Electric vehicle supply equipment must comply with requisite safety and compliance standards to be deemed fit for public use and commercial sale. In particular, national UL regulations necessitate that all electronic devices pass inspections from nationally certified testing laboratories. These inspections include a conducted noise test in which signal noise is passed throughout the system, which is monitored to ensure that the generated noise is attenuated to a minimum.
The pilot circuit is a high impedance circuit with a +/−12V source and a 1 k ohm resistor in series with a 25 ft line to an electric vehicle. Along the line to the vehicle, the pilot signal line is parallel to the power lines, so any noise on the power lines tends to couple to the pilot signal line. This creates noise on the pilot signal in a range anywhere from a few Hz to GHz.
A conducted and radiated susceptibility test typically includes a broadcast at 80 MHz-1 GHz and wiring inserted noise between 400 KHz-80 MHz. A conventional solution for diminishing noise sufficiently to pass the SAE J1772 standard conducted and radiated susceptibility test is the inclusion of ferrite beads or rings which act as passive low-pass filters to reflect or absorb high-frequency signals. The inclusion of multiple ferrite rings or toroids, however, increases material and manufacturing costs as well as the increases the weight of the product and the resulting shipping costs.
What is needed is a more cost effective means to reduce noise on the pilot signal. Further what is needed is a means that supports and enhances the application of the SAE J-1772 standard for reading the communication level control voltages without noise induced errors.
In various implementations, a method is provided for reducing noise in a pilot signal output to an electric vehicle, which may include sampling the generated pilot signal and creating a first data set comprising the samples of the generated pilot signal. It may also include selecting a first subset from the first data set and averaging the first subset to produce a first tier averaged output of the selected first subset. It may further include creating a second data set of the first tier averaged outputs and selecting a second subset from the second data set and averaging the first tier averages of the second subset to determine the pilot signal value.
In various implementations, a method is provided for reducing noise in a pilot signal output to an electric vehicle, which may further include, or separately include generating the pilot signal with a modulation rate within an allowable range and offset from a central modulation rate of the allowable range.
The features and advantages of the present invention will be better understood with regard to the following description, appended claims, and accompanying drawings where:
In some implementations, the two-tier filter is implemented in software, such as with a processor 3500 (
For example, referring to
In addition, because taking too many readings can slow down the response of the EVSE 3000, the above discussed selected sample size of averaged readings are chosen to ensure filter efficacy both in reducing the effects of signal noise, and ensuring that the overall sampling rate provides reasonable response times, so as to provide compliance with the SAE J1772 standard. The pilot signal is typically a 1000 Hz modulated signal, so the above discussed sample rate for the two tiered filter ensures a response time of about 900 ms.
Further, in some implementations, the modulation rate of the pilot signal is selected to be offset from the 1000 Hz modulation rate so as to reduce the effects of noise centered at 1000 Hz. Thus, referring to
In this implementation, the pilot signal modulation should selected as far away from the center modulation as possible, but within the given precision/tolerance of the modulation circuitry, so as to ensure that the modulation will remain within the allowable range.
The offset pilot signal further improves the results of the two-tiered signal filter discussed herein to provide improved detection accuracy of pilot signals having 150 KHz to 1 GHz induced noise at a 1 kHz rate. The offset pilot signal may be used with or without the two-tiered signal filter discussed herein, or with other software and/or hardware filtering.
In the embodiment shown, however, the processor 3500 samples the PILOT_FEEDBACK signal with an A/D converter 3510 and generates samples of the PILOT signal using PILOT_FEEDBACK signal supplied by the pilot signal detector 3157. As the PILOT signal to the vehicle ranges from +12 volts to −12 volts, a pilot detector circuit 3157 within the pilot generation and detection circuit 3150 detects the PILOT signal and reduces it to logic level signals for distribution to the A/D converter 3150. For example, the sensed PILOT signal may be reduced from a range of +12 volts to −12 volts to a range of 0.3 volts to 2.7 volts, correspondingly. The logic level PILOT_FEEDBACK signal is provided to the A/D converter 3150 input of the processor 3500 for storing into memory 3520.
The samples may be stored to a processor readable medium such as an addressable memory 3520, for example RAM. In various embodiments, either one or both of the A/D converter 3510 and the memory 3520 may be external to, or onboard the processor 3500. The processor 3500 of
The processor 3500 may include a processor executable instructions for carrying out the steps of trimming and averaging a first data set of stored pilot signal samples. The trimmed average of the first data set are stored in a second data set by repeating the step of storing samples to the first data set, trimming the first data set, and averaging the first data set so as to create the second data set. The instructions further include trimming the second data set and generating an average from the trimmed samples of the second data set and using the average of the trimmed second data set in controlling power delivery at the power delivery output 3110c of the electric vehicle supply equipment 3000.
The amount of samples and the size of the subsets selected, can vary depending on the embodiment. Thus, the number and location (highest or/and lowest values) of samples and/or first tier averages that are trimmed can vary depending on the embodiment.
One example of a possible pilot signal generation circuit embodiment, which may be used in conjunction with, or be a part of, various implementations or embodiments is disclosed below, and in PCT Application No. PCT/US2011/032579, filed 14 Apr. 2011, by Flack, entitled PILOT SIGNAL GENERATION CIRCUIT, herein incorporated by reference in its entirety, which claims the benefit of U.S. Provisional Application 61/324,293 filed Apr. 14, 2010, by Flack, entitled PILOT SIGNAL GENERATION CIRCUIT, disclosed below and herein incorporated by reference in its entirety.
The cable 100 contains current transformers 110 and 120. The current transformer 110 is connected to a ground fault interrupt or GFI circuit 130 which is configured to detect a differential current in the lines L1 and L2 and indicate when a ground fault is detected. Contactor 140 may be open circuited in response to a detected ground fault to interrupt utility power from flowing on lines L1 and L2 to the vehicle (not shown).
A signal provided by current transformer 110 (
Fault current detected by current transformer 110 (
The double stage filter 134 provides a delay so that the shut-off circuit does not immediately shut off if a fault is detected. The double stage filter 134 is a half-wave rectified circuit that allows an incoming pulse width that is less than 50% in some embodiments, or even as small as about 38% in some embodiments, to accumulate over time so that it will charge at a faster rate than it discharges. The double stage filter 134 accumulates charge and acts an energy integrator. Thus, the GFI circuit 130 waits a time period before causing shut down. This is because it is not desirable to have an instantaneous shut down that can be triggered by noise in the lines L1 or L2, or in the GFI circuit 130. The GFI circuit 130 should trip only if a spike has some predetermined duration. In the embodiment shown, that duration is one to two cycles.
The filter 134 charges through R102 and R103. When it discharges, it only discharges through R102, so it charges more current than it discharges over time. The double stage filter 134 is a half wave rectified circuit due to diode D25.
Diodes D4 provide surge suppression protection. In typical embodiments, the gain amplifier 132 may actually have surge suppression protection. Despite this, diodes D4 are added to provide external redundant protection to avoid any damage to the gain amplifier 132. This redundant protection is significant, because if the 132 gain amplifier is damaged, the GFI protection circuit 130 may not function, resulting in inadequate GFI protection for the system. For example, without the redundant surge suppressing diodes D4, if a power surge were to damage the gain amplifier 132 so that it no longer provided output, the GFI circuit 130 would no longer be able to detect faults. Since UL 2231 allows utility power L1 and L2 power to be reconnected after a GFI circuit detects a ground fault surge, utility power L1 and L2 could conceivably be reconnected after the gain amplifier 132 had been damaged. It is significant to note that the diodes D4 are connected to the upper and lower reference voltage busses of the circuit, i.e. ground and 3 volts, respectively, so that they can easily dissipate surge current without causing damage to the circuitry. Thus, the redundant surge suppression diodes D4 provide an additional safety feature for the GFI protection circuit 130.
The GFI_TRIP signal output by the comparator 136 (
Also, the microprocessor 500 may also output at pin 81 the GFI_TEST signal, which causes a GFI test circuit 139 to simulate a ground fault for testing the functionality of the contactor 140 (
Additionally, the microprocessor 500 provides a CONTACTOR_CLOSE signal output to the contactor close circuit to close the contactor control relay K1 (
Further, the microprocessor 500 may provide signals to the pilot circuit, such as the PILOT_PWM discussed below with reference to
In some embodiments a PILOT signal in accordance with the SAE J-1772 standard is provided. The SAE-J1772 standard, incorporated herein by reference in its entirety, requires precise voltage levels on the PILOT signal, which communicates a charge current command from the electric vehicle supply equipment system, illustrated in
As shown in
Furthermore, the pilot signal generation circuit 155 has a first transistor 701 with its gate 701g connected to receive a logic level pulse width modulated control signal PILOT_PWM. The logic level pulse width modulated control signal PILOT_PWM may be supplied by the microprocessor 500 (
Referring again to
When the PILOT_PWM signal is low at the gate 701g of transistor 701, transistor 701 is open from drain 701d to source 701s. The voltage on transistor drain 701d then feeds into transistor gate 702g causing it to turn on, shorting its drain 702d to source 702s. In this condition, the input 731a of the first operational amplifier 731 has a high impedance +3.00 Volts applied to it, which is then buffered by the second operational amplifier 732 to provide a low impedance signal at +3.00 Volts for the second operational amplifier 732 to use as a signal source. Input 732a of the second operational amplifier 732 is held at 0 Volts by transistor 702. As a result, the output of 732c of the second operational amplifier 732 then has a negative voltage proportional to the gain of the second operational amplifier 732 circuit, specified by the ratio of R33 to R117; in this case, −12.00 Volts.
When the PILOT_PWM signal is high, 701 is shorted from drain 701d to source 701s. The 0 Volts on drain 701d of transistor 701 then feeds into gate 702g of transistor 702 causing it to be open from drain 702d to source 702s. In this condition, input 731a the first operational amplifier 731 has 0 Volts applied to it, which is then buffered by the first operational amplifier 731 to provide 0 Volts for the second operational amplifier 732 to use as a signal source at input 732b. Input 732a of the second operational amplifier 732 is fed by the +3.00 Volts reference V_REF and differentially amplified against the 0 Volts signal provided from output 731c. As a result, the output 732c of the second operational amplifier 732 has a positive voltage proportional to the gain of the second operational amplifier 732 circuit, specified by R33, R117, R30 and R32; in this case, +12.00 Volts.
Thus, by use of this circuit 155, a high or low logic level signal PILOT_PWM of imprecise voltage will provide a precise +12 Volt to −12 Volt square wave output suitable for use as the control communication signal source PILOT for the SAE-J1772 standard signal generation. Accuracy is only limited by component selection. Because this circuit 155 is absolute reference and amplifier regulated, the +/−12 volt signals are extremely accurate with no undesired component losses. This supports and enhances the application of the SAE J-1772 standard for reading the communication level control voltages without errors.
If the onboard charger sees a signal amplitude too low or too high, or improper frequency or pulse width within an expected range, it will shut off because it will assume that the integrity of the connection is bad. So it is important to have a precise PILOT signal.
In various embodiments of the pilot signal generation circuit 155, the operational amplifier 731 is configured to buffer the input 731a to the output 731c. The operational amplifier 732 is configured with resistors R30, R32, R33, and R117 as a differential amplifier. The transistor 701 is connected to the operational amplifier 731 to shunt the source reference voltage V_REF at the input 731a of the operational amplifier 731. The transistor 702 is connected to the operational amplifier 732 to shunt the source reference voltage V_REF at the input 732a of the operational amplifier 732 in response to a voltage level at the input 731a of the operation amplifier 731.
Thus, the pilot signal generation circuit 155 is configured to receive a logic level pulse width modulated signal PILOT_PWM at the input 701g of the transistor 701 and to provide a pulse width modulated bipolar signal PILOT at precision voltage levels at the output 732C of the second operational amplifier 732.
In various embodiments, the pilot generation circuit 155 is able to provide an output PILOT signal with precise voltage levels to within about 1% at +/−12 Volts.
The voltage of the PILOT signal will indicate the status of the connection between the cable 100 and the vehicle (not shown). In this example, a PILOT signal of +12 Volts indicates that the connector 100c is disconnected from the vehicle and not stowed. Optionally, a PILOT signal voltage of +11 Volts may be used to indicate that the connector 110c is stowed, at a charging station, for example. A PILOT signal voltage of +9 Volts indicates that the vehicle is connected. A PILOT signal voltage of +6 Volts indicates that the vehicle is charging without ventilation. A PILOT signal voltage of +3 Volts indicates that the vehicle is charging without ventilation. A PILOT signal voltage of 0 Volts indicates that there is a short or other fault. A PILOT signal voltage of −12 Volts indicates that there is an error onboard the vehicle.
A pilot detection circuit 157 within the pilot circuit 150 detects the voltages, generates, and provides a PILOT_DIGITAL signal to the microprocessor 500 (
It is worthy to note that any reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in an embodiment, if desired. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
The illustrations and examples provided herein are for explanatory purposes and are not intended to limit the scope of the appended claims. This disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the spirit and scope of the invention and/or claims of the embodiment illustrated.
Those skilled in the art will make modifications to the invention for particular applications of the invention.
The discussion included in this patent is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible and alternatives are implicit. Also, this discussion may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in device-oriented terminology, each element of the device implicitly performs a function. It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. These changes still fall within the scope of this invention.
Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of any apparatus embodiment, a method embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. It should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Such changes and alternative terms are to be understood to be explicitly included in the description.
Having described this invention in connection with a number of embodiments, modification will now certainly suggest itself to those skilled in the art. The example embodiments herein are not intended to be limiting, various configurations and combinations of features are possible. As such, the invention is not limited to the disclosed embodiments, except as required by the appended claims.
The present application claims the benefit of U.S. Provisional Application 61/438,487 entitled PILOT SIGNAL FILTER, by Flack et al, filed Feb. 1, 2011, hereby incorporated by reference in its entirety. The present application is a continuation-in-part of PCT Application No. PCT/US2011/032579, filed 14 Apr. 2011, by Flack, entitled PILOT SIGNAL GENERATION CIRCUIT, herein incorporated by reference in its entirety, which claims the benefit of U.S. Provisional Application 61/324,293 filed Apr. 14, 2010, by Flack, entitled PILOT SIGNAL GENERATION CIRCUIT, herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US12/23487 | 2/1/2012 | WO | 00 | 1/13/2014 |
Number | Date | Country | |
---|---|---|---|
61438487 | Feb 2011 | US |