluid communication between the spool input port and the spool output port when the spool is in the second position, the spool progressively decreasing fluid communication between the reference outlet port and the second volume at the reference pressure and progressively increasing fluid communication between the reference inlet port and the second volume at the reference pressure as the spool is moved from the first position thereof toward the second position thereof to cause pressure to rise in the reference volume as the spool is moved from the first position toward the second position thereof, the spool progressively increasing fluid communication between the reference outlet port and the second volume at the reference pressure and progressively decreasing fluid communication between the reference inlet port and the second volume at the reference pressure as the spool is moved from the second position thereof toward the first position thereof to cause pressure to fall in the reference volume as the spool is moved from the second position toward the first position thereof, the spool being moved by a difference in pressures between the first volume at the command pressure and the second volume at the reference pressure.
  • 16. The spool valve assembly of claim 15, wherein the spool is movable to simultaneously modulate flow from the spool input port to the spool output port and modulate flow between the reference inlet port and the reference outlet port.
  • 17. The spool valve assembly of claim 14, wherein the pilot valve is a microvalve.
  • 18. The spool valve assembly of claim 14, wherein the body comprises: a valve housing; anda sleeve disposed in the valve housing, within the chamber, the spool input port and the spool output port being formed in the sleeve.
  • 19. The spool valve assembly of claim 14, wherein the pilot valve is an open center 3-way valve.
  • 20. The spool valve assembly of claim 14, further comprising a longitudinal fluid bore defined in the spool, the bore providing fluid communication a location in a fluid flow path between the reference inlet port and the reference outlet port to provide the selective fluid communication between the reference inlet port and the second volume, and to provide the selective fluid communication between the reference outlet port and the second volume, such that the reference pressure in the second volume changes in response to changes in the position of the spool.
  • 21. The spool valve assembly of claim 20, further comprising: a first region of the spool, intermediate the first end and the second end of the spool, that cooperates with the spool input port and the spool output port to varying fluid flow between the spool input port and the spool output port; anda groove formed in an outer surface of the spool at a location between the first region of the spool and the first end of the spool, the groove being in fluid communication with the longitudinal fluid bore.
  • 22. The spool valve assembly of claim 21, wherein the pilot valve is a microvalve.
  • 23. The spool valve assembly of claim 1, wherein the body comprises: a valve housing; anda sleeve disposed in the valve housing, within the chamber, the spool input port and the spool output port being formed in the sleeve.
  • 24. The spool valve assembly of claim 1, wherein the spool is movable to simultaneously modulate flow from the spool input port to the spool output port and modulate flow between the reference inlet port and the reference outlet port.
  • 25. The spool valve assembly of claim 24, further comprising a longitudinal fluid bore defined in the spool, the bore providing fluid communication a location in a fluid flow path between the reference inlet port and the reference outlet port to provide the selective fluid communication between the reference inlet port and the second volume, and to provide the selective fluid communication between the reference outlet port and the second volume, such that the reference pressure in the second volume changes in response to changes in the position of the spool.
  • 26. The spool valve assembly of claim 25, further comprising: a first region of the spool, intermediate the first end and the second end of the spool, that cooperates with the spool input port and the spool output port to varying fluid flow between the spool input port and the spool output port; anda groove formed in an outer surface of the spool at a location between the first region of the spool and the first end of the spool, the groove being in fluid communication with the longitudinal fluid bore.
  • 27. The spool valve assembly of claim 26, wherein the pilot valve is a microvalve.
  • 28. The spool valve assembly of claim 1, further comprising a longitudinal fluid bore defined in the spool, the bore providing fluid communication a location in a fluid flow path between the reference inlet port and the reference outlet port to provide the selective fluid communication between the reference inlet port and the second volume, and to provide the selective fluid communication between the reference outlet port and the second volume, such that the reference pressure in the second volume changes in response to changes in the position of the spool.
  • 29. The spool valve assembly of claim 17, further comprising: a first region of the spool, intermediate the first end and the second end of the spool, that cooperates with the spool input port and the spool output port to varying fluid flow between the spool input port and the spool output port; anda groove formed in an outer surface of the spool at a location between the first region of the spool and the first end of the spool, the groove being in fluid communication with the longitudinal fluid bore.
  • 30. The spool valve assembly of claim 29, wherein the groove extends circumferentially about the spool.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of co-pending international application PCT/US2008/004134, filed 28 Mar. 2008, which claimed priority to US Provisional Patent Application No. 60/921,105, filed 31 Mar. 2007, the disclosures of both of which are incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2008/004134 3/28/2008 WO 00 9/29/2009
Publishing Document Publishing Date Country Kind
WO2008/121365 10/9/2008 WO A
US Referenced Citations (178)
Number Name Date Kind
668202 Nethery Feb 1901 A
886045 Ehrlich et al. Apr 1908 A
1886205 Lyford Nov 1932 A
1926031 Boynton Sep 1933 A
2412205 Cook Dec 1946 A
2504055 Thomas Apr 1950 A
2585556 Johnson, Jr. Feb 1952 A
2651325 Lusignan Sep 1953 A
2836198 McNeill May 1958 A
2840107 Campbell Jun 1958 A
2875779 Campbell Mar 1959 A
3031747 Green May 1962 A
3729807 Fujiwara May 1973 A
3747628 Holster et al. Jul 1973 A
3860949 Stoeckert et al. Jan 1975 A
4005454 Froloff et al. Jan 1977 A
4019388 Hall, II et al. Apr 1977 A
4023725 Ivett et al. May 1977 A
4100236 Gordon et al. Jul 1978 A
4152540 Duncan et al. May 1979 A
4181249 Peterson et al. Jan 1980 A
4298023 McGinnis Nov 1981 A
4341816 Lauterbach et al. Jul 1982 A
4354527 McMillan Oct 1982 A
4434813 Mon Mar 1984 A
4476893 Schwelm Oct 1984 A
4543875 Imhof Oct 1985 A
4581624 O'Connor Apr 1986 A
4593719 Leonard Jun 1986 A
4628576 Giachino et al. Dec 1986 A
4647013 Giachino et al. Mar 1987 A
4661835 Gademann et al. Apr 1987 A
4772935 Lawler et al. Sep 1988 A
4821997 Zdeblick Apr 1989 A
4824073 Zdeblick Apr 1989 A
4826131 Mikkor May 1989 A
4828184 Gardner et al. May 1989 A
4869282 Sittler et al. Sep 1989 A
4938742 Smits Jul 1990 A
4943032 Zdeblick Jul 1990 A
4946350 Suzuki et al. Aug 1990 A
4959581 Dantlgraber Sep 1990 A
4966646 Zdeblick Oct 1990 A
5029805 Albarda et al. Jul 1991 A
5037778 Stark et al. Aug 1991 A
5050838 Beatty et al. Sep 1991 A
5054522 Kowanz et al. Oct 1991 A
5058856 Gordon et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5064165 Jerman Nov 1991 A
5065978 Albarda et al. Nov 1991 A
5066533 America et al. Nov 1991 A
5069419 Jerman Dec 1991 A
5074629 Zdeblick Dec 1991 A
5082242 Bonne et al. Jan 1992 A
5096643 Kowanz et al. Mar 1992 A
5116457 Jerman May 1992 A
5131729 Wetzel Jul 1992 A
5133379 Jacobsen et al. Jul 1992 A
5142781 Mettner et al. Sep 1992 A
5161774 Engelsdorf et al. Nov 1992 A
5169472 Goebel Dec 1992 A
5176358 Bonne et al. Jan 1993 A
5177579 Jerman Jan 1993 A
5178190 Mettner Jan 1993 A
5179499 MacDonald et al. Jan 1993 A
5180623 Ohnstein Jan 1993 A
5197517 Perera Mar 1993 A
5209118 Jerman May 1993 A
5215244 Buchholz et al. Jun 1993 A
5216273 Doering et al. Jun 1993 A
5217283 Watanabe Jun 1993 A
5222521 Kihlberg Jun 1993 A
5238223 Mettner et al. Aug 1993 A
5244537 Ohnstein Sep 1993 A
5267589 Watanabe Dec 1993 A
5271431 Mettner et al. Dec 1993 A
5271597 Jerman Dec 1993 A
5309943 Stevenson et al. May 1994 A
5323999 Bonne et al. Jun 1994 A
5325880 Johnson et al. Jul 1994 A
5333831 Barth et al. Aug 1994 A
5336062 Richter Aug 1994 A
5355712 Petersen et al. Oct 1994 A
5368704 Madou et al. Nov 1994 A
5375919 Furuhashi Dec 1994 A
5400824 Gschwendtner et al. Mar 1995 A
5417235 Wise et al. May 1995 A
5445185 Watanabe et al. Aug 1995 A
5458405 Watanabe Oct 1995 A
5543349 Kurtz et al. Aug 1996 A
5553790 Findler et al. Sep 1996 A
5566703 Watanabe et al. Oct 1996 A
5577533 Cook, Jr. Nov 1996 A
5589422 Bhat Dec 1996 A
5611214 Wegeng et al. Mar 1997 A
5785295 Tsai Jul 1998 A
5810325 Carr Sep 1998 A
5838351 Weber Nov 1998 A
5848605 Bailey et al. Dec 1998 A
5856705 Ting Jan 1999 A
5873385 Bloom et al. Feb 1999 A
5909078 Wood et al. Jun 1999 A
5926955 Kober Jul 1999 A
5941608 Campau et al. Aug 1999 A
5954079 Barth et al. Sep 1999 A
5955817 Dhuler et al. Sep 1999 A
5970998 Talbot et al. Oct 1999 A
5994816 Dhuler et al. Nov 1999 A
6019437 Barron et al. Feb 2000 A
6023121 Dhuler et al. Feb 2000 A
6038928 Maluf et al. Mar 2000 A
6041650 Swindler et al. Mar 2000 A
6096149 Hetrick et al. Aug 2000 A
6105737 Weigert et al. Aug 2000 A
6114794 Dhuler et al. Sep 2000 A
6116863 Ahn et al. Sep 2000 A
6123316 Biegelsen et al. Sep 2000 A
6124663 Haake et al. Sep 2000 A
6171972 Mehregany et al. Jan 2001 B1
6182742 Takahashi et al. Feb 2001 B1
6224445 Neukermans et al. May 2001 B1
6255757 Dhuler et al. Jul 2001 B1
6279606 Hunnicutt et al. Aug 2001 B1
6283441 Tian Sep 2001 B1
6386507 Dhuler et al. May 2002 B2
6390782 Booth et al. May 2002 B1
6494804 Hunnicutt et al. Dec 2002 B1
6505811 Barron et al. Jan 2003 B1
6520197 Deshmukh et al. Feb 2003 B2
6523560 Williams et al. Feb 2003 B1
6533366 Fuller et al. Mar 2003 B1
6540203 Hunnicutt Apr 2003 B1
6581640 Barron Jun 2003 B1
6637722 Hunnicutt Oct 2003 B2
6662581 Hirota et al. Dec 2003 B2
6694998 Hunnicutt Feb 2004 B1
6724718 Shinohara et al. Apr 2004 B1
6761420 Maluf et al. Jul 2004 B2
6845962 Barron et al. Jan 2005 B1
6872902 Cohn et al. Mar 2005 B2
6902988 Barge et al. Jun 2005 B2
6958255 Khuri-Yakub et al. Oct 2005 B2
6966329 Liberfarb Nov 2005 B2
7011378 Maluf et al. Mar 2006 B2
7063100 Liberfarb Jun 2006 B2
7210502 Fuller et May 2007 B2
7372074 Milne et al. May 2008 B2
7449413 Achuthan et al. Nov 2008 B1
8113448 Keating Feb 2012 B2
8113482 Hunnicutt Feb 2012 B2
8156962 Luckevich Apr 2012 B2
20020014106 Srinivasan et al. Feb 2002 A1
20020029814 Unger et al. Mar 2002 A1
20020096421 Cohn et al. Jul 2002 A1
20020174891 Maluf et al. Nov 2002 A1
20030061889 Tadigadapa et al. Apr 2003 A1
20030092526 Hunnicutt et al. May 2003 A1
20030098612 Maluf et al. May 2003 A1
20030159811 Nurmi Aug 2003 A1
20030206832 Thiebaud et al. Nov 2003 A1
20040115905 Barge et al. Jun 2004 A1
20050121090 Hunnicutt Jun 2005 A1
20050200001 Joshi et al. Sep 2005 A1
20050205136 Freeman Sep 2005 A1
20060017125 Lee et al. Jan 2006 A1
20060067649 Tung et al. Mar 2006 A1
20060218953 Hirota Oct 2006 A1
20070251586 Fuller et al. Nov 2007 A1
20070289941 Davies Dec 2007 A1
20080035224 Tyer Feb 2008 A1
20080072977 George et al. Mar 2008 A1
20090123300 Uibel May 2009 A1
20090186466 Brewer Jul 2009 A1
20100019177 Luckevich Jan 2010 A1
20100038576 Hunnicutt Feb 2010 A1
20100225708 Peng et al. Sep 2010 A1
20120000550 Hunnicutt Jan 2012 A1
Foreign Referenced Citations (40)
Number Date Country
200880014057.X Jul 2010 CN
101617155 Mar 2012 CN
2215526 Oct 1973 DE
2930779 Feb 1980 DE
3401404 Jul 1985 DE
4101575 Jul 1992 DE
4417251 Nov 1995 DE
4422942 Jan 1996 DE
250948 Jan 1988 EP
261972 Mar 1988 EP
1024285 Aug 2000 EP
2238267 May 1991 GB
SHO 39-990 Feb 1964 JP
04-000003 Jan 1992 JP
06-117414 Apr 1994 JP
2001184125 Jul 2001 JP
2003-049933 Feb 2003 JP
2006-080194 Mar 2006 JP
WO9916096 Apr 1999 WO
WO9924783 May 1999 WO
WO0014415 Mar 2000 WO
0014415 Jul 2000 WO
WO2005084211 Sep 2005 WO
2005084211 Jan 2006 WO
2006076386 Jul 2006 WO
2008076388 Jun 2008 WO
2008076388 Aug 2008 WO
2008121369 Oct 2008 WO
2010019329 Feb 2010 WO
2010019329 Feb 2010 WO
2010019665 Feb 2010 WO
2010019665 Feb 2010 WO
2010065804 Jun 2010 WO
2010065804 Jun 2010 WO
2011022267 Feb 2011 WO
2011022267 Feb 2011 WO
2011094300 Aug 2011 WO
2011094300 Aug 2011 WO
2011094302 Aug 2011 WO
2011094302 Aug 2011 WO
Non-Patent Literature Citations (48)
Entry
International Search Report dated Apr. 5, 2010 for Application No. PCT/US2009/05355.
Booth, Steve and Kaina, Rachid, Fluid Handling—Big Gains from Tiny,Valve, Appliance Design (Apr. 2008), pp. 46-48.
Controls Overview for Microstaq Silicon Expansion Valve (SEV), Rev. 1, Dec. 2008, http://www.microstaq.com/pdf/SEV—controls.pdf, accessed May 17, 2010.
Copeland, Michael V., Electronic valves promise big energy savings, Fortune (Sep. 9, 2008), http://techland.blogs.fortune.cnn.com/2008/09/09/electronic-valves-promise-big-energy-savings, accessed Sep. 9, 2008.
Higginbotham, Stacey, Microstaq's Tiny Valves Mean Big Energy Savings, http//earth2tech.com/2008/09/09/microstaqs-tiny-valves-mean-big-energy savings (posted Dec. 8, 2008), accessed Sep. 9, 2008.
Keefe, Bob, Texas firm says value-replacing chip can drastically cut energy use, Atlanta Metro News (Sep. 10, 2008), http://www.ajc.com/search/content/shared/money/stories/2008/09/microstaq10—cox-F9782.html, accessed Sep. 10, 2008.
Luckevich, Mark, MEMS microvlaves: the new valve world, Valve World (May 2007), pp. 79-83.
MEMS, Microfluidics and Microsystems Executive Review, http:www.memsinvestorjournal.com/2009/04/mems-applications-for-flow-control-.html, accessed May 17, 2010.
Microstaq Announces High Volume Production of MEMS-Based Silicon Expansion Valve, http://www.earthtimes.org/articles/printpressstory.php?news+1138955 (posted Jan. 27, 2010), accessed Jan. 27, 2010.
Microstaq Product Description, Proportional Direct Acting Silicon Control Valve (PDA-3), http://www.microstaq.com/products/pda3.html, accessed May 17, 2010.
Microstaq Product Description, Proportional Piloted Silicon Control Valve (CPS-4), http://www.microstaq.com/products/cps4.html, accessed May 17, 2010.
Microstaq Product Descriptions, SEV, CPS-4, and PDA-3, http://www.microstaq.com/products/index.html, accessed May 17, 2010.
Microstaq Technology Page, http://www.microstaq.com/technology/index.html, accessed May 17, 2010.
Press Release, Freescale and Microstaq Join Forces on Smart Superheat Control System for HVAC and Refrigeration Efficiency, http://www.microstaq.com/pressReleases/prDetail—04.html (posted Jan. 22, 2008), accessed May 17, 2010.
Press Release, Microstaq Mastering Electronic Controls for Fluid-Control Industry, http://www.microstaq.com/pressReleases/prDetail—02.html (posted May 5, 2005), accessed May 17, 2010.
Press Release, Microstaq Unveils Revolutionary Silicon Expansion Valve at Demo 2008, http://www.microstaq.com/pressReleases/prDetail—05.html (posted Sep. 8, 2008), accessed May 17, 2010.
Press Release, Nanotechnology Partnerships, Connections Spur Innovation for Fluid Control Industries, http://www.microstaq.com/pressReleases/prDetail—03.html (posted Jun. 9, 2005), accessed May 17, 2010.
Product Review, greentechZONE Products for the week of May 18, 2009, http://www.en-genius.net/site/zones/greentechZONE/product—reviews/grnp—051809, accessed May 17, 2010.
SEV Installation Instructions, http://www.microstaq.com/pdf/SEV—Instruction—sheet.pdf, accessed May 17, 2010.
Silicon Expansion Valve (SEV)—for Heating, Cooling, and Refrigeration Applications, http://www.microstaq.com/pdf/SEV—Quicksheet.pdf, accessed May 17, 2010.
Silicon Expansion Valve Data Sheet, http://www.microstaq.com/pdf/SEV—Datasheet—1—8.pdf, accessed May 17, 2010.
Silicon Expansion Valve Information Sheet, http://www.microstaq.com/pdf/SEV—Infosheet—2—0.pdf, accessed May 17, 2010.
SMIC Announces Successful Qualification of a MEMS Chip for Microstaq, http://www.prnewswire.com/news-releases/smic-announces-successful-qualification-of-a-mems-chip-for-microstaq-65968252.html (posted Oct. 26, 2009), accessed May 17, 2010.
SMIC quals Microstaq MEMS chip for fluid control, http://www.electroiq.com/ElectroiQ/en-us/index/display/Nanotech—Article—Tools—Template.articles.small-times.nanotechmems.mems.microfluidics.2009.10.smic-quals—microstaq.html, (posted Oct. 26,2009), acc.
Tiny Silicon Chip Developed by Microstaq Will Revolutionize Car Technology, http://www.nsti.org/press/PRshow.html?id=160 (posted May 19, 2005), accessed May 19, 2005.
Turpin, Joanna R., Soft Economy, Energy Prices Spur Interest in Technologies, http://www.achrnews.com/copyright/BNP—GUID—9-5-2006—A—10000000000000483182, accessed May 18, 2010.
Uibel, Jeff, The Miniaturization of Flow Control (Article prepared for the 9th International Symposium on Fluid Control Measurement and Visualization (FLUCOME 2007)), Journal of Visualization (vol. 11, No. 1, 2008), IOS Press.
Chinese Office Action, Application No. 200880014037.2 dated Sep. 13, 2010, [55-28960/AM0014].
Chinese Office Action (Response), Application No. 200880014037.2 dated Mar. 30, 2011, [55-28960/AM0014].
Chinese Office Action (Second plus translation), Application No. 200880014037.2 dated Sep. 26, 2012, [55-28960/AM0014].
“A Silicon Microvalve for the Proportional Control of Fluids” by K.R. Williams, N.I. Maluf, E.N. Fuller, R.J. Barron, D. P. Jaeggi, and B.P. van Drieenhuizen, Transducers '99, Proc. 10th International Conference on Solid State Sensors and Actuators, held Jun. 7-10, 1999, Sendai, Japan, pp. 18-21.
“Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators”; J. Mark Noworolski, et al.; Sensors and Actuators A 55 (1996); pp. 65-69.
Ayon et al., “Etching Characteristics and Profile Control in a Time Multiplexed ICP Etcher,” Proc. Of Solid State Sensor and Actuator Workshop Technical Digest, Hilton Head SC, (Jun. 1998) 41-44.
Bartha et al., “Low Temperature Etching of Si in High Density Plasma Using SF6/02,” Microelectronic Engineering, Elsevier Science B.V., vol. 27, (1995) 453-456.
Fung et al., “Deep Etching of Silicon Using Plasma” Proc. Of the Workshop on Micromachining and Micropackaging of Transducers, (Nov. 7-8, 1984) pp. 159-164.
IEEE Technical Digest entitled “Compliant Electra-thermal Microactuators”, J. Jonsmann, O. Sigmund, S. Bouwstra, Twelfth IEEE International Conference on Micro Electro Mechanical Systems held Jan. 17-21, 1999, Orlando, Florida, pp. 588-593, IEEE Catalog Number: 99CH36291C.
Klaassen et al., “Silicon Fusion Bonding and Deep Reactive Ion Etching; A New Technology for Microstructures,” Proc., Transducers 95 Stockholm Sweden, (1995) 556-559.
Linder et al., “Deep Dry Etching Techniques as a New IC Compatible Tool for Silicon Micromachining,” Proc,. Transducers, vol. 91, (Jun. 1991) pp. 524-527.
Petersen et al. “Surfaced Micromachined Structures Fabricated with Silicon Fusion Bonding” Proc., Transducers 91, (Jun. 1992) pp. 397-399.
Yunkin et al., “Highly Anisotropic Selective Reactive Ion Etching of Deep Trenches in Silicon,” Microelectronic Engineering, Elsevier Science B.V., vol. 23, (1994) pp. 373-376.
Biography, Ohio State University Website [online], [retrieved Dec. 31, 2000]. Retrieved from the Internet <URL: http://www.chemistry.ohio-state.edu/resource/pubs/brochure/madou.htm>.
Madou, Marc, “Fundamentals of Microfabrication”, Boca Raton: CRC Press, 1997, 405-406.
Chinese Office Action, Application No. 200880014057.X dated Jul. 14, 2010.
Substitute Claims filed in Chinese Application No. 200880014057.X dated Jul. 14, 2010.
Gui, C. et al, “Selective Wafer Bonding by Surface Roughness Control”, Journal of the Electrochemical Society, 148 (4) G225-G228 (2001).
Gui, C. et al., “Fusion bonding of rough surfaces with polishing technique for silicon micromachining”, Microsystem Technologies (1997) 122-128.
Zhixiong Liu et al., “Micromechanism fabrication using silicon fusion bonding”, Robotics and Computer Integrated Manufacturing 17 (2001) 131-137.
Günther, Götz, “Entwicklung eines pneumatischen 3/2-Wege-Mikroventils”, O + P Olhydraulik und Pneumatik, Vereinigte Fachverlage, Mainz, DE, vol. 42, No. 6, Jun. 1, 1998, pp. 396-398, XP000831050, ISSN: 0341-2660.
Related Publications (1)
Number Date Country
20100084031 A1 Apr 2010 US
Provisional Applications (1)
Number Date Country
60921105 Mar 2007 US