The present invention relates generally to data communication, and more specifically to pilots suitable for use in multiple-input multiple-output (MIMO) communication systems.
A MIMO system employs multiple (NT) transmit antennas and multiple (NR) receive antennas for data transmission. A MIMO channel formed by the NT transmit and NR receive antennas may be decomposed into NS independent channels, which are also referred to as eigenmodes, where NS≤min{NT, NR}. Each of the NS independent channels corresponds to a dimension. The MIMO system can provide improved performance (e.g., increased transmission capacity and/or greater reliability) if the additional dimensionalities created by the multiple transmit and receive antennas are utilized.
In a wireless communication system, data to be transmitted is first modulated onto a radio frequency (RF) carrier signal to generate an RF modulated signal that is more suitable for transmission over a wireless channel. For a MIMO system, up to NT RF modulated signals may be generated and transmitted simultaneously from the NT transmit antennas. The transmitted RF modulated signals may reach the NR receive antennas via a number of propagation paths in the wireless channel. The characteristics of the propagation paths typically vary over time due to a number of factors such as, for example, fading, multipath, and external interference. Consequently, the transmitted RF modulated signals may experience different channel conditions (e.g., different fading and multipath effects) and may be associated with different complex gains and signal-to-noise ratios (SNRs).
To achieve high performance, it is often necessary to characterize the response of the wireless channel. For example, the channel response may be needed by the transmitter to perform spatial processing (described below) for data transmission to the receiver. The channel response may also be needed by the receiver to perform spatial processing on the received signals to recover the transmitted data.
In many wireless communication systems, a pilot is transmitted by the transmitter to assist the receiver in performing a number of functions. The pilot is typically generated based on known symbols and processed in a known manner. The pilot may be used by the receiver for channel estimation, timing and frequency acquisition, data demodulation, and so on.
Various challenges are encountered in the design of a pilot structure for a MIMO system. As one consideration, the pilot structure needs to address the additional dimensionalities created by the multiple transmit and multiple receive antennas. As another consideration, since pilot transmission represents overhead in the MIMO system, it is desirable to minimize pilot transmission to the extent possible. Moreover, if the MIMO system is a multiple-access system that supports communication with multiple users, then the pilot structure needs to be designed such that the pilots needed to support the multiple users do not consume a large portion of the available system resources.
There is therefore a need in the art for pilots for MIMO systems that address the above considerations.
A method for wireless multiple-input multiple-output (MIMO) communication utilizing orthogonal frequency division multiplexing (OFDM) includes: obtaining a set of pilot symbols for each antenna in a plurality of antennas; obtaining an orthogonal sequence for each antenna in the plurality of antennas, wherein the plurality of antennas are assigned different orthogonal sequences; covering the set of pilot symbols for each antenna with the orthogonal sequence for the antenna to obtain a set of sequences of covered pilot symbols for the antenna, wherein the set of pilot symbols are covered so as to reduce an amount of overhead associated with pilot transmission; processing the set of sequences of covered pilot symbols for each antenna to obtain a sequence of OFDM symbols for the antenna; and transmitting the plurality of sequences of OFDM symbols from the plurality of antennas.
In another aspect, a device for wireless MIMO communication utilizing OFDM includes: a plurality of antennas; a processing circuit configured to obtain a set of pilot symbols for each antenna in the plurality of antennas, obtain an orthogonal sequence for each antenna in the plurality of antennas, wherein the plurality of antennas are assigned different orthogonal sequences, cover the set of pilot symbols for each antenna with the orthogonal sequence for the antenna to obtain a set of sequences of covered pilot symbols for the antenna, wherein the set of pilot symbols are covered so as to reduce an amount of overhead associated with pilot transmission, and process the set of sequences of covered pilot symbols for each antenna to obtain a sequence of OFDM symbols for the antenna; and a transmitter configured to transmit the plurality of sequences of OFDM symbols from the plurality of antennas.
In yet another aspect, a device for wireless MIMO communication utilizing OFDM includes: means for obtaining a set of pilot symbols for each antenna in a plurality of antennas; means for obtaining an orthogonal sequence for each antenna in the plurality of antennas, wherein the plurality of antennas are assigned different orthogonal sequences; means for covering the set of pilot symbols for each antenna with the orthogonal sequence for the antenna to obtain a set of sequences of covered pilot symbols for the antenna, wherein the set of pilot symbols are covered so as to reduce an amount of overhead associated with pilot transmission; means for processing the set of sequences of covered pilot symbols for each antenna to obtain a sequence of OFDM symbols for the antenna; and means for transmitting the plurality of sequences of OFDM symbols from the plurality of antennas.
In still yet another aspect, a machine-readable storage medium is provided for use with a wireless MIMO communication system utilizing OFDM. The machine-readable storage medium includes one or more instructions which when executed by at least one processing circuit causes the at least one processing circuit to: obtain a set of pilot symbols for each antenna in a plurality of antennas; obtain an orthogonal sequence for each antenna in the plurality of antennas, wherein the plurality of antennas are assigned different orthogonal sequences; cover the set of pilot symbols for each antenna with the orthogonal sequence for the antenna to obtain a set of sequences of covered pilot symbols for the antenna, wherein the set of pilot symbols are covered so as to reduce an amount of overhead associated with pilot transmission; process the set of sequences of covered pilot symbols for each antenna to obtain a sequence of OFDM symbols for the antenna; and transmit the plurality of sequences of OFDM symbols from the plurality of antennas.
The features and nature of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
User terminals 120 may be dispersed throughout the system. Each user terminal may be a fixed or mobile terminal that can communicate with the access point. A user terminal may also be referred to as an access terminal, a mobile station, a remote station, a user equipment (UE), a wireless device, or some other terminology. Each user terminal may communicate with one or possibly multiple access points on the downlink and/or uplink at any given moment. The downlink (i.e., forward link) refers to transmission from the access point to the user terminal, and the uplink (i.e., reverse link) refers to transmission from the user terminal to the access point. As used herein, an “active” user terminal is one that is receiving a downlink transmission from an access point and/or transmitting an uplink transmission to the access point.
In
I. Pilots
Pilots suitable for use in MIMO systems, such as the one shown in
Steered reference and steered pilot are synonymous terms.
Various pilot transmission schemes may be devised based on any combination of these various types of pilot. For example, on the downlink, an access point may transmit a beacon pilot, a MIMO pilot, and a carrier pilot for all user terminals within its coverage area and may optionally transmit a steered reference to any active user terminal that is receiving a downlink transmission from the access point. On the uplink, a user terminal may transmit a MIMO pilot for calibration and may transmit a steered reference and a carrier pilot when scheduled (e.g., for downlink and/or uplink data transmissions). The processing to transmit and receive these various types of pilot is described in further detail below.
The pilots described herein may be used for various types of MIMO systems. For example, the pilots may be used for (1) single-carrier MIMO systems, (2) multi-carrier MIMO systems that employ orthogonal frequency division multiplexing (OFDM) or some other multi-carrier modulation technique, (3) MIMO systems that implement multiple-access techniques such as frequency division multiple-access (FDMA), time division multiple-access (TDMA), and code division multiple-access (CDMA), (4) MIMO systems that implement frequency division multiplexing (FDM), time division multiplexing (TDM), and/or code division multiplexing (CDM) for data transmission, (5) MIMO systems that implement time division duplexing (TDD), frequency division duplexing (FDD), and/or code division duplexing (CDD) for the downlink and uplink channels, and (6) other types of MIMO systems. For clarity, the pilots are described below first for a MIMO system that implements OFDM (i.e., a MIMO-OFDM system) and then for a TDD MIMO-OFDM system.
OFDM effectively partitions the overall system bandwidth into a number of (NF) orthogonal subbands, which are also referred to as tones, frequency bins, or frequency subchannels. With OFDM, each subband is associated with a respective subcarrier upon which data may be modulated. For a MIMO-OFDM system, each subband may be associated with a number of eigenmodes, and each eigenmode of each subband may be viewed as an independent transmission channel.
For clarity, a specific pilot structure is described below for an exemplary MIMO-OFDM system. In this MIMO-OFDM system, the system bandwidth is partitioned into 64 orthogonal subbands (i.e., NF=64), which are assigned indices of −32 to +31. Of these 64 subbands, 48 subbands (e.g., with indices of ±{1, . . . , 6, 8, . . . , 20, 22, . . . , 26}) may be used for data transmission, 4 subbands (e.g., with indices of ±{7, 21}) may be used for a carrier pilot and possibly signaling, the DC subband (with index of 0) is not used, and the remaining subbands are also not used and serve as guard subbands. Thus, of the 64 total subbands, the 52 “usable” subbands include the 48 data subbands and 4 pilot subbands, and the remaining 12 subbands are not used. This OFDM subband structure is described in further detail in the aforementioned provisional U.S. Patent Application Ser. No. 60/421,309. Different number of subbands and other OFDM subband structures may also be implemented for the MIMO-OFDM system, and this is within the scope of the invention.
For OFDM, the data to be transmitted on each usable subband is first modulated (i.e., symbol mapped) using a particular modulation scheme (e.g., BPSK, QPSK, or M-QAM) selected for use for that subband. One modulation symbol may be transmitted on each usable subband in each symbol period. Each modulation symbol is a complex value for a specific point in a signal constellation corresponding to the selected modulation scheme. Signal values of zero may be sent on the unused subbands. For each OFDM symbol period, the modulation symbols for the usable subbands and zero signal values for the unused subbands (i.e., the modulation symbols and zeros for all NF subbands) are transformed to the time domain using an inverse fast Fourier transform (IFFT) to obtain a transformed symbol that comprises NF time-domain samples. To combat inter-symbol interference (ISI), a portion of each transformed symbol is often repeated (which is also referred to as adding a cyclic prefix) to form a corresponding OFDM symbol, which is then transmitted over the wireless channel. An OFDM symbol period, which is also referred to herein as a symbol period, corresponds to the duration of one OFDM symbol.
1. Beacon Pilot
The beacon pilot includes a specific set of pilot symbols that is transmitted from each of the NT transmit antennas. The same set of pilot symbols is transmitted for NB symbol periods designated for beacon pilot transmission. In general, NB may be any integer value of one or greater.
In an exemplary embodiment, the set of pilot symbols for the beacon pilot is a set of 12 BPSK modulation symbols for 12 specific subbands, which is referred to as a “B” OFDM symbol. The 12 BPSK modulation symbols for the B OFDM symbol are given in Table 2. Signal values of zeros are transmitted on the remaining 52 unused subbands.
For the exemplary embodiment and as shown in Table 2, for the beacon pilot, the BPSK modulation symbol (1+j) is transmitted in subbands −24, −16, −4, 12, 16, 20, and 24, and the BPSK modulation symbol −(1+j) is transmitted in subbands −20, −12, −8, 4, and 8. Zero signal values are transmitted on the remaining 52 subbands for the beacon pilot.
The B OFDM symbol is designed to facilitate system timing and frequency acquisition by the user terminals. For the exemplary embodiment of the B OFDM symbol described above, only 12 of the 64 total subbands are used, and these subbands are spaced apart by four subbands. This 4-subband spacing allows the user terminal to have an initial frequency error of up to two subbands. The beacon pilot allows the user terminal to correct for its initial coarse frequency error, and to correct its frequency so that the phase drift over the duration of the beacon pilot is small (e.g., less than 45 degrees over the beacon pilot duration at a sample rate of 20 MHz). If the beacon pilot duration is 8 μsec, then the 45 degrees (or less) of phase drift over 8 μsec is equal to 360 degrees over 64 μsec, which is approximately 16 kHz.
The 16 kHz frequency error is typically too large for operation. Additional frequency correction may be obtained using the MIMO pilot and the carrier pilot. These pilots span a long enough time duration that the user terminal frequency can be corrected to within the desired target (e.g., 250 Hz). For example, if a TDD frame is 2 msec (as described below) and if the user terminal frequency is accurate to within 250 Hz, then there will be less than half a cycle of phase change over one TDD frame. The phase difference from TDD frame to TDD frame of the beacon pilot may be used to lock the frequency of the user terminal to the clock at the access point, thereby effectively reducing the frequency error to zero.
In general, the set of pilot symbols used for the beacon pilot may be derived using any modulation scheme. Thus, other OFDM symbols derived using BPSK or some other modulation scheme may also be used for the beacon pilot, and this is within the scope of the invention.
In an exemplary design, four transmit antennas are available for beacon pilot transmission. Table 4 lists the OFDM symbols to be transmitted from each of the four transmit antennas for a beacon pilot transmission that spans two symbol periods.
2. MIMO Pilot
The MIMO pilot includes a specific set of pilot symbols that is transmitted from each of the NT transmit antennas. For each transmit antenna, the same set of pilot symbols is transmitted for NP symbol periods designated for MIMO pilot transmission. However, the set of pilot symbols for each transmit antenna is “covered” with a unique orthogonal sequence or code assigned to that antenna. Covering is a process whereby a given pilot or data symbol (or a set of L pilot/data symbols with the same value) to be transmitted is multiplied by all L chips of an L-chip orthogonal sequence to obtain L covered symbols, which are then transmitted. Decovering is a complementary process whereby received symbols are multiplied by the L chips of the same L-chip orthogonal sequence to obtain L decovered symbols, which are then accumulated to obtain an estimate of the transmitted pilot or data symbol. The covering achieves orthogonality among the NT pilot transmissions from the NT transmit antennas and allows a receiver to distinguish the individual transmit antennas, as described below. The duration of the MIMO pilot transmission may be dependent on its use, as described below. In general, NP may be any integer value of one or greater.
One set or different sets of pilot symbols may be used for the NT transmit antennas. In an exemplary embodiment, one set of pilot symbols is used for all NT transmit antennas for the MIMO pilot and this set includes 52 QPSK modulation symbols for the 52 usable subbands, which is referred to as a “P” OFDM symbol. The 52 QPSK modulation symbols for the P OFDM symbol are given in Table 2. Signal values of zero are transmitted on the remaining 12 unused subbands.
The 52 QPSK modulation symbols form a unique “word” that is designed to facilitate channel estimation by the user terminals. This unique word is selected to have a minimum peak-to-average variation in a waveform generated based on these 52 modulation symbols.
It is well known that OFDM is generally associated with higher peak-to-average variation in the transmitted waveform than for some other modulation technique (e.g., CDMA). As a result, to avoid clipping of circuitry (e.g., power amplifier) in the transmit chain, OFDM symbols are typically transmitted at a reduced power level, i.e., backed off from the peak transmit power level. The back-off is used to account for variations in the waveform for these OFDM symbols. By minimizing the peak-to-average variation in the waveform for the P OFDM symbol, the MIMO pilot may be transmitted at a higher power level (i.e., a smaller back-off may be applied for the MIMO pilot). The higher transmit power for the MIMO pilot would then result in improved received signal quality for the MIMO pilot at the receiver. The smaller peak-to-average variation may also reduce the amount of distortion and non-linearity generated by the circuitry in the transmit and receive chains. These various factors may result in improved accuracy for a channel estimate obtained based on the MIMO pilot.
An OFDM symbol with minimum peak-to-average variation may be obtained in various manners. For example, a random search may be performed in which a large number of sets of pilot symbols are randomly formed and evaluated to find the set that has the minimum peak-to-average variation. The P OFDM symbol shown in Table 2 represents an exemplary OFDM symbol that may be used for the MIMO pilot. In general, the set of pilot symbols used for the MIMO pilot may be derived using any modulation scheme. Thus, various other OFDM symbols derived using QPSK or some other modulation scheme may also be used for the MIMO pilot, and this is within the scope of the invention.
Various orthogonal codes may be used to cover the P OFDM symbols sent on the NT transmit antennas. Examples of such orthogonal codes include Walsh codes and orthogonal variable spreading factor (OVSF) codes. Pseudo-orthogonal codes and quasi-orthogonal codes may also be used to cover the P OFDM symbols. An example of a pseudo-orthogonal code is the M-sequence that is well known in the art. An example of a quasi-orthogonal code is the quasi-orthogonal function (QOF) defined by IS-2000. In general, various types of codes may be used for covering, some of which are noted above. For simplicity, the term “orthogonal code” is used herein to generically refer to any type of code suitable for use for covering pilot symbols. The length (L) of the orthogonal code is selected to be greater than or equal to the number of transmit antennas (e.g., L≥NT), and L orthogonal codes are available for use. Each transmit antenna is assigned a unique orthogonal code. The NP P OFDM symbols to be sent in NP symbol periods from each transmit antenna are covered with the orthogonal code assigned to that transmit antenna.
In an exemplary embodiment, four transmit antennas are available and are assigned 4-chip Walsh sequences of W1=1111, W2=1010, W3=1100, and W4=1001 for the MIMO pilot. For a given Walsh sequence, a value of “1” indicates that a P OFDM symbol is transmitted and a value of “0” indicates that a −P OFDM symbol is transmitted. For a −P OFDM symbol, each of the 52 QPSK modulation symbols in the P OFDM symbol is inverted (i.e., multiplied with −1). The result of the covering for each transmit antenna is a sequence of covered P OFDM symbols for that transmit antenna. The covering is in effect performed separately for each of the subbands to generate a sequence of covered pilot symbols for that subband. The sequences of covered pilot symbols for all subbands form the sequence of covered P OFDM symbols.
Table 4 lists the OFDM symbols to be transmitted from each of the four transmit antennas for a MIMO pilot transmission that spans four symbol periods.
For this set of 4-chip Walsh sequences, the MIMO pilot transmission can occur in an integer multiple of four symbol periods to ensure orthogonality among the four pilot transmissions from the four transmit antennas. The Walsh sequence is simply repeated for a MIMO pilot transmission that is longer than the length of the Walsh sequence.
The wireless channel for the MIMO-OFDM system may be characterized by a set of channel response matrices H(k), for subband index k∈K, where K=±{1 . . . 26} for the exemplary subband structure described above. The matrix H(k) for each subband includes NTNR values, {hi,j(k)}, for i∈{1 . . . NR} and j∈{1 . . . NT}, where hi,j(k) represents the channel gain between the j-th transmit antenna and the i-th receive antenna.
The MIMO pilot may be used by the receiver to estimate the response of the wireless channel. In particular, to recover the pilot sent from transmit antenna j and received by receive antenna i, the received OFDM symbols on antenna i are first multiplied with the Walsh sequence assigned to transmit antenna j. The “decovered” OFDM symbols for all NP symbol periods for the MIMO pilot are then accumulated, where the accumulation may be performed individually for each of the 52 usable subbands. The accumulation may also be performed in the time domain on the received OFDM symbols (after removing the cyclic prefix in each OFDM symbol). The accumulation is performed on a sample-by-sample basis over multiple received OFDM symbols, where the samples for each OFDM symbol correspond to different subbands if the accumulation is performed after the FFT and to different time indices if the accumulation is performed prior to the FFT. The result of the accumulation is {ĥi,j(k)}, for k∈K, which are estimates of the channel response from transmit antenna j to receive antenna i for the 52 usable subbands. The same processing may be performed to estimate the channel response from each transmit antenna to each receive antenna. The pilot processing provides NTNR complex values for each subband, where the complex values are elements of the matrix Ĥ(k) for the channel response estimate for that subband.
The pilot processing described above may be performed by the access point to obtain the channel response estimate Ĥup(k) for the uplink, and may also be performed by the user terminal to obtain the channel response estimate Ĥdn(k) for the downlink.
3. Steered Reference or Steered Pilot
For a MIMO-OFDM system, the channel response matrix H(k) for each subband may be “diagonalized” to obtain the NS eigenmodes for that subband, where NS≤min {NT, NR}. This may be achieved by performing either singular value decomposition on the channel response matrix H(k) or eigenvalue decomposition on the correlation matrix of H(k), which is R(k)=HH(k)H(k). For clarity, singular value decomposition is used for the following description.
The singular value decomposition of the channel response matrix H(k) may be expressed as:
H(k)=U(k)Σ(k)VH(k), for k∈K, Eq (1)
where
Singular value decomposition is described in further detail by Gilbert Strang in a book entitled “Linear Algebra and Its Applications,” Second Edition, Academic Press, 1980. An eigenmode normally refers to a theoretical construct. The MIMO channel may also be viewed as including NS spatial channels that may be used for data/pilot transmission. Each spatial channel may or may not correspond to an eigenmode, depending on whether or not the spatial processing at the transmitter was successful in diagonalizing the MIMO channel. For example, data streams are transmitted on spatial channels (and not eigenmodes) of a MIMO channel if the transmitter has no knowledge or an imperfect estimate of the MIMO channel. For simplicity, the term “eigenmode” is also used herein to denote the case where an attempt is made to diagonalize the MIMO channel, even though it may not be fully successful due to, for example, an imperfect channel estimate.
The diagonal matrix Σ(k) for each subband contains non-negative real values along the diagonal and zeros everywhere else. These diagonal entries are referred to as the singular values of H(k) and represent the gains for the independent channels (or eigenmodes) of the MIMO channel for the k-th subband.
The eigenvalue decomposition may be performed independently for the channel response matrix H(k) for each of the 52 usable subbands to determine the NS eigenmodes for the subband. The singular values for each diagonal matrix Σ(k) may be ordered such that {σ1(k)≥σ2(k)≥ . . . ≥σN
A “wideband” eigenmode may be defined as the set of same-order eigenmodes of all subbands after the ordering. Thus, the m-th wideband eigenmode includes the m-th eigenmode of all subbands. Each wideband eigenmode is associated with a respective set of eigenvectors for all of the subbands. The “principal” wideband eigenmode is the one associated with the largest singular value in each matrix {circumflex over (Σ)}(k) of each subband after the ordering.
The matrix V(k) includes NT eigenvectors that may be used for spatial processing at the transmitter, where V(k)=[v1(k) v2(k) . . . vN
A steered reference (i.e., a steered pilot) comprises one or more sets of pilot symbols that are transmitted from the NT transmit antennas. In an embodiment, one set of pilot symbols is transmitted on one set of subbands for one wideband eigenmode in a given symbol period by performing spatial processing with a set of steering vectors for that wideband eigenmode. In another embodiment, multiple sets of pilot symbols are transmitted on multiple disjoint sets of subbands for multiple wideband eigenmodes in a given symbol period by performing spatial processing with multiple sets of steering vectors for these wideband eigenmodes (using subband multiplexing, which is described below). For clarity, the following description assumes that one set of pilot symbols is transmitted on one wideband eigenmode in a given symbol period (i.e., no subband multiplexing).
In an embodiment, the set of pilot symbols for the steered reference is the same P OFDM symbol used for the MIMO pilot. However, various other OFDM symbols may also be used for the steered reference, and this is within the scope of the invention.
A steered reference transmitted for the m-th wideband eigenmode (using beam-forming, which is described below) may be expressed as:
xm(k)=vm(k)·p(k), for k∈K, Eq (2)
where
The steered reference may be used by the receiver to estimate a vector that may be used for spatial processing of both data reception and transmission, as described below. The processing for the steered reference is described in further detail below.
4. Carrier Pilot
The exemplary OFDM subband structure described above includes four pilot subbands with indices of −21, −7, 7, and 21. In an embodiment, a carrier pilot is transmitted on the four pilot subbands in all symbol periods that are not used for some other types of pilot. The carrier pilot may be used by the receiver to track the changes in the phase of an RF carrier signal and drifts in the oscillators at both the transmitter and receiver. This may provide improved data demodulation performance.
In an embodiment, the carrier pilot comprises four pilot sequences, Pc1(n), Pc2(n) Pc3(n), and Pc4(n), that are transmitted on the four pilot subbands. In an embodiment, the four pilot sequences are defined as follows:
Pc1(n)=Pc2(n)=Pc3(n)=−Pc4(n), Eq (3)
where n is an index for symbol period (or OFDM symbol).
The pilot sequences may be defined based on various data sequences. In an embodiment, the pilot sequence Pc1(n) is generated based on a polynomial G(x)=x7+x4+x, where the initial state is set to all ones and the output bits are mapped to signal values as follows: 1⇒=−1 and 0⇒1. The pilot sequence Pc1(n), for n={1, 2, . . . 127}, may then be expressed as:
The values of “1” and “−1” in the pilot sequence Pc1(n) may be mapped to pilot symbols using a particular modulation scheme. For example, using BPSK, a “1” may be mapped to 1+j and a “−1” may be mapped to (1+j). If there are more than 127 OFDM symbols, then the pilot sequence may be repeated so that Pc1(n)=Pc1(n mod 127) for n>127.
In one embodiment, the four pilot sequences Pc1(n), Pc2(n), Pc3 (n), and Pc4 (n) are transmitted on four different subband/antenna pairings. Table 5 shows an exemplary assignment of the four pilot sequences to the four pilot subbands and four transmit antennas.
As shown in Table 5, the pilot sequence Pc1(n) is transmitted on subband −21 of antenna 1, the pilot sequence Pc2(n) is transmitted on subband −7 of antenna 2, the pilot sequence Pc3 (n) is transmitted on subband 7 of antenna 3, and the pilot sequence Pc4 (n) is transmitted on subband 21 of antenna 4. Each pilot sequence is thus transmitted on a unique subband and a unique antenna. This carrier pilot transmission scheme avoids interference that would result if a pilot sequence is transmitted over multiple transmit antennas on a given subband.
In another embodiment, the four pilot sequences are transmitted on the principal eigenmode of their assigned subbands. The spatial processing for the carrier pilot symbols is similar to the spatial processing for the steered reference, which is described above and shown in equation (2). To transmit the carrier pilot on the principal eigenmode, the steering vector v1(k) is used for the spatial processing. Thus, the pilot sequence Pc1(n) is spatially processed with the steering vector v1(−26), the pilot sequence Pc2 (n) is spatially processed with the steering vector v1(−7), the pilot sequence Pc3(n) is spatially processed with the steering vector v1(7), and the pilot sequence Pc4(n) is spatially processed with the steering vector v1(26).
II. Pilots for Single-Carrier MIMO Systems
The pilots described herein may also be used for single-carrier MIMO systems that do not employ OFDM. In that case, much of the description above still applies but without the subband index k. For the beacon pilot, a specific pilot modulation symbol b may be transmitted from each of the NT transmit antennas. For the MIMO pilot, a specific pilot modulation symbol p may be covered with NT orthogonal sequences and transmitted from the NT transmit antennas. The pilot symbol b may be the same or different from the pilot symbol p. The steered reference may be transmitted as shown in equation (2). However, the transmit vector xm, steering vector vm, and pilot symbol p are not functions of subband index k. The carrier pilot may be transmitted in a time division multiplexed manner or may simply be omitted.
For a MIMO-OFDM system, the cyclic prefix is typically used to ensure orthogonality across the subbands in the presence of delay spread in the system, and the orthogonal codes allow for identification of the individual transmit antennas. For a single-carrier MIMO system, the orthogonal codes are relied upon for both orthogonality and antenna identification. Thus, the orthogonal codes used for covering the pilot symbols in a single-carrier MIMO system may be selected to have good cross-correlation and peak-to-sidelobe properties (i.e., the correlation between any two orthogonal sequences used for covering is small in the presence of delay spread in the system). An example of such an orthogonal code with good cross-correlation and peak-to-sidelobe properties is the M-sequence and its time-shifted versions. However, other types of codes may also be used for covering pilot symbols for the single-carrier MIMO system.
For a wideband single-carrier MIMO system, the steered reference may be transmitted in various manners to account for frequency selective fading (i.e., a frequency response that is not flat across the operating band). Several schemes for transmitting a steered reference in a wideband single-carrier MIMO system are described below. In general, a transmitter can transmit a reference waveform that is processed in the same or similar manner as the processing used to transmit traffic data on specific wideband eigenmodes. The receiver can then in some manner correlate the received waveform against a locally generated copy of the transmitted reference waveform, and extract information about the channel that allows the receiver to estimate a channel matched filter.
In a first scheme, a transmitter initially obtains a steering vector vm(k) for an eigenmode. The steering vector vm(k) may be obtained by periodically transmitting OFDM pilot symbols, by performing frequency-domain analysis on a received MIMO pilot that has been transmitted without OFDM, or by some other means. For each value of k, where 1≤k≤NF, vm(k) is an NT-vector with NT entries for NT transmit antennas. The transmitter then performs an inverse fast Fourier transform on each of the NT vector positions of the steering vector vm(k), with k as the frequency variable in the IFFT computation, to obtain a corresponding time-domain pulse for an associated transmit antenna. Each vector position of the vector vm(k) includes NF values for NF frequency subbands, and the corresponding time-domain pulse is a sequence of NF time-domain values. The terminal then appends a cyclic prefix to this time-domain pulse to obtain a steered reference pulse for the transmit antenna. One set of NT steered reference pulses is generated for each eigenmode and may be transmitted in the same time interval from all NT transmit antennas. Multiple sets of pulses may be generated for multiple eigenmodes and may be transmitted in a TDM manner.
For the first scheme, a receiver samples the received signal to obtain a received vector rm(n), removes the cyclic prefix, and performs a fast Fourier transform on each vector position of the received vector rm(n) to obtain an estimate of a corresponding entry of H(k)vm(k). Each vector position of the received vector rm(n) (after the cyclic prefix removal) includes NF time-domain samples. The receiver then uses the estimate of H(k)vm(k) to synthesize a time-domain matched filter that may be used to filter a received data transmission. The time-domain matched filter includes a matched filter pulse for each of the received antennas. The synthesis of the time-domain matched filter is described in commonly assigned U.S. patent application Ser. No. 10/017,308, entitled “Time-Domain Transmit and Receive Processing with Channel Eigen-mode Decomposition for MIMO Systems,” filed Dec. 7, 2001.
For the first scheme, the transmitter processing for the steered reference in a single-carrier MIMO system is similar to the transmitter processing for the steered reference in a MIMO-OFDM system. However, other transmission after the steered reference is transmitted on a single-carrier waveform, such as the one described in the aforementioned U.S. patent application Ser. No. 10/017,308. Moreover, the receiver uses the steered reference to synthesize time domain matched filters, as described above.
In a second scheme, a transmitter isolates a single multipath component for the wideband channel. This may be achieved, for example, by searching a received MIMO pilot with a sliding correlator in similar manner as often performed in CDMA systems to search for multipath components. The transmitter then treats this multipath component as a narrowband channel and obtains a single steering vector vm for the multipath component for each eigenmode. Again, multiple steering vectors may be generated for multiple eigenmodes for this multipath component.
III. Pilot Structure for a TDD MIMO-OFDM System
The pilots described herein may be used for various MIMO and MIMO-OFDM systems. These pilots may be used for systems that use a common or separate frequency bands for the downlink and uplink. For clarity, an exemplary pilot structure for an exemplary MIMO-OFDM system is described below. For this MIMO-OFDM system, the downlink and uplink are time-division duplexed (TDD) on a single frequency band.
On the downlink, a BCH segment 210 is used to transmit one BCH protocol data unit (PDU) 212, which includes a portion 214 for a beacon pilot, a portion 216 for a MIMO pilot, and a portion 218 for a BCH message. The BCH message carries system parameters for the user terminals in the system. An FCCH segment 220 is used to transmit one FCCH PDU, which carries assignments for downlink and uplink resources and other signaling for the user terminals. An FCH segment 230 is used to transmit one or more FCH PDUs 232. Different types of FCH PDU may be defined. For example, an FCH PDU 232a includes a portion 234a for a pilot and a portion 236a for a data packet. An FCH PDU 232b includes a single portion 236b for a data packet. An FCH PDU 232c includes a single portion 234c for a pilot.
On the uplink, an RCH segment 240 is used to transmit one or more RCH PDUs 242 on the uplink. Different types of RCH PDU may also be defined. For example, an RCH PDU 242a includes a single portion 246a for a data packet. An RCH PDU 242b includes a portion 244b for a pilot and a portion 246b for a data packet. An RCH PDU 242c includes a single portion 244c for a pilot. An RACH segment 250 is used by the user terminals to gain access to the system and to send short messages on the uplink. An RACH PDU 252 may be sent within RACH segment 250 and includes a portion 254 for a pilot and a portion 256 for a message.
For the embodiment shown in
The frame structure and transport channels shown in
1. Calibration
For a TDD MIMO-OFDM system with a shared frequency band, the downlink and uplink channel responses may be assumed to be reciprocal of one another. That is, if H(k) represents a channel response matrix from antenna array A to antenna array B for subband k, then a reciprocal channel implies that the coupling from array B to array A is given by HT(k), where HT denotes the transpose of H. For the TDD MIMO-OFDM system, the reciprocal channel characteristics can be exploited to simplify the channel estimation and spatial processing at both the transmitter and receiver.
However, the frequency responses of the transmit and receive chains at the access point are typically different from the frequency responses of the transmit and receive chains at the user terminal. An “effective” downlink channel response, Hdn(k), and an “effective” uplink channel response, Hup(k), which include the responses of the applicable transmit and receive chains, may be expressed as:
Hdn(k)=Rut(k)H(k)Tap(k), for k∈K, and
Hup(k)=Rap(k)HT(k)Tut(k), for k∈K, Eq (4)
where
Combining the equations in equation set (4), the following is obtained:
Hup(k)Kut(k)=(Hdn(k)Kap(k))T, for k∈K, Eq (5)
where Kut(k)=Tut−1(k)Rut(k) and Kap(k)=Tap−1(k)Rap(k). Because Tut(k), Rut(k), Tap(k), and Rap(k) are diagonal matrices, Kap(k) and Kut(k) are also diagonal matrices.
Calibration may be performed to obtain estimates, {circumflex over (K)}ap(k) and {circumflex over (K)}ut(k), of the actual diagonal matrices, Kap(k) and Kut(k), for k∈K. The matrices {circumflex over (K)}ap(k) and {circumflex over (K)}ut(k) contain correction factors that can account for differences in the frequency responses of the transmit/receive chains at the access point and user terminal. A “calibrated” downlink channel response, Hcdn(k), observed by the user terminal and a “calibrated” uplink channel response, Hcup(k), observed by the access point may then be expressed as:
Hcdn(k)=Hdn(k){circumflex over (K)}ap(k), for k∈K, and Eq (6a)
Hcup(k)=Hup(k){circumflex over (K)}ut(k), for k∈K, where Eq (6b)
Hcdn(k)≈HcupT(k), for k∈K. Eq (6c)
The accuracy of the relationship in equation (6c) is dependent on the accuracy of the correction matrices, {circumflex over (K)}ap(k) and {circumflex over (K)}ut(k), which is in turn dependent on the quality of the estimates of the effective downlink and uplink channel responses, Ĥdn(k) and Ĥup(k), used to derive these correction matrices. A correction vector {circumflex over (k)}ut(k) may be defined to include only the Nut diagonal elements of {circumflex over (K)}ut(k), and a correction vector {circumflex over (k)}ap(k) may be defined to include only the Nap diagonal elements of {circumflex over (K)}ap(k). Calibration is described in detail in the aforementioned provisional U.S. Patent Application Ser. No. 60/421,462.
The pilots described herein may also be used for MIMO and MIMO-OFDM systems that do not perform calibration. For clarity, the following description assumes that calibration is performed and that the correction matrices {circumflex over (K)}ap(k) and {circumflex over (K)}ut(k) are used in the transmit paths at the access point and the user terminal, respectively.
2. Beacon and MIMO Pilots
As shown in
In an exemplary pilot transmission scheme, the beacon pilot is transmitted for two symbol periods and the MIMO pilot is transmitted for eight symbol periods at the start of the BCH segment. Table 6 shows the beacon and MIMO pilots for this exemplary scheme.
The beacon pilot transmitted on the downlink may be expressed as:
xdn,bp(k)={circumflex over (k)}ap(k)b(k), for k∈K, Eq (7)
where
The MIMO pilot transmitted on the downlink may be expressed as:
xdn,mp,n(k)={circumflex over (K)}ap(k)wdn,np(k), for k∈K, Eq (8)
where
As shown in equation (8), the MIMO pilot is covered by the vector wdn,n and further scaled by the correction matrix {circumflex over (K)}ap(k), but not subjected to any other spatial processing. The same Walsh vector wdn,n is used for all subbands, and thus wdn,n is not a function of the subband index k. However, since each Walsh sequence is a unique sequence of 4 Walsh chips for 4 symbol periods, wdn,n is a function of symbol period n. The vector wdn,n thus includes Nap Walsh chips to be used for the Nap transmit antennas at the access point for symbol period n. For the scheme shown in Table 6, the four vectors wdn,n, for n={3, 4, 5, 6}, for the first four symbol periods of MIMO pilot transmission on the BCH are w3=[1 1 1 1], w4=[1 −1 1 −1], w5=[1 1 −1 −1], w6=[1 −1 −1 1], and the four vectors wdn,n, for n={7, 8, 9, 10}, for the next four symbol periods are repeated such that w7=w3, w8=w4, w9=w5, and w10=w6.
The MIMO pilot transmitted on the uplink may be expressed as:
xup,mp,n(k)={circumflex over (K)}ut(k)wup,n(k), for k∈K Eq (9)
where xup,mp,n(k) is an (Nut×1) transmit vector for subband k in symbol period n for the uplink MIMO pilot. The Walsh vector wup,n used for the uplink MIMO pilot may be the same or different from the Walsh vector wdn,n used for the downlink MIMO pilot. For example, if a user terminal is equipped with only two transmit antennas, then wup,n may include two Walsh sequences with length of 2 or greater.
3. Spatial Processing
As described above, the channel response matrix for each subband may be diagonalized to obtain the NS eigenmodes for that subband. The singular value decomposition of the calibrated uplink channel response matrix, Hcup(k), may be expressed as:
Hcup(k)=Uap(k)Σ(k)VutH(k), for k∈K Eq (10)
where
Similarly, the singular value decomposition of the calibrated downlink channel response matrix, Hcdn(k), may be expressed as:
Hcdn(k)=Vut*(k)Σ(k)UapT(k), for k∈K, Eq (11)
where the matrices Vut*(k) and Uap*(k) are unitary matrices of left and right eigenvectors, respectively, of Hcdn(k).
As shown in equations (10) and (11) and based on the above description, the matrices of left and right eigenvectors for one link are the complex conjugate of the matrices of right and left eigenvectors, respectively, for the other link. For simplicity, reference to the matrices Uap(k) and Vut(k) in the following description may also refer to their various other forms (e.g., Vut(k) may refer to Vut(k), Vut*(k), VutT(k), and VutH(k)). The matrices Uap(k) and Vut(k) may be used by the access point and user terminal, respectively, for spatial processing and are denoted as such by their subscripts.
In an embodiment, the user terminal can estimate the calibrated downlink channel response based on a MIMO pilot transmitted by the access point. The user terminal may then perform singular value decomposition of the calibrated downlink channel response estimate Ĥcdn(k), for k∈K, to obtain the diagonal matrix {circumflex over (Σ)}(k) and the matrix {circumflex over (V)}ut*(k) of left eigenvectors of Ĥcdn(k) for each subband. This singular value decomposition may be given as Ĥcdn(k)={circumflex over (V)}ut*(k){circumflex over (Σ)}(k)ÛapT(k), where the hat (“{circumflex over ( )}”) above each matrix indicates that it is an estimate of the actual matrix. Similarly, the access point can estimate the calibrated uplink channel response based on a MIMO pilot transmitted by the user terminal. The access point may then perform singular value decomposition of the calibrated uplink channel response estimate Ĥcup(k), for k∈K, to obtain the diagonal matrix {circumflex over (Σ)}(k) and the matrix Ûap(k) of left eigenvectors of Ĥcup(k) for each subband. This singular value decomposition may be given as Ĥcup(k)=Ûap(k){circumflex over (Σ)}(k){circumflex over (V)}utH(k). The access point and user terminal may also obtain the required eigenvectors based on a steered reference, as described below.
Data transmission can occur on one or multiple wideband eigenmodes for each link. The specific number of wideband eigenmodes to use for data transmission is typically dependent on the channel conditions and may be selected in various manners. For example, the wideband eigenmodes may be selected by using a water-filling procedure that attempts to maximize the overall throughput by (1) selecting the best set of one or more wideband eigenmodes to use, and (2) distributing the total transmit power among the selected wideband eigenmode(s).
The MIMO-OFDM system may thus be designed to support multiple operating modes, including:
Data transmission on multiple wideband eigenmodes may be achieved by performing spatial processing with multiple sets of eigenvectors in the matrices Uap(k) or Vut(k), for k∈K (i.e., one set of eigenvectors for each wideband eigenmode). Table 7 summarizes the spatial processing at the access point and user terminal for both data transmission and reception for the spatial multiplexing mode.
x
dn (k) =
ŝ
up (k) =
{circumflex over (K)}
ap (k)Ûap* (k)sdn (k)
{circumflex over (Σ)}
−1 (k)ÛapH (k)rup (k)
ŝ
dn (k) =
x
up (k) =
{circumflex over (Σ)}
−1 (k){circumflex over (V)}utT (k)rdn (k)
{circumflex over (K)}
ut (k){circumflex over (V)}ut (k)sup (k)
In Table 7, s(k) is a “data” vector with up to NS non-zero entries for the modulation symbols to be transmitted on the NS eigenmodes of subband k, x(k) is a transmit vector for subband k, r(k) is a received vector for subband k, and ŝ(k) is an estimate of the transmitted data vector s(k). The subscripts “dn” and “up” for these vectors denote downlink and uplink transmissions, respectively.
Data transmission on one wideband eigenmode may be achieved by using either “beam-forming” or “beam-steering”. For beam-forming, the modulation symbols are spatially processed with a set of eigenvectors {circumflex over (v)}(k) or ûap,1(k), for k∈K, for the principal wideband eigenmode. For beam-steering, the modulation symbols are spatially processed with a set of “normalized” (or “saturated”) eigenvectors {tilde over (v)}ut(k) or ũap(k), for k∈K, for the principal wideband eigenmode. The normalized eigenvectors {tilde over (v)}ut(k) and ũap(k) can be derived as described below.
The spatial processing for the spatial multiplexing and beam-steering modes is described in detail in the aforementioned provisional U.S. Patent Application Ser. Nos. 60/421,309 and 60/421,428. The steered references for the spatial multiplexing and beam-steering modes are described below.
4. Steered Reference
For a reciprocal channel (e.g., after calibration has been performed to account for differences in the transmit/receive chains at the access point and user terminal), a steered reference may be transmitted by the user terminal and used by the access point to obtain estimates of both Ûap(k) and {circumflex over (Σ)}(k), for k∈K, without having to estimate the MIMO channel or perform the singular value decomposition. Similarly, a steered reference may be transmitted by the access point and used by the user terminal to obtain estimates of both {circumflex over (V)}ut(k) and {circumflex over (Σ)}(k), for k∈K.
In an embodiment, the steered reference comprises a set of pilot symbols (e.g., the P OFDM symbol) that is transmitted on one wideband eigenmode in a given symbol period by performing spatial processing with a set of unnormalized or normalized eigenvectors for that wideband eigenmode. In an alternative embodiment, the steered reference comprises multiple sets of pilot symbols that are transmitted on multiple wideband eigenmodes in the same symbol period by performing spatial processing with multiple sets of unnormalized or normalized eigenvectors for these wideband eigenmodes. In any case, the steered reference is transmitted from all Nap antennas at the access point (for the downlink) and all Nut antennas at the user terminal (for the uplink). For clarity, the following description assumes that the steered reference is transmitted for one wideband eigenmode in a given symbol period.
A. Downlink Steered Reference—Spatial Multiplexing Mode
For the spatial multiplexing mode, the downlink steered reference transmitted on the m-th wideband eigenmode by the access point may be expressed as:
xdn,sr,m(k)={circumflex over (K)}ap(k)û*ap,m(k)p(k), for k∈K Eq (12)
where
The received downlink steered reference at the user terminal for the spatial multiplexing mode may be expressed as:
where σm(k) is the singular value for the k-th subband of the m-th wideband eigenmode.
B. Downlink Steered Reference—Beam-Steering Mode
For the beam-steering mode, the spatial processing at the transmitter is performed using a set of “normalized” eigenvectors for the principal wideband eigenmode. The overall transfer function with a normalized eigenvector ũap(k) is different from the overall transfer function with an unnormalized eigenvector ûap,1*(k) (i.e., Hdn(k){circumflex over (K)}ap(k)ûap,1*(k)≠Hdn(k){circumflex over (K)}ap(k)ũap(k)). A steered reference generated using the set of normalized eigenvectors for the principal wideband eigenmode may then be sent by the transmitter and used by the receiver to derive the matched filter for the beam-steering mode.
For the beam-steering mode, the downlink steered reference transmitted on the principal wideband eigenmode by the access point may be expressed as:
{tilde over (x)}(k)={circumflex over (K)}ap(k)ũap(k), for k∈K Eq (14)
where ũap(k) is the normalized eigenvector for the k-th subband of the principal wideband eigenmode, which may be expressed as:
where A is a constant (e.g., A=1); and
As shown in equation (15), the Nap elements of the vector ũap(k) have equal magnitudes but possibly different phases. As shown in equation (16), the phase of each element in the vector ũap(k) is obtained from the corresponding element of the vector ûap,1*(k) (i.e., θui(k) is obtained from ûap,1,i*(k), where ûap,1*(k)=[ûap,1,1*(k)ûap,1,2*(k) . . . ûap,1,N
The received downlink steered reference at the user terminal for the beam-steering mode may be expressed as:
C. Uplink Steered Reference—Spatial Multiplexing Mode
For the spatial multiplexing mode, the uplink steered reference transmitted on the m-th wideband eigenmode by the user terminal may be expressed as:
xup,sr,m(k)={circumflex over (K)}ut(k){circumflex over (v)}ut,m(k)p(k), for k∈K. Eq (18)
The vector {circumflex over (v)}ut,m(k) is the m-th column of the matrix {circumflex over (V)}ut(k), where {circumflex over (V)}ut(k)=[{circumflex over (v)}ut,1(k){circumflex over (v)}ut,2(k) . . . {circumflex over (v)}ut,N
The received uplink steered reference at the access point for the spatial multiplexing mode may be expressed as:
D. Uplink Steered Reference—Beam-Steering Mode
For the beam-steering mode, the uplink steered reference transmitted on the principal wideband eigenmode by the user terminal may be expressed as:
{tilde over (x)}up,sr(k)={circumflex over (K)}ut(k){tilde over (v)}ut(k)p(k), for k∈K. Eq (20)
The normalized eigenvector {tilde over (v)}ut(k) for the k-th subband for the principal wideband eigenmode may be expressed as:
where
As shown in equation (22), the phase of each element in the vector {tilde over (v)}ut(k) is obtained from the corresponding element of the eigenvector {circumflex over (v)}ut,1(k).
The received uplink steered reference at the access point for the beam-steering mode may be expressed as:
Table 8 summarizes the spatial processing at the access point and user terminal for the steered reference for the spatial multiplexing and beam-steering modes.
x
dn, sr, m (k) =
{tilde over (x)}
dn, sr (k) =
{circumflex over (K)}
ap (k)Ûap,m*(k) p(k)
{circumflex over (K)}
ap (k)ũap(k) p(k)
x
up, sr, m (k) =
{tilde over (x)}
up, sr (k) =
{circumflex over (K)}
ut (k){circumflex over (V)}ut,m (k) p(k)
{circumflex over (K)}
ut (k){tilde over (v)}ut (k) p(k)
E. Steered Reference Transmission
For the exemplary frame structure shown in
In one embodiment, for the spatial multiplexing mode, the steered reference is transmitted for one or more wideband eigenmodes for each TDD frame. The specific number of wideband eigenmodes to transmit in each TDD frame may be dependent on the duration of the steered reference. Table 9 lists the wideband eigenmodes used for the steered reference in the preamble of an FCH/RCH PDU for various preamble sizes, for an exemplary design with four transmit antennas.
As shown in Table 9, the steered reference is transmitted for all four wideband eigenmodes within the same TDD frame when the preamble size is four or eight symbol periods. The steered reference transmitted in the preamble of an FCH PDU by the access point for the n-th symbol period may be expressed as:
xdn,sr,n(k)={circumflex over (K)}ap(k)ûap,[(n−1)mod 4]+1*(k)p(k), for k∈K and n∈{1 . . . L}, Eq (24)
where L is the preamble size (e.g., L=0, 1, 4, or 8 for the exemplary design shown in Table 9).
The steered reference transmitted in the preamble of an RCH PDU by the user terminal for the n-th symbol period may be expressed as:
xup,sr,n(k)={circumflex over (K)}ut(k){circumflex over (v)}ut,[(n−1)mod 4]+1(k)p(k), for k∈K and n∈{1 . . . L}, Eq (25)
In equations (24) and (25), the four wideband eigenmodes are cycled through in each 4-symbol period by the “mod” operation for the steering vector. This scheme may be used if the channel changes more rapidly and/or during the early part of a communication session when a good channel estimate needs to be obtained quickly for proper system operation.
In another embodiment, the steered reference is transmitted for one wideband eigenmode for each TDD frame. The steered reference for four wideband eigenmodes may be cycled through in four TDD frames. For example, the steering vectors {circumflex over (v)}ut,1(k), {circumflex over (v)}ut,2(k), {circumflex over (v)}ut,3(k), and {circumflex over (v)}ut,4(k) may be used for four consecutive TDD frames by the user terminal. The particular steering vector to use for the steered reference in each TDD frame may be specified by a frame counter, which may be sent in the BCH message. This scheme may allow a shorter preamble to be used for the FCH and RCH PDUs. However, a longer time period may be needed to obtain a good estimate of the channel.
For the beam-steering mode, the normalized steering vector for the principal wideband eigenmode is used for the steered reference, as shown in equations (14) and (20). The duration of the steered reference may be selected, for example, based on the channel conditions.
While operating in the beam-steering mode, the user terminal may transmit multiple symbols of steered reference, for example, one or more symbols using the normalized eigenvector {tilde over (v)}ut(k), one or more symbols using the eigenvector {circumflex over (v)}ut,1(k) for the principal eigenmode, and possibly one or more symbols using the eigenvectors for the other eigenmodes. The steered reference symbols generated with {tilde over (v)}ut(k) may be used by the access point to derive an uplink matched filter vector. This vector is used by the access point to perform matched filtering of the uplink data transmission sent by the user terminal using beam-steering. The steered reference symbols generated with {circumflex over (v)}ut,1(k) may be used to obtain ûap,1(k), which may then be used to derive the normalized eigenvector ũap(k) that is used for beam-steering on the downlink. The steered reference symbols generated with the eigenvectors {circumflex over (v)}ut,2(k) through {circumflex over (v)}ut,N
For the downlink, the user terminal may derive a downlink matched filter vector for the beam-steering mode based on the calibrated downlink channel response estimate Ĥcdn(k). In particular, the user terminal has ûap,1*(k) from the singular value decomposition of Ĥcdn(k) and can then derive the normalized eigenvector ũap(k). The user terminal can then multiply ũap(k) with Ĥcdn(k) to obtain Ĥcdn(k)ũap(k), and may then derive the downlink matched filter vector for the beam-steering mode based on Ĥcdn(k)ũap(k). Alternatively, a steered reference may be sent by the access point using the normalized eigenvector ũap(k), and this steered reference may be processed by the user terminal in the manner described above to obtain the downlink matched filter vector for the beam-steering mode.
F. Subband Multiplexing for Steered Reference
For both the spatial multiplexing and beam-steering modes, the steered reference may also be transmitted for multiple wideband eigenmodes for a given symbol period using subband multiplexing. The usable subbands may be partitioned into multiple disjoint sets of subbands, one set for each wideband eigenmode selected for steered reference transmission. Each set of subbands may then be used to transmit a steered reference for the associated wideband eigenmode. For simplicity, the term “wideband eigenmode” is used here even though the steered reference is sent on only a subset of all usable subbands.
For example, the steered reference may be transmitted on all four wideband eigenmodes in one symbol period. In this case, the 52 usable subbands may be partitioned into four disjoint sets (e.g., labeled as sets 1, 2, 3, and 4), with each set including 13 subbands. The 13 subbands in each set may be uniformly distributed across 52 usable subbands. The steered reference for the principal wideband eigenmode may then be transmitted on the 13 subbands in set 1, steered reference for the second wideband eigenmode may be transmitted on the 13 subbands in set 2, steered reference for the third wideband eigenmode may be transmitted on the 13 subbands in set 3, and steered reference for the fourth wideband eigenmode may be transmitted on the 13 subbands in set 4.
If the steered reference is sent on only a subset of all usable subbands for a given wideband eigenmode, then interpolation or some other technique may be used to obtain estimates for the subbands not used for steered reference transmission for that wideband eigenmode.
In general, the multiple sets of subbands may include the same or different number of subbands. For example, the number of subbands to include in each set may be dependent on the SNR of the wideband eigenmode associated with the set (e.g., more subbands may be assigned to a set associated with a poor quality wideband eigenmode). Moreover, the subbands in each set may be uniformly or non-uniformly distributed across the usable subbands. The multiple sets of subbands may also be associated with the same or different sets of pilot symbols.
Subband multiplexing may be used to reduce the amount of overhead needed to transmit the steered reference, which can improve the efficiency of the system.
G. Channel Estimation with the Steered Reference
As shown in equation (13), at the user terminal, the received downlink steered reference for the spatial multiplexing mode (in the absence of noise) is approximately {circumflex over (v)}ut,m*(k)σm(k)p(k). Similarly, as shown in equation (19), at the access point, the received uplink steered reference for the spatial multiplexing mode (in the absence of noise) is approximately {circumflex over (v)}ap,m(k)σm(k)p(k). The access point can thus obtain an estimate of ûap,m(k) and σm(k) based on a steered reference sent by the user terminal, and vice versa.
Various techniques may be used to process a steered reference. For clarity, the following description is for the processing of an uplink steered reference. The received vector at the access point is given in equation (19), which is
rup,sr,m(k)≈ûap,m(k)σm(k)p(k)+nup(k).
In one embodiment, to obtain an estimate of ûap,m(k), the received vector rup,sr,m(k) for the steered reference sent on the m-th wideband eigenmode is first multiplied with the complex conjugate of the pilot symbol, p*(k), that is used for the steered reference. The result may then be integrated over multiple received steered reference symbols for each wideband eigenmode to obtain an estimate of ûap,m(k)σm(k), which is a scaled left eigenvector of Ĥcup(k) for the m-th wideband eigenmode. Each of the Nap entries of the vector ûap,m(k) is obtained based on a corresponding one of the Nap entries for the vector rup,m(k), where the Nap entries of rup,m(k) are the symbols received from the Nap antennas at the access point. Since eigenvectors have unit power, the singular value σm(k) may be estimated based on the received power of the steered reference, which can be measured for each subband of each wideband eigenmode. The singular value estimate {circumflex over (σ)}m(k) is then equal to the square root of the received power divided by the magnitude of the pilot symbol p(k).
In another embodiment, a minimum mean square error (MMSE) technique is used to obtain an estimate of the vector ûap,m(k) based on the received vector rup,sr,m(k) for the steered reference. Since the pilot symbols p(k) are known, the access point can derive an estimate of ûap,m(k) such that the mean square error between the received pilot symbols (obtained after performing the matched filtering on the received vector rup,sr,m(k)) and the transmitted pilot symbols is minimized. The use of the MMSE technique for spatial processing at the receiver is described in commonly assigned U.S. patent application Ser. No. 09/993,087, entitled “Multiple-Access Multiple-Input Multiple-Output (MIMO) Communication System,” filed Nov. 6, 2001.
The steered reference is sent for one wideband eigenmode in any given symbol period (without subband multiplexing), and may in turn be used to obtain an estimate of one eigenvector for each subband of that wideband eigenmode. Thus, the receiver is able to obtain an estimate of only one eigenvector in a unitary matrix for any given symbol period. Since estimates of multiple eigenvectors for the unitary matrix are obtained over different symbol periods, and due to noise and other sources of degradation in the wireless channel, the estimated eigenvectors for the unitary matrix (which are individually derived) are not likely be orthogonal to one another. The estimated eigenvectors may thereafter be used for matched filtering of a data transmission received on the same link and/or spatial processing of a data transmission sent on the other link. In this case, any errors in orthogonality among these estimated eigenvectors would result in cross-talk among the data streams sent on the eigenmodes corresponding to the eigenvectors. The cross-talk may degrade performance.
In an embodiment, the estimated eigenvectors for each unitary matrix are forced to be orthogonal to each other. The orthogonalization of the eigenvectors may be achieved using the Gram-Schmidt technique, which is described in detail in the aforementioned reference from Gilbert Strang, or some other technique.
Other techniques to process the steered reference may also be used, and this is within the scope of the invention.
The access point can thus estimate both Ûap(k) and {circumflex over (Σ)}(k) based on the steered reference sent by the user terminal, without having to estimate the uplink channel response or perform singular value decomposition of Ĥcup(k).
The processing at the user terminal to estimate the matrices {circumflex over (V)}ut(k) and {circumflex over (Σ)}(k), for k∈K, based on the downlink steered reference may be performed similar to that described above for the uplink steered reference.
For the beam-steering mode, on the uplink, the received vector {tilde over (r)}up,sr,m(k) for the steered reference may be processed by the access point in a similar manner to obtain an estimate of Hcup(k){tilde over (v)}ut(k). The conjugate transpose of this estimate is then the matched filter for the uplink transmission in the beam-steering mode. On the downlink, the received vector {tilde over (r)}dn,sr,m(k) for the steered reference may be processed by the user terminal in a similar manner to obtain an estimate of Hcdn(k)ũap(k). The conjugate transpose of this estimate is then the matched filter for the downlink transmission in the beam-steering mode.
5. Carrier Pilot
The carrier pilot may be transmitted on the pilot subbands in various manners for the TDD frame structure shown in
6. Pilot Transmission Scheme
Four types of pilot have been described above and may be used for MIMO and MIMO-OFDM systems. These four different types of pilot may be transmitted in various manners.
A beacon pilot and a MIMO pilot are transmitted on the downlink by the access point in each TDD frame (block 312) to allow all user terminals in the system to acquire the system frequency and timing and to estimate the downlink channel (block 314). Block 314 may be performed as necessary to access the system.
Calibration may be performed prior to normal operation to calibrate out differences in the transmit/receive chains at the access point and user terminal. For the calibration, MIMO pilots may be transmitted by both the access point and the user terminal (blocks 322 and 326). The uplink MIMO pilot may be used by the access point to derive an estimate of the uplink channel (block 324), and the downlink MIMO pilot may be used by the user terminal to derive or update an estimate of the downlink channel (block 328). The downlink and uplink channel estimates are then used to derive the correction factors for the access point and the user terminal.
During normal operation, a steered reference may be transmitted on the uplink by the user terminal (1) if and when it desires a data transmission or (2) if it is scheduled for data transmission (block 332). The uplink steered reference may be used by the access point to estimate the pertinent unitary and diagonal matrices for the user terminal (block 334). A steered reference may optionally be transmitted by the access point to the user terminal (as shown by dashed block 336). The user terminal can continually update its estimate of the downlink channel based on the downlink MIMO pilot and update the pertinent unitary and diagonal matrices based on the downlink steered reference (if transmitted) (block 338). Carrier pilots are transmitted by the access point (block 340) and the user terminal (block 344) on the pilot subbands during portions that are not used for other pilots. The downlink carrier pilot is used by the user terminal to track the phase of the downlink carrier signal (block 342), and the uplink carrier pilot is used by the access point to track the phase of the uplink carrier signal (block 346).
For the pilot transmission scheme shown in
Various other pilot transmission schemes may also be implemented for MIMO and MIMO-OFDM systems, and this is within the scope of the invention. For example, the beacon and carrier pilots may be combined into a single pilot that can be used for frequency and timing acquisition and carrier phase tracking. As another example, the active user terminals may transmit MIMO pilots, instead of steered references, on the uplink.
IV. MIMO-OFDM System
On the downlink, at access point 110x, a transmit (TX) data processor 414 receives traffic data from a data source 412 and signaling and other data from a controller 430. TX data processor 414 formats, codes, interleaves, and modulates (i.e., symbol maps) the data to provide modulation symbols. A TX spatial processor 420 receives and multiplexes the modulation symbols from TX data processor 414 with pilot symbols, performs the required spatial processing, and provides four streams of transmit symbols for the four transmit antennas.
Each modulator (MOD) 422 receives and processes a respective transmit symbol stream to provide a corresponding downlink modulated signal. The four downlink modulated signals from modulators 422a through 422d are then transmitted from antennas 424a through 424d, respectively.
At user terminal 120x, four antennas 452a through 452d receive the transmitted downlink modulated signals, and each antenna provides a received signal to a respective demodulator (DEMOD) 454. Each demodulator 454 performs processing complementary to that performed at modulator 422 and provides received symbols. A receive (RX) spatial processor 460 then performs spatial processing on the received symbols from all demodulators 454a through 454d to provide recovered symbols, which are estimates of the modulation symbols transmitted by the access point. An RX data processor 470 further processes (e.g., symbol demaps, deinterleaves, and decodes) the recovered symbols to provide decoded data, which may be provided to a data sink 472 for storage and/or a controller 480 for further processing.
The processing for the uplink may be the same or different from the processing for the downlink. Data and signaling are processed (e.g., coded, interleaved, and modulated) by a TX data processor 488, multiplexed with pilot symbols, and further spatially processed by a TX spatial processor 490. The transmit symbols from TX spatial processor 490 are further processed by modulators 454a through 454d to generate four uplink modulated signals, which are then transmitted via antennas 452a through 452d.
At access point 410, the uplink modulated signals are received by antennas 424a through 424d, demodulated by demodulators 422a through 422d, and processed by an RX spatial processor 440 and an RX data processor 442 in a complementary manner to that performed at the user terminal. The decoded data for the uplink may be provided to a data sink 444 for storage and/or controller 430 for further processing.
Controllers 430 and 480 control the operation of various processing units at the access point and user terminal, respectively. Memory units 432 and 482 store data and program codes used by controllers 430 and 480, respectively.
Within each subband processor 510, the pilot symbol b(k) is scaled by four multipliers 514a through 514d with four correction factors {circumflex over (K)}ap,1(k) through {circumflex over (K)}ap,4(k), respectively, from the matrix {circumflex over (K)}ap(k). Each multiplier 514 performs complex multiplication of the complex pilot symbol with a respective complex correction factor. The scaled pilot symbols from multipliers 514a through 514d are then provided to four buffers/multiplexers 520a through 520d, respectively, which also receive the scaled pilot symbols from other subband processors 510. Each buffer/multiplexer 520 multiplexes the scaled pilot symbols for all subbands used for beacon pilot transmission and signal values of zero for the unused subbands and provides a stream of transmit symbols for the associated transmit antenna.
Within each subband processor 610, the complex pilot symbol p(k) is covered by the four Walsh sequences w1 through w4 by four complex multipliers 612a through 612d, respectively. The covered pilot symbols are further scaled by four complex multipliers 614a through 614d with four complex correction factors {circumflex over (K)}ap,1(k) through {circumflex over (K)}ap,4(k), respectively, from the matrix {circumflex over (K)}ap(k). The scaled pilot symbols from multipliers 614a through 614d are then provided to four buffers/multiplexers 620a through 620d, respectively. The subsequent processing is as described above for
For an implementation of processor 420b in TX spatial processor 490, the number of Walsh sequences to use is dependent on the number of transmit antennas available at the user terminal. Moreover, the scaling is performed with the correction factors from the matrix {circumflex over (K)}ut(k) for the user terminal.
Each MIMO pilot subband processor 650 includes four MIMO pilot subband/antenna processors 660a through 660d for the four receive antennas at the user terminal. Each processor 660 receives one entry ri(k) of the vector r(k). Within each processor 660, the received symbol ri(k) is first multiplied with the conjugated pilot symbol p*(k) by a complex multiplier 662. The output of multiplier 662 is further multiplied with the four Walsh sequences w1 through w4 by four complex multipliers 664a through 664d, respectively. The outputs from multipliers 664a through 664d are then accumulated by accumulators 666a through 666d, respectively, for the duration of the MIMO pilot transmission. Each pair of multiplier 664 and accumulator 666 performs decovering for one transmit antenna at the access point. The output from each accumulator 666 represents an estimate ĥi,j(k) of the channel gain from transmit antenna j to receive antenna i for subband k. The channel response estimates {ĥi,j(k)}, for i={1, 2, 3, 4} and j={1, 2, 3, 4}, may further be averaged over multiple MIMO pilot transmissions (not shown in
As shown in
Within each subband processor 710, the pilot symbol p(k) is multiplied with the four elements ûap,1,m*(k) through ûap,4,m*(k) of the steering vector ûap,m*(k) for the m-th wideband eigenmode by four complex multipliers 712a through 712d, respectively. The outputs from multipliers 712a through 712d are further scaled by four complex multipliers 714a through 714d with four correction factors {circumflex over (K)}ap,1(k) through {circumflex over (K)}ap,4(k), respectively, from the matrix {circumflex over (K)}ap(k). The scaled pilot symbols from multipliers 714a through 714d are then provided to four buffers/multiplexers 720a through 720d, respectively. The subsequent processing is as described above.
To generate the steered reference on the downlink for the beam-steering mode, each subband processor 710 would receive a normalized steering vector ũap(k), instead of the unnormalized steering vector ûap,m*(k). For an implementation of processor 420c in TX spatial processor 490, each subband processor 710 would receive either (1) the steering vector {circumflex over (v)}ut,m(k) for each wideband eigenmode used for the steered reference, for the spatial multiplexing mode, or (2) the steering vector {tilde over (v)}ut(k) for the beam-steering mode. If subband multiplexing is used for the steered reference, then steering vectors for multiple wideband eigenmodes may be used for multiple disjoint sets of subbands, as described above.
Within each subband processor 750, the four symbols in the received vector r(k) are multiplied with the conjugated pilot symbol p*(k) by complex multipliers 762a through 762d, respectively. The outputs of multipliers 762a through 762d are then accumulated for the duration of the steered reference transmission for each wideband eigenmode by accumulators 764a through 764d, respectively. As shown in Table 9, the steered reference may be sent for multiple wideband eigenmodes within the same steered reference transmission, in which case the accumulation is performed separately for each of these wideband eigenmodes. However, multiple steered reference symbols (which may be transmitted in one or multiple steered reference transmissions) for any given wideband eigenmode may be accumulated to obtain a higher quality estimate. Accumulators 764a through 764d provide four elements which are the estimate of {circumflex over (v)}ut,m*(k)σm(k) as shown in equation (13).
Since the eigenvectors have unit power, the singular value σm(k) for each wideband eigenmode may be estimated based on the received power of the steered reference. A power calculation unit 766 receives the outputs of multipliers 762a through 762d and computes the received power of the steered reference, Pm(k), for each eigenmode of subband k. The singular value estimate {circumflex over (σ)}m(k) is then equal to the square root of the computed received power of the steered reference divided by the magnitude of the pilot symbol (i.e., {circumflex over (σ)}m(k)=√{square root over (Pm(k))}/|p(k)|), where
and ri(k) is the symbol received on subband k of receive antenna i.
The outputs of accumulators 766a through 766d are then scaled by the inverse of the singular value estimate, {circumflex over (σ)}m−1(k), by multipliers 768a through 768d, respectively, to provide an estimate of the steering vector for each eigenmode, {circumflex over (v)}ut,m(k)=[{circumflex over (v)}ut,1,m*(k) {circumflex over (v)}ut,2,m*(k) {circumflex over (v)}ut,3,m*(k) {circumflex over (v)}ut,4,m*(k)].
The processing for the steered reference for the beam-steering may be performed in a similar manner. The processing for the steered reference on the uplink may also be performed in similar manner to obtain an estimate of the steering vector for each eigenmode, ûap,m(k)=[ûap,1,m(k) ûap,2,m(k) ûap,3,m(k) ûap,4,m(k)].
The pilots described herein may be implemented by various means. For example, the processing for the various types of pilot at the access point and the user terminal may be implemented in hardware, software, or a combination thereof. For a hardware implementation, the elements used to process the pilots for transmission and/or reception may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
For a software implementation, some of the processing for the various types of pilot (e.g., the spatial processing for a pilot transmission and/or channel estimation based on the received pilot) may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The software codes may be stored in a memory unit (e.g., memory units 432 and 482 in
Headings are included herein for reference and to aid in locating certain sections. These headings are not intended to limit the scope of the concepts described therein under, and these concepts may have applicability in other sections throughout the entire specification.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application is a continuation of U.S. patent application Ser. No. 14/836,620, entitled “PILOTS FOR MIMO COMMUNICATION SYSTEMS”, filed on Aug. 26, 2015, which was a continuation of U.S. patent application Ser. No. 13/155,916, entitled “PILOTS FOR MIMO COMMUNICATION SYSTEM”, filed on Jun. 8, 2011, now U.S. Pat. No. 9,312,935, which was a continuation of U.S. patent application Ser. No. 10/610,446, entitled “PILOTS FOR MIMO COMMUNICATION SYSTEM”, filed on Jun. 30, 2003, now U.S. Pat. No. 7,986,742, which claimed the benefit of provisional U.S. Application Ser. No. 60/421,309, entitled “MIMO WLAN SYSTEM,” filed on Oct. 25, 2002, Ser. No. 60/421,462, entitled “CHANNEL CALIBRATION FOR A TIME DIVISION DUPLEXED COMMUNICATION SYSTEM,” filed on Oct. 25, 2002, Ser. No. 60/421,428, entitled “CHANNEL ESTIMATION AND SPATIAL PROCESSING FOR TDD MIMO SYSTEMS,” filed on Oct. 25, 2002, Ser. No. 60/432,617, entitled “PILOTS FOR MIMO COMMUNICATION SYSTEMS”, filed Dec. 10, 2002, and Ser. No. 60/438,601, entitled “PILOTS FOR MIMO COMMUNICATION SYSTEMS,” filed on Jan. 7, 2003, all of which are assigned to the assignee of the present application and incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4736371 | Tejima et al. | Apr 1988 | A |
4750198 | Harper | Jun 1988 | A |
4797879 | Habbab et al. | Jan 1989 | A |
5239677 | Jasinski | Aug 1993 | A |
5241544 | Jasper et al. | Aug 1993 | A |
5295159 | Kerpez | Mar 1994 | A |
5404355 | Raith | Apr 1995 | A |
5422733 | Merchant et al. | Jun 1995 | A |
5471647 | Gerlach et al. | Nov 1995 | A |
5479447 | Chow et al. | Dec 1995 | A |
5491837 | Haartsen | Feb 1996 | A |
5493712 | Ramesh et al. | Feb 1996 | A |
5506861 | Bottomley | Apr 1996 | A |
5509003 | Snijders et al. | Apr 1996 | A |
5528581 | De Bot | Jun 1996 | A |
5606729 | Damico et al. | Feb 1997 | A |
5638369 | Ayerst et al. | Jun 1997 | A |
5677909 | Heide | Oct 1997 | A |
5710768 | Ziv et al. | Jan 1998 | A |
5729542 | Dupont | Mar 1998 | A |
5790550 | Peeters et al. | Aug 1998 | A |
5799005 | Soliman | Aug 1998 | A |
5818813 | Saito et al. | Oct 1998 | A |
5822374 | Levin | Oct 1998 | A |
5832387 | Bae et al. | Nov 1998 | A |
5859875 | Kato et al. | Jan 1999 | A |
5867478 | Baum et al. | Feb 1999 | A |
5867539 | Koslov | Feb 1999 | A |
5883887 | Take et al. | Mar 1999 | A |
5886988 | Yun et al. | Mar 1999 | A |
5929810 | Koutsoudis et al. | Jul 1999 | A |
5959965 | Ohkubo et al. | Sep 1999 | A |
5963589 | Nagano et al. | Oct 1999 | A |
5973638 | Robbins et al. | Oct 1999 | A |
5982327 | Vook et al. | Nov 1999 | A |
6005876 | Cimini, Jr. et al. | Dec 1999 | A |
6011963 | Ogoro | Jan 2000 | A |
6014429 | Laporta et al. | Jan 2000 | A |
6049548 | Bruno et al. | Apr 2000 | A |
6067290 | Paulraj et al. | May 2000 | A |
6072779 | Tzannes et al. | Jun 2000 | A |
6084915 | Williams | Jul 2000 | A |
6097771 | Foschini | Aug 2000 | A |
6115354 | Weck | Sep 2000 | A |
6122247 | Levin et al. | Sep 2000 | A |
6131016 | Greenstein et al. | Oct 2000 | A |
6141388 | Servais et al. | Oct 2000 | A |
6141542 | Kotzin et al. | Oct 2000 | A |
6141555 | Sato | Oct 2000 | A |
6141567 | Youssefmir et al. | Oct 2000 | A |
6144711 | Raleigh et al. | Nov 2000 | A |
6154661 | Goldburg | Nov 2000 | A |
6163296 | Lier et al. | Dec 2000 | A |
6167031 | Olofsson et al. | Dec 2000 | A |
6175588 | Visotsky et al. | Jan 2001 | B1 |
6178196 | Naguib et al. | Jan 2001 | B1 |
6192256 | Whinnett | Feb 2001 | B1 |
6205410 | Cai | Mar 2001 | B1 |
6222888 | Kao et al. | Apr 2001 | B1 |
6232918 | Wax et al. | May 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6272354 | Saario | Aug 2001 | B1 |
6275543 | Petrus et al. | Aug 2001 | B1 |
6278726 | Mesecher et al. | Aug 2001 | B1 |
6292917 | Sinha et al. | Sep 2001 | B1 |
6298035 | Heiskala | Oct 2001 | B1 |
6298092 | Heath, Jr. et al. | Oct 2001 | B1 |
6308080 | Burt et al. | Oct 2001 | B1 |
6310704 | Dogan et al. | Oct 2001 | B1 |
6314113 | Guemas | Nov 2001 | B1 |
6314289 | Eberlein et al. | Nov 2001 | B1 |
6317467 | Cox et al. | Nov 2001 | B1 |
6317612 | Farsakh | Nov 2001 | B1 |
6330277 | Gelblum et al. | Dec 2001 | B1 |
6330293 | Klank et al. | Dec 2001 | B1 |
6330462 | Chen | Dec 2001 | B1 |
6333953 | Bottomley et al. | Dec 2001 | B1 |
6339399 | Andersson et al. | Jan 2002 | B1 |
6345036 | Sudo et al. | Feb 2002 | B1 |
6346910 | Ito | Feb 2002 | B1 |
6347217 | Bengtsson et al. | Feb 2002 | B1 |
6347234 | Scherzer | Feb 2002 | B1 |
6348036 | Looney et al. | Feb 2002 | B1 |
6351499 | Paulraj et al. | Feb 2002 | B1 |
6363267 | Lindskog et al. | Mar 2002 | B1 |
6369758 | Zhang | Apr 2002 | B1 |
6377812 | Rashid-Farrokhi et al. | Apr 2002 | B1 |
6385264 | Terasawa et al. | May 2002 | B1 |
6389056 | Kanterakis et al. | May 2002 | B1 |
6426971 | Wu et al. | Jul 2002 | B1 |
6452981 | Raleigh et al. | Sep 2002 | B1 |
6463290 | Stilp et al. | Oct 2002 | B1 |
6473467 | Wallace et al. | Oct 2002 | B1 |
6478422 | Hansen | Nov 2002 | B1 |
6492942 | Kezys | Dec 2002 | B1 |
6510184 | Okamura | Jan 2003 | B1 |
6512737 | Agee | Jan 2003 | B1 |
6515617 | Demers et al. | Feb 2003 | B1 |
6532225 | Chang et al. | Mar 2003 | B1 |
6532255 | Gunzelmann et al. | Mar 2003 | B1 |
6532562 | Chou et al. | Mar 2003 | B1 |
6545997 | Boehnke et al. | Apr 2003 | B1 |
6574211 | Padovani et al. | Jun 2003 | B2 |
6574267 | Kanterakis et al. | Jun 2003 | B1 |
6574271 | Mesecher et al. | Jun 2003 | B2 |
6590883 | Kitade et al. | Jul 2003 | B1 |
6594473 | Dabak et al. | Jul 2003 | B1 |
6594798 | Chou et al. | Jul 2003 | B1 |
6597682 | Kari | Jul 2003 | B1 |
6608874 | Beidas et al. | Aug 2003 | B1 |
6611231 | Crilly et al. | Aug 2003 | B2 |
6615024 | Boros et al. | Sep 2003 | B1 |
6628702 | Rowitch et al. | Sep 2003 | B1 |
6631121 | Yoon | Oct 2003 | B1 |
6636496 | Cho et al. | Oct 2003 | B1 |
6636568 | Kadous | Oct 2003 | B2 |
6654590 | Boros et al. | Nov 2003 | B2 |
6654613 | Maeng et al. | Nov 2003 | B1 |
6668161 | Boros et al. | Dec 2003 | B2 |
6683916 | Sartori et al. | Jan 2004 | B1 |
6690660 | Kim et al. | Feb 2004 | B2 |
6693992 | Jones et al. | Feb 2004 | B2 |
6694155 | Chin et al. | Feb 2004 | B1 |
6697346 | Halton et al. | Feb 2004 | B1 |
6711121 | Gerakoulis et al. | Mar 2004 | B1 |
6721267 | Hiben et al. | Apr 2004 | B2 |
6728233 | Park et al. | Apr 2004 | B1 |
6731668 | Ketchum | May 2004 | B2 |
6735188 | Becker et al. | May 2004 | B1 |
6738020 | Lindskog et al. | May 2004 | B1 |
6744811 | Kantschuk | Jun 2004 | B1 |
6747963 | Park et al. | Jun 2004 | B1 |
6751187 | Walton et al. | Jun 2004 | B2 |
6751199 | Sindhushayana et al. | Jun 2004 | B1 |
6751444 | Meiyappan | Jun 2004 | B1 |
6751480 | Kogiantis | Jun 2004 | B2 |
6757263 | Olds | Jun 2004 | B1 |
6760313 | Sindhushayana et al. | Jul 2004 | B1 |
6760388 | Ketchum et al. | Jul 2004 | B2 |
6760882 | Gesbert et al. | Jul 2004 | B1 |
6763244 | Chen et al. | Jul 2004 | B2 |
6768727 | Sourour et al. | Jul 2004 | B1 |
6771706 | Ling et al. | Aug 2004 | B2 |
6785341 | Walton et al. | Aug 2004 | B2 |
6785513 | Sivaprakasam | Aug 2004 | B1 |
6788948 | Lindskog et al. | Sep 2004 | B2 |
6792041 | Kim et al. | Sep 2004 | B1 |
6795424 | Kapoor et al. | Sep 2004 | B1 |
6798738 | Do et al. | Sep 2004 | B1 |
6801790 | Rudrapatna | Oct 2004 | B2 |
6802035 | Catreux et al. | Oct 2004 | B2 |
6804191 | Richardson | Oct 2004 | B2 |
6821535 | Nurmi et al. | Nov 2004 | B2 |
6842460 | Olkkonen et al. | Jan 2005 | B1 |
6847828 | Miyoshi et al. | Jan 2005 | B2 |
6850252 | Hoffberg | Feb 2005 | B1 |
6850494 | Bender | Feb 2005 | B1 |
6850498 | Heath et al. | Feb 2005 | B2 |
6859503 | Pautler et al. | Feb 2005 | B2 |
6862271 | Medvedev et al. | Mar 2005 | B2 |
6862440 | Sampath | Mar 2005 | B2 |
6868079 | Hunt | Mar 2005 | B1 |
6873651 | Tesfai et al. | Mar 2005 | B2 |
6879578 | Pan et al. | Apr 2005 | B2 |
6879579 | Myles et al. | Apr 2005 | B1 |
6882868 | Shattil | Apr 2005 | B1 |
6885708 | Thomas et al. | Apr 2005 | B2 |
6888809 | Foschini et al. | May 2005 | B1 |
6888899 | Raleigh et al. | May 2005 | B2 |
6891858 | Mahesh et al. | May 2005 | B1 |
6907270 | Blanz | Jun 2005 | B1 |
6920192 | Laroia et al. | Jul 2005 | B1 |
6920194 | Stopler et al. | Jul 2005 | B2 |
6927728 | Vook et al. | Aug 2005 | B2 |
6937592 | Heath, Jr. et al. | Aug 2005 | B1 |
6940917 | Menon et al. | Sep 2005 | B2 |
6950632 | Yun et al. | Sep 2005 | B1 |
6952426 | Wu et al. | Oct 2005 | B2 |
6952454 | Jalali et al. | Oct 2005 | B1 |
6956813 | Fukuda | Oct 2005 | B2 |
6956897 | Honig | Oct 2005 | B1 |
6956906 | Tager et al. | Oct 2005 | B2 |
6959171 | Tsien et al. | Oct 2005 | B2 |
6961388 | Ling et al. | Nov 2005 | B2 |
6963741 | Johansson et al. | Nov 2005 | B2 |
6963742 | Boros et al. | Nov 2005 | B2 |
6965762 | Sugar et al. | Nov 2005 | B2 |
6970722 | Lewis | Nov 2005 | B1 |
6975868 | Joshi et al. | Dec 2005 | B2 |
6980601 | Jones | Dec 2005 | B2 |
6980800 | Noerpel et al. | Dec 2005 | B2 |
6985434 | Wu et al. | Jan 2006 | B2 |
6985534 | Meister | Jan 2006 | B1 |
6987819 | Thomas et al. | Jan 2006 | B2 |
6990059 | Anikhindi et al. | Jan 2006 | B1 |
6992972 | Van Nee | Jan 2006 | B2 |
6996380 | Dent | Feb 2006 | B2 |
7002900 | Walton et al. | Feb 2006 | B2 |
7003044 | Subramanian et al. | Feb 2006 | B2 |
7006464 | Gopalakrishnan et al. | Feb 2006 | B1 |
7006483 | Nelson, Jr. et al. | Feb 2006 | B2 |
7006848 | Ling et al. | Feb 2006 | B2 |
7009931 | Ma et al. | Mar 2006 | B2 |
7012978 | Talwar | Mar 2006 | B2 |
7020110 | Walton et al. | Mar 2006 | B2 |
7020482 | Medvedev et al. | Mar 2006 | B2 |
7020490 | Khatri | Mar 2006 | B2 |
7023826 | Sjoberg et al. | Apr 2006 | B2 |
7024163 | Barratt et al. | Apr 2006 | B1 |
7031671 | Mottier | Apr 2006 | B2 |
7035359 | Molnar | Apr 2006 | B2 |
7039125 | Friedman | May 2006 | B2 |
7039363 | Kasapi et al. | May 2006 | B1 |
7042858 | Ma et al. | May 2006 | B1 |
7043259 | Trott | May 2006 | B1 |
7054378 | Walton et al. | May 2006 | B2 |
7058367 | Luo et al. | Jun 2006 | B1 |
7062294 | Rogard et al. | Jun 2006 | B1 |
7068628 | Li et al. | Jun 2006 | B2 |
7072381 | Atarashi et al. | Jul 2006 | B2 |
7072410 | Monsen | Jul 2006 | B1 |
7072413 | Walton et al. | Jul 2006 | B2 |
7076263 | Medvedev et al. | Jul 2006 | B2 |
7088671 | Monsen | Aug 2006 | B1 |
7095709 | Walton et al. | Aug 2006 | B2 |
7095722 | Walke et al. | Aug 2006 | B1 |
7099377 | Berens et al. | Aug 2006 | B2 |
7103325 | Jia et al. | Sep 2006 | B1 |
7110378 | Onggosanusi et al. | Sep 2006 | B2 |
7110463 | Wallace et al. | Sep 2006 | B2 |
7113499 | Nafie et al. | Sep 2006 | B2 |
7116652 | Lozano | Oct 2006 | B2 |
7120134 | Tiedemann et al. | Oct 2006 | B2 |
7120199 | Thielecke et al. | Oct 2006 | B2 |
7120657 | Ricks et al. | Oct 2006 | B2 |
7127009 | Berthet et al. | Oct 2006 | B2 |
7130362 | Girardeau et al. | Oct 2006 | B2 |
7133459 | Onggosanusi et al. | Nov 2006 | B2 |
7137047 | Mitlin et al. | Nov 2006 | B2 |
7149190 | Li et al. | Dec 2006 | B1 |
7149239 | Hudson | Dec 2006 | B2 |
7149254 | Sampath | Dec 2006 | B2 |
7151809 | Ketchum et al. | Dec 2006 | B2 |
7155171 | Ebert et al. | Dec 2006 | B2 |
7158563 | Ginis et al. | Jan 2007 | B2 |
7164649 | Walton et al. | Jan 2007 | B2 |
7164669 | Li et al. | Jan 2007 | B2 |
7184713 | Kadous et al. | Feb 2007 | B2 |
7187646 | Schramm | Mar 2007 | B2 |
7190749 | Levin et al. | Mar 2007 | B2 |
7191381 | Gesbert et al. | Mar 2007 | B2 |
7194237 | Sugar et al. | Mar 2007 | B2 |
7197084 | Ketchum et al. | Mar 2007 | B2 |
7200404 | Panasik et al. | Apr 2007 | B2 |
7206354 | Wallace et al. | Apr 2007 | B2 |
7218684 | Bolourchi et al. | May 2007 | B2 |
7221956 | Medvedev et al. | May 2007 | B2 |
7224704 | Lu et al. | May 2007 | B2 |
7231184 | Eilts et al. | Jun 2007 | B2 |
7233625 | Ma et al. | Jun 2007 | B2 |
7238508 | Lin et al. | Jul 2007 | B2 |
7242727 | Liu et al. | Jul 2007 | B2 |
7248638 | Banister | Jul 2007 | B1 |
7248841 | Agee et al. | Jul 2007 | B2 |
7254171 | Hudson | Aug 2007 | B2 |
7260153 | Nissani et al. | Aug 2007 | B2 |
7260366 | Lee et al. | Aug 2007 | B2 |
7263119 | Hsu et al. | Aug 2007 | B1 |
7269127 | Mody et al. | Sep 2007 | B2 |
7272162 | Sano et al. | Sep 2007 | B2 |
7274734 | Tsatsanis | Sep 2007 | B2 |
7277679 | Barratt et al. | Oct 2007 | B1 |
7280467 | Smee et al. | Oct 2007 | B2 |
7280625 | Ketchum et al. | Oct 2007 | B2 |
7283508 | Choi et al. | Oct 2007 | B2 |
7283581 | Itoh | Oct 2007 | B2 |
7289570 | Schmidl et al. | Oct 2007 | B2 |
7292854 | Das et al. | Nov 2007 | B2 |
7298778 | Visoz et al. | Nov 2007 | B2 |
7298805 | Walton et al. | Nov 2007 | B2 |
7308035 | Rouquette et al. | Dec 2007 | B2 |
7310304 | Mody et al. | Dec 2007 | B2 |
7317750 | Shattil | Jan 2008 | B2 |
7324429 | Walton et al. | Jan 2008 | B2 |
7327800 | Oprea et al. | Feb 2008 | B2 |
7333556 | Maltsev et al. | Feb 2008 | B2 |
7342912 | Kerr et al. | Mar 2008 | B1 |
7356004 | Yano et al. | Apr 2008 | B2 |
7356089 | Jia et al. | Apr 2008 | B2 |
7379492 | Hwang | May 2008 | B2 |
7386076 | Onggosanusi et al. | Jun 2008 | B2 |
7392014 | Baker et al. | Jun 2008 | B2 |
7403748 | Keskitalo et al. | Jul 2008 | B1 |
7421039 | Malaender et al. | Sep 2008 | B2 |
7453844 | Lee et al. | Nov 2008 | B1 |
7466749 | Medvedev et al. | Dec 2008 | B2 |
7480278 | Pedersen et al. | Jan 2009 | B2 |
7486740 | Inanoglu | Feb 2009 | B2 |
7492737 | Fong et al. | Feb 2009 | B1 |
7508748 | Kadous | Mar 2009 | B2 |
7548506 | Ma et al. | Jun 2009 | B2 |
7551546 | Ma et al. | Jun 2009 | B2 |
7551580 | Du et al. | Jun 2009 | B2 |
7573805 | Zhuang et al. | Aug 2009 | B2 |
7599443 | Ionescu et al. | Oct 2009 | B2 |
7603141 | Dravida | Oct 2009 | B2 |
7606296 | Hsu et al. | Oct 2009 | B1 |
7606319 | Zhang et al. | Oct 2009 | B2 |
7616698 | Sun et al. | Nov 2009 | B2 |
7623871 | Sheynblat | Nov 2009 | B2 |
7636573 | Walton et al. | Dec 2009 | B2 |
7646747 | Atarashi et al. | Jan 2010 | B2 |
7653142 | Ketchum et al. | Jan 2010 | B2 |
7653415 | Van Rooyen | Jan 2010 | B2 |
7656967 | Tiirola et al. | Feb 2010 | B2 |
7778337 | Tong et al. | Aug 2010 | B2 |
7787514 | Shattil et al. | Aug 2010 | B2 |
7822140 | Catreux et al. | Oct 2010 | B2 |
7843972 | Nakahara et al. | Nov 2010 | B2 |
7885228 | Walton et al. | Feb 2011 | B2 |
7986742 | Ketchum | Jul 2011 | B2 |
8134976 | Wallace et al. | Mar 2012 | B2 |
8145179 | Walton et al. | Mar 2012 | B2 |
8169944 | Walton et al. | May 2012 | B2 |
8170513 | Walton et al. | May 2012 | B2 |
8194770 | Medvedev et al. | Jun 2012 | B2 |
8203978 | Walton et al. | Jun 2012 | B2 |
8208364 | Walton et al. | Jun 2012 | B2 |
8213292 | Ma et al. | Jul 2012 | B2 |
8218609 | Walton et al. | Jul 2012 | B2 |
8254246 | Ma et al. | Aug 2012 | B2 |
8260210 | Esteve et al. | Sep 2012 | B2 |
8320301 | Walton et al. | Nov 2012 | B2 |
8325836 | Tong et al. | Dec 2012 | B2 |
8355313 | Walton et al. | Jan 2013 | B2 |
8358714 | Walton et al. | Jan 2013 | B2 |
8406118 | Ma et al. | Mar 2013 | B2 |
8462643 | Walton et al. | Jun 2013 | B2 |
8483188 | Walton et al. | Jul 2013 | B2 |
8570988 | Wallace et al. | Oct 2013 | B2 |
8711763 | Walton et al. | Apr 2014 | B2 |
8750151 | Wallace et al. | Jun 2014 | B2 |
8855226 | Medvedev et al. | Oct 2014 | B2 |
8873365 | Walton et al. | Oct 2014 | B2 |
8913529 | Walton et al. | Dec 2014 | B2 |
8934329 | Walton et al. | Jan 2015 | B2 |
9013974 | Walton et al. | Apr 2015 | B2 |
9031097 | Walton et al. | May 2015 | B2 |
9048892 | Walton et al. | Jun 2015 | B2 |
9154274 | Walton et al. | Oct 2015 | B2 |
9240871 | Walton et al. | Jan 2016 | B2 |
9312935 | Ketchum et al. | Apr 2016 | B2 |
9473269 | Walton et al. | Oct 2016 | B2 |
9876609 | Walton et al. | Jan 2018 | B2 |
9967005 | Ketchum | May 2018 | B2 |
20010017881 | Bhatoolaul et al. | Aug 2001 | A1 |
20010031621 | Schmutz | Oct 2001 | A1 |
20010033623 | Hosur | Oct 2001 | A1 |
20010046205 | Easton et al. | Nov 2001 | A1 |
20020003774 | Wang et al. | Jan 2002 | A1 |
20020004920 | Cho et al. | Jan 2002 | A1 |
20020018310 | Hung | Feb 2002 | A1 |
20020018453 | Yu et al. | Feb 2002 | A1 |
20020027951 | Gormley et al. | Mar 2002 | A1 |
20020041632 | Sato et al. | Apr 2002 | A1 |
20020044591 | Lee et al. | Apr 2002 | A1 |
20020044610 | Jones | Apr 2002 | A1 |
20020057659 | Ozluturk et al. | May 2002 | A1 |
20020062472 | Medlock et al. | May 2002 | A1 |
20020064214 | Hattori et al. | May 2002 | A1 |
20020075830 | Hartman, Jr. | Jun 2002 | A1 |
20020085620 | Mesecher | Jul 2002 | A1 |
20020085641 | Baum | Jul 2002 | A1 |
20020098872 | Judson | Jul 2002 | A1 |
20020105928 | Kapoor et al. | Aug 2002 | A1 |
20020115467 | Hamabe | Aug 2002 | A1 |
20020115473 | Hwang | Aug 2002 | A1 |
20020122381 | Wu et al. | Sep 2002 | A1 |
20020122393 | Caldwell et al. | Sep 2002 | A1 |
20020136271 | Hiramatsu et al. | Sep 2002 | A1 |
20020147032 | Yoon et al. | Oct 2002 | A1 |
20020150182 | Dogan et al. | Oct 2002 | A1 |
20020154705 | Walton et al. | Oct 2002 | A1 |
20020177447 | Walton et al. | Nov 2002 | A1 |
20020183010 | Catreux et al. | Dec 2002 | A1 |
20020184453 | Hughes et al. | Dec 2002 | A1 |
20020191535 | Sugiyama et al. | Dec 2002 | A1 |
20020193146 | Wallace et al. | Dec 2002 | A1 |
20020196842 | Onggosanusi et al. | Dec 2002 | A1 |
20030002450 | Jalali et al. | Jan 2003 | A1 |
20030007463 | Li et al. | Jan 2003 | A1 |
20030012308 | Sampath et al. | Jan 2003 | A1 |
20030039217 | Seo et al. | Feb 2003 | A1 |
20030039317 | Taylor et al. | Feb 2003 | A1 |
20030045288 | Luschi et al. | Mar 2003 | A1 |
20030045318 | Subrahmanya | Mar 2003 | A1 |
20030048856 | Ketchum et al. | Mar 2003 | A1 |
20030050069 | Kogiantis et al. | Mar 2003 | A1 |
20030072395 | Jia et al. | Apr 2003 | A1 |
20030073409 | Nobukiyo et al. | Apr 2003 | A1 |
20030076812 | Benedittis | Apr 2003 | A1 |
20030078024 | Magee et al. | Apr 2003 | A1 |
20030095197 | Wheeler et al. | May 2003 | A1 |
20030099306 | Nilsson et al. | May 2003 | A1 |
20030103584 | Bjerke et al. | Jun 2003 | A1 |
20030112745 | Zhuang et al. | Jun 2003 | A1 |
20030117989 | Kim | Jun 2003 | A1 |
20030119452 | Kim et al. | Jun 2003 | A1 |
20030123389 | Russell et al. | Jul 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030128656 | Scarpa | Jul 2003 | A1 |
20030139194 | Onggosanusi et al. | Jul 2003 | A1 |
20030142732 | Moshavi et al. | Jul 2003 | A1 |
20030153345 | Cramer et al. | Aug 2003 | A1 |
20030153360 | Burke et al. | Aug 2003 | A1 |
20030162519 | Smith et al. | Aug 2003 | A1 |
20030174676 | Willenegger et al. | Sep 2003 | A1 |
20030174686 | Willenegger et al. | Sep 2003 | A1 |
20030185311 | Kim | Oct 2003 | A1 |
20030186650 | Liu | Oct 2003 | A1 |
20030190897 | Lei et al. | Oct 2003 | A1 |
20030202492 | Akella et al. | Oct 2003 | A1 |
20030202612 | Halder et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030207696 | Willenegger et al. | Nov 2003 | A1 |
20030210668 | Malladi et al. | Nov 2003 | A1 |
20030235149 | Chan et al. | Dec 2003 | A1 |
20030235255 | Ketchum et al. | Dec 2003 | A1 |
20040005887 | Bahrenburg et al. | Jan 2004 | A1 |
20040013103 | Zhang et al. | Jan 2004 | A1 |
20040017785 | Zelst | Jan 2004 | A1 |
20040037257 | Ngo | Feb 2004 | A1 |
20040047284 | Eidson | Mar 2004 | A1 |
20040052228 | Tellado et al. | Mar 2004 | A1 |
20040062192 | Liu et al. | Apr 2004 | A1 |
20040066782 | Nassar | Apr 2004 | A1 |
20040071104 | Boesel et al. | Apr 2004 | A1 |
20040071107 | Kats et al. | Apr 2004 | A1 |
20040076224 | Onggosanusi et al. | Apr 2004 | A1 |
20040081131 | Walton et al. | Apr 2004 | A1 |
20040121730 | Kadous et al. | Jun 2004 | A1 |
20040151108 | Blasco et al. | Aug 2004 | A1 |
20040151122 | Lau et al. | Aug 2004 | A1 |
20040160921 | Kaipainen et al. | Aug 2004 | A1 |
20040160987 | Sudo et al. | Aug 2004 | A1 |
20040176097 | Wilson et al. | Sep 2004 | A1 |
20040198276 | Tellado et al. | Oct 2004 | A1 |
20040252632 | Bourdoux et al. | Dec 2004 | A1 |
20050002326 | Ling et al. | Jan 2005 | A1 |
20050047384 | Wax et al. | Mar 2005 | A1 |
20050047515 | Walton et al. | Mar 2005 | A1 |
20050099974 | Kats et al. | May 2005 | A1 |
20050135284 | Nanda et al. | Jun 2005 | A1 |
20050135295 | Walton et al. | Jun 2005 | A1 |
20050135308 | Vijayan et al. | Jun 2005 | A1 |
20050135318 | Walton et al. | Jun 2005 | A1 |
20050147177 | Seo et al. | Jul 2005 | A1 |
20050174981 | Heath et al. | Aug 2005 | A1 |
20050185575 | Hansen et al. | Aug 2005 | A1 |
20050195915 | Raleigh et al. | Sep 2005 | A1 |
20050208959 | Chen et al. | Sep 2005 | A1 |
20050220211 | Shim et al. | Oct 2005 | A1 |
20050245264 | Laroia et al. | Nov 2005 | A1 |
20050276343 | Jones | Dec 2005 | A1 |
20060018247 | Driesen et al. | Jan 2006 | A1 |
20060018395 | Tzannes | Jan 2006 | A1 |
20060067417 | Park et al. | Mar 2006 | A1 |
20060072649 | Chang et al. | Apr 2006 | A1 |
20060077935 | Hamalainen et al. | Apr 2006 | A1 |
20060104196 | Wu et al. | May 2006 | A1 |
20060104340 | Walton et al. | May 2006 | A1 |
20060114858 | Walton et al. | Jun 2006 | A1 |
20060153237 | Hwang et al. | Jul 2006 | A1 |
20060159120 | Kim | Jul 2006 | A1 |
20060176968 | Keaney et al. | Aug 2006 | A1 |
20060183497 | Paranchych et al. | Aug 2006 | A1 |
20060209894 | Tzannes et al. | Sep 2006 | A1 |
20060209937 | Tanaka et al. | Sep 2006 | A1 |
20070177681 | Choi et al. | Aug 2007 | A1 |
20070274278 | Choi et al. | Nov 2007 | A1 |
20090161613 | Kent et al. | Jun 2009 | A1 |
20090291642 | Cozzo et al. | Nov 2009 | A1 |
20100067401 | Medvedev et al. | Mar 2010 | A1 |
20100142636 | Heath, Jr. et al. | Jun 2010 | A1 |
20100183088 | Inanoglu | Jul 2010 | A1 |
20100220825 | Dubuc et al. | Sep 2010 | A1 |
20100260060 | Abraham et al. | Oct 2010 | A1 |
20100271930 | Tong et al. | Oct 2010 | A1 |
20110096751 | Ma et al. | Apr 2011 | A1 |
20120134435 | Kapoor et al. | May 2012 | A1 |
20120219093 | Jia et al. | Aug 2012 | A1 |
20130040682 | Chang et al. | Feb 2013 | A1 |
20140036823 | Ma et al. | Feb 2014 | A1 |
20150365147 | Ketchum et al. | Dec 2015 | A1 |
20180191466 | Walton et al. | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2002259221 | Nov 2002 | AU |
2690245 | Oct 2001 | CA |
1086061 | Apr 1994 | CN |
1234661 | Nov 1999 | CN |
1298266 | Jun 2001 | CN |
1308794 | Aug 2001 | CN |
1314037 | Sep 2001 | CN |
1325198 | Dec 2001 | CN |
1325243 | Dec 2001 | CN |
1339885 | Mar 2002 | CN |
1347609 | May 2002 | CN |
1469662 | Jan 2004 | CN |
1489836 | Apr 2004 | CN |
1537371 | Oct 2004 | CN |
19951525 | Jun 2001 | DE |
0755090 | Jan 1997 | EP |
0762701 | Mar 1997 | EP |
0772329 | May 1997 | EP |
0805568 | Nov 1997 | EP |
0869647 | Oct 1998 | EP |
0895387 | Feb 1999 | EP |
0929172 | Jul 1999 | EP |
0951091 | Oct 1999 | EP |
0991221 | Apr 2000 | EP |
0993211 | Apr 2000 | EP |
1061446 | Dec 2000 | EP |
1075093 | Feb 2001 | EP |
1087545 | Mar 2001 | EP |
1117197 | Jul 2001 | EP |
1126673 | Aug 2001 | EP |
1133070 | Sep 2001 | EP |
1137217 | Sep 2001 | EP |
1143754 | Oct 2001 | EP |
1170879 | Jan 2002 | EP |
1175022 | Jan 2002 | EP |
1182799 | Feb 2002 | EP |
1185001 | Mar 2002 | EP |
1185015 | Mar 2002 | EP |
1185048 | Mar 2002 | EP |
1207635 | May 2002 | EP |
1207645 | May 2002 | EP |
1223702 | Jul 2002 | EP |
1241824 | Sep 2002 | EP |
1265411 | Dec 2002 | EP |
1315311 | May 2003 | EP |
1379020 | Jan 2004 | EP |
1387545 | Feb 2004 | EP |
1416688 | May 2004 | EP |
1447934 | Aug 2004 | EP |
2300337 | Oct 1996 | GB |
2373973 | Oct 2002 | GB |
1132027 | May 1989 | JP |
03104430 | May 1991 | JP |
06003956 | Jan 1994 | JP |
6501139 | Jan 1994 | JP |
8274756 | Oct 1996 | JP |
9135230 | May 1997 | JP |
9266466 | Oct 1997 | JP |
9307526 | Nov 1997 | JP |
09327073 | Dec 1997 | JP |
9512156 | Dec 1997 | JP |
10028077 | Jan 1998 | JP |
10051402 | Feb 1998 | JP |
10084324 | Mar 1998 | JP |
10209956 | Aug 1998 | JP |
10303794 | Nov 1998 | JP |
10327126 | Dec 1998 | JP |
1141159 | Feb 1999 | JP |
11074863 | Mar 1999 | JP |
11163823 | Jun 1999 | JP |
11205273 | Jul 1999 | JP |
11252037 | Sep 1999 | JP |
11317723 | Nov 1999 | JP |
2991167 | Dec 1999 | JP |
2000068975 | Mar 2000 | JP |
2000078105 | Mar 2000 | JP |
2000092009 | Mar 2000 | JP |
2001044930 | Feb 2001 | JP |
2001086045 | Mar 2001 | JP |
2001103034 | Apr 2001 | JP |
2001186051 | Jul 2001 | JP |
2001510668 | Jul 2001 | JP |
2001217896 | Aug 2001 | JP |
2001231074 | Aug 2001 | JP |
2001237751 | Aug 2001 | JP |
200264879 | Feb 2002 | JP |
2002504283 | Feb 2002 | JP |
200277098 | Mar 2002 | JP |
200277104 | Mar 2002 | JP |
2002111627 | Apr 2002 | JP |
2002118534 | Apr 2002 | JP |
2002510932 | Apr 2002 | JP |
2002514033 | May 2002 | JP |
2002164814 | Jun 2002 | JP |
2002176379 | Jun 2002 | JP |
2002204217 | Jul 2002 | JP |
2002232943 | Aug 2002 | JP |
2003504941 | Feb 2003 | JP |
2003198442 | Jul 2003 | JP |
2004266586 | Sep 2004 | JP |
2004297172 | Oct 2004 | JP |
200011799 | Feb 2000 | KR |
20010098861 | Nov 2001 | KR |
1020020003370 | Jan 2002 | KR |
2015281 | Jun 1994 | RU |
2134489 | Aug 1999 | RU |
2141168 | Nov 1999 | RU |
2146418 | Mar 2000 | RU |
2152132 | Jun 2000 | RU |
2158479 | Oct 2000 | RU |
2168277 | May 2001 | RU |
2168278 | May 2001 | RU |
2197781 | Jan 2003 | RU |
2201034 | Mar 2003 | RU |
2335852 | Oct 2008 | RU |
419912 | Jan 2001 | TW |
496620 | Jul 2002 | TW |
503347 | Sep 2002 | TW |
545006 | Aug 2003 | TW |
567689 | Dec 2003 | TW |
567701 | Dec 2003 | TW |
583842 | Apr 2004 | TW |
I263449 | Oct 2006 | TW |
I267251 | Nov 2006 | TW |
86007223 | Dec 1986 | WO |
1992010890 | Jun 1992 | WO |
9307684 | Apr 1993 | WO |
1995007578 | Mar 1995 | WO |
9516319 | Jun 1995 | WO |
9521501 | Aug 1995 | WO |
9530316 | Nov 1995 | WO |
9532567 | Nov 1995 | WO |
1996010873 | Apr 1996 | WO |
96022662 | Jul 1996 | WO |
1996035268 | Nov 1996 | WO |
199702667 | Jan 1997 | WO |
9719525 | May 1997 | WO |
9736377 | Oct 1997 | WO |
9809381 | Mar 1998 | WO |
199809395 | Mar 1998 | WO |
9824192 | Jun 1998 | WO |
98026523 | Jun 1998 | WO |
98030047 | Jul 1998 | WO |
9857472 | Dec 1998 | WO |
9903224 | Jan 1999 | WO |
1999014878 | Mar 1999 | WO |
99016214 | Apr 1999 | WO |
9929049 | Jun 1999 | WO |
9944379 | Sep 1999 | WO |
9952224 | Oct 1999 | WO |
9957820 | Nov 1999 | WO |
0011823 | Mar 2000 | WO |
0036764 | Jun 2000 | WO |
0062456 | Oct 2000 | WO |
0105067 | Jan 2001 | WO |
0126269 | Apr 2001 | WO |
0163775 | Aug 2001 | WO |
0169801 | Sep 2001 | WO |
2001071928 | Sep 2001 | WO |
0180510 | Oct 2001 | WO |
2001076098 | Oct 2001 | WO |
2001076110 | Oct 2001 | WO |
2001082521 | Nov 2001 | WO |
0195531 | Dec 2001 | WO |
2001097400 | Dec 2001 | WO |
0201732 | Jan 2002 | WO |
0203557 | Jan 2002 | WO |
2002005506 | Jan 2002 | WO |
0215433 | Feb 2002 | WO |
0225853 | Mar 2002 | WO |
2002060138 | Aug 2002 | WO |
2002062002 | Aug 2002 | WO |
2002065664 | Aug 2002 | WO |
02069523 | Sep 2002 | WO |
02073869 | Sep 2002 | WO |
2002069590 | Sep 2002 | WO |
2002075955 | Sep 2002 | WO |
02082689 | Oct 2002 | WO |
2002078211 | Oct 2002 | WO |
02088656 | Nov 2002 | WO |
2002093784 | Nov 2002 | WO |
02099992 | Dec 2002 | WO |
03010984 | Feb 2003 | WO |
03010994 | Feb 2003 | WO |
03019984 | Mar 2003 | WO |
03028153 | Apr 2003 | WO |
03034646 | Apr 2003 | WO |
03041330 | May 2003 | WO |
03047140 | Jun 2003 | WO |
03075479 | Sep 2003 | WO |
04002047 | Dec 2003 | WO |
2004002011 | Dec 2003 | WO |
2004021605 | Mar 2004 | WO |
04038952 | May 2004 | WO |
2004038985 | May 2004 | WO |
2004038986 | May 2004 | WO |
2004038988 | May 2004 | WO |
2004038989 | May 2004 | WO |
2004039011 | May 2004 | WO |
2004039022 | May 2004 | WO |
05043855 | May 2005 | WO |
2005041515 | May 2005 | WO |
2005046113 | May 2005 | WO |
2005055527 | Jun 2005 | WO |
Entry |
---|
3 rd Generation Partnership Project (3GPP); Technical Specification Group (TSG); Radio Access Network (RAN); RF requirements f o r 1.28Mcps UTRA TDD option, 3GPP Standard; 3G TR 25.945, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, No. V2.0.0, Dec. 20, 2000 (Dec. 20, 2000), pp. 1-144, XP050400193, [retreived on Dec. 20, 2000], p. 126. |
3GPP2 TIA/EIA/IS-2000.2-A, “Physical Layer Standard for cdma2000: Standards for Spread Spectrum Systems,” (Mar. 2000), Telecommunications Industry Association, pp. 1-446. |
3rd Generation Parthership Project ; Technical Specification Group Radio Access Network; Radio Resource Control (RRC); Protocol Specifiation (Release 5 ), 3GPP Standard; 3GPP TS 25.331, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, No. V5.2.0, Sep. 1, 2002 (Sep. 1, 2002), pp. 1-938, XP050367950, pp. 124, 358-p. 370. |
“3rd Generation Partnership Project ; Technical Specification Group Radio Access 6-18, Network; Physical channels and mapping of 21-24 transport channels onto physical channels (TDD) (Release 5 )” , 3GPP Standard; 3GPP TS 25.221, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. V5.2.0, Sep. 1, 2002 (Sep. 1, 2002), pp. 1-97, XP050366967. |
Alamouti, S.M., “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE Journal on Select Areas in Communications, vol. 16, No. 8, Oct. 1998, pp. 1451-1458. |
Bingham J.A.C., “Multicarrier modulation for data transmission: An idea whose time has come,” Communications Magazine, IEEE, vol. 28, Issue 5, pp. 5-14 (May 1990). |
Catreux S., et al., “Simulation results for an interference-limited multiple input multiple output cellular system”., Global Telecommmunications letters . IEEE: U.S.A. Nov. 2000. vol. 4(11), pp. 334-336. |
Chen, K.C. et al., “Novel Space-Time Processing of DS/CDMA Multipath Signal,” IEEE 49th, Vehicular Technology Conference, Houston, Texas, May 16-20, 1999, pp. 1809-1813. |
Chinese Office Action dated Aug. 8, 2014, Application No. 201210269034.1. |
Chinese Office Action dated Aug. 8, 2014, Application No. 201210269034.1 English translation. |
Choi, R. et al., “MIMO Transmit Optimization for Wireless Communication Systems,” Proceedings of the First IEEE International workshops on Electronic Design, pp. 1-6, Piscataway, New Jersey, Jan. 29-31, 2002. |
Chung, J. et al: “Multiple antenna systems for 802.16 systems.” IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16, IEEE 802.16abc-01/31, Sep. 7, 2001, pp. 1-5. |
Coleri, S. et al: “Channel Estimation Techniques Based on Pilot Arrangement in OFDM Systems,” IEEE Transactions on Broadcasting, Sep. 1, 2002, pp. 223-229, vol. 48, No. 3, IEEE Service Center, XP011070267, ISSN: 0018-9316. |
Deneire, Luc, et al.: “A Low Complexity ML Channel Estimator for OFDM,” Proc IEEE ICC (Jun. 2001), pp. 1461-1465. |
Diggavi, S. et al., “Intercarrier interference in MIMO OFDM,” IEEE International Conference on Communications, (Aug. 2002), vol. 1, pp. 485-489, doi: 10.1109/ICC.2002.996901. |
Editor: 3GPP Draft; 3rd Generation Partnership Project (3GPP), Technical Specification Group (TSG) Radio Access Network (RAN); Working Group 4(WG4); base Station conformance and testing, TS 25.141 V0.1.1 (May 1999), R4-99349, Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG4, No. Miami; Oct. 24, 2001, Oct. 24, 2001 (Oct. 24, 2001), XP050166323. |
ETSI TS 101 761-1 v1.3.1, “Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions,” ETSI Standards, European Telecommunications Standards Institute BR (V131), pp. 1-88 (Dec. 2001). |
European Search Report—EP11153572—Search Authority—The Hague—dated Jul. 28, 2011. |
Fujii, M.: “Pseudo-Orthogonal Multibeam-Time Transmit Diversity for OFDM-CDMA” pp. 222-226 (2002). |
G. Bauch, J. Hagenauer, “Smart Versus Dumb Antennas—Capacities and FEC Performance,” IEEE Communications Letters, vol. 6, No. 2, pp. 55-57, Feb. 2002. |
Gao, J. et al. “On implementation of Bit-Loading Algorithms for OFDM Systems with Multiple-Input Multiple Output,” VTC 2002—Fall. 2002 IEEE 56th. Vehicular Technology Conference Proceedings. Vancouver, Canada, (Sep. 24-28, 2002), IEEE Vehicular Technology Conference, pp. 199-203. |
Gore, D. A., et al.: “Selecting an optimal set of transmit antennas for a low rank matrix channel,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. (ICASSP). Istanbul, Turkey, Jun. 5-9, 2000, New York, NY; IEEE, US, vol. 5 of 6, (Jun. 5, 2000), pp. 2785-2788, XP001035763, abstract. |
Grunheid, R. et al., “Adaptive Modulation and Multiple Access for the OFDM Transmission Technique,” Wireless Personal Communications 13: May 13, 2000, 2000 Kluwer Academic Publishers, pp. 4-13, XP000894156. |
Harada H., et al., “An OFDM-Based Wireless ATM Transmission System Assisted by a Cyclically ExtendedPN Sequence for Future Broad-BandMobile Multimedia Communications”, IEEE Transactions on Vehicular Technology, IEEE Service Center, Piscataway, NJ, US, vol. 50, No. 6, Nov. 1, 2001, XP011064321, ISSN: 0018-9545. |
Hassibi, B. et al., “High Rate Codes That Are Linear in Space and Time,” LUCENT Technologies, 2002, pp. 1-55. |
Haustein, T. et al.: “Performance of MIMO Systems with Channel Inversion,” IEEE 55th Vehicular Technology Conference, Birmingham, Alabama, May 6-9, 2002, pp. 35-39. |
Hayashi, K. et al.: “A New Spatio-Temporal Equalization Method Based on Estimated Channel Response,” Sep. 2001, IEEE Transactions on Vehicular Technology, vol. 50, No. 5, pp. 1250-1259. |
Heath et al., “Multiuser diversity for MIMO wireless systems with linear receivers”, Conference Record of the 35th Asilomar Conference on Signals, Systems, & Computers, Nov. 4, 2001, pp. 1194-1199, vol. 2, IEEE, XP010582229, DOI: 10.1109/ACSSC.2001.987680, ISBN: 978-0-7803-7147-7. |
Hong, D. K. et al.: “Robust Frequency Offset Estimation for Pilot Symbol Assisted Packet CDMA with MIMO Antenna Systems,” IEEE Communications Letters, vol. 6, No. 6, pp. 262-264, XP-001133262 (Jun. 2002). |
IEEE STD 802.11a-1999 (Supplement to IEEE Std 801.Nov. 1999) “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-Speed physical Layer in the 5GHZ Band”, pp. 1-90, Sep. 1999. |
Interational Search Report—PCT/US2003/034520—International Search Authority, European Patent Office, dated Jun. 11, 2004. |
Iserte, P., et al., “Joint beamforming strategies in OFDM-MIMO systems,” Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE International Conference on , vol. 3, sections 2-3, Apr. 27-30, 1993, doi: 10.1109/ICASSP.2002.1005279. |
Japanese Office Action; Application No. 2013-097793; dated May 7, 2014. |
Japanese Office Action Translation; Application No. 2013-097793; dated May 7, 2014 (provided by JPO Counsel). |
Joham, M. et al.: “Symbol Rate Processing for the Downlink of DS-CDMA Systems”, IEEE Journal on Selected Areas in Communications, vol. 19, No. 1, paragraphs 1, 2; IEEE Service Center, Piscataway, US, (Jan. 1, 2001), XP011055296, ISSN: 0733-8716. |
Jongren, G. et al.: “Utilizing Quantized Feedback Information in Orthogonal Space-Time Block Coding,” 2000 IEEE Global Telecommunications Conference, 2(4): 995-999, Nov. 27, 2000. |
Kiessling, M. et al., “Short-term and long-term diagonalization of correlated MIMO channels with adaptive modulation” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 2, Sep. 15, 2002, pp. 593-597. |
Kousa M, et al., “Multichannel adaptive forward error-correction system”, IEEE Proceedings I. Solid-State & Electron Devices, Institution of Electrical Engineers. Stevenage, GB, vol. 140, No. 5, Part 1, Oct. 1, 1993 (Oct. 1, 1993), pp. 357-364, XP000403498, ISSN: 0956-3776. |
Lal D et al: “A novel MAC layer protocol for space division multiple access in wireless ad hoc networks”, Computer Communications and Networks, 2002 Proceedings, Eleventh International Conference on Oct. 14, 2002 (Oct. 14, 2002), pp. 614-619. |
Le Goff, S. et al: “Turbo-codes and high spectral efficiency modulation,” IEEE International Conference on Communications, 1994. ICC “94, Supercommiicc ”94, Conference Record, ‘Serving Humanity Through Communications’ pp. 645-649, vol. 2, May 1-5, 1994, XP010126658, doi: 10.1109/ICC.1994.368804. |
Lebrun G., et al., “MIMO transmission over a time varying TDD channel using SVD,” Electronics Letters, 2001, vol. 37, pp. 1363-1364. |
Li, Lihua, et al., “A practical space-frequency block coded OFDM scheme for fast fading broadband channels,” 2002. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio communications, vol. 1, Sep. 15-18, 2002.pp. 212-216 vol. 1. |
Li, Ye et. al., “Simplified Channel Estimation for OFDM Systems with Multiple Transmit Antennas,” IEEE Transactions on Wireless Communications, Jan. 2002, vol. 1, No. 1, pp. 67-75. |
Louvigne J.C., et al., “Experimental study of a real-time calibration procedure of a CDMA/TDD multiple antenna terminal,” IEEE Antennas and Propagation Society International Symposium, 2002 Digest.APS. San Antonio, TX, Jun. 16-21, 2002,vol. 2, Jun. 16, 2002, pp. 644-647, XP010591780, DOI: 10.1109/APS.2002.1016729, ISBN: 978-0-7803-7330-3. |
Miyashita, K. et al: “High data-rate transmission with eigenbeam-space division multiplexing (E-SDM) in a MIMO channel,” VTC 2002—Fall. 2002 IEEE 56th. Vehicular Technology Conference Proceedings. Vancouver, Canada, Sep. 24-28, 2002, IEEE Vehicular Technology Conference, New York, NY: IEEE, US, vol. vol. 1 of 4. Conf. 56, (Sep. 24, 2002), pp. 1302-1306, XP010608639. |
Nogueroles R., et al., “Performance of a random OFDMA system for mobile communications”, Broadband Communications, 1998. Accessing, Transmission, Networking. Proceedings. 1998 International Zurich Seminar on Zurich, Switzerland Feb. 17-19, 1998, New York , NY, USA , IEEE, US, Feb. 17, 1998 (Feb. 17, 1998), pp. 37-43, XP010277032 , DOI : 10.1109/IZSBC.1998.670242 ISBN: 978-0-7803-3893-7, p. 1-p. 2. |
Co-pending U.S. Appl. No. 07/624,118, filed Dec. 7, 1990. |
Co-pending U.S. Appl. No. 08/118,473, filed Sep. 8, 1993. |
Co-pending U.S. Appl. No. 60/421,309, filed Oct. 25, 2002. |
Co-pending U.S. Appl. No. 60/421,428, filed Oct. 25, 2002. |
Partial European Search Report—EP111523572—Search Authority—Hague—dated Jul. 28, 2011. |
Pautler, J. et al.: “On Application of Multiple-Input Multiple-Output Antennas to CDMA Cellular Systems,” IEEE 54th Vehicular Technology Conference Proceedings, Atlantic City, New Jersey, Oct. 7-11, 2001, pp. 1508-1512. |
Sakaguchi et al, “Comprehensive Calibration for MIMO System”, International Symposium on Wireless Personal Multimedia Communications, IEEE, vol. 2, Oct. 27, 2002, pp. 440-443. |
Sampath et al., “A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance and Field Trial Results”, IEEE Communications Magazine, Sep. 1, 2002, pp. 143-149, vol. 40, No. 9, IEEE Service Center, XP011092922, ISSN: 0163-6804, DOI: 10.1109/MCOM.2002.1031841. |
Sampath, H., et al., “Joint transmit and receive optimization for high data rate wireless communication using multiple antennas,” Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference, Oct. 24, 1999 (Oct. 24, 1999), XP010373976, pp. 215-219, IEEE, Piscataway, NJ, US. |
Song, Bong-Gee et al., “Prefilter design using the singular value decomposition for MIMO equalization,” 1996 Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 34-38, Nov. 3-6, 1996, XP010231388, DOI : 10.1109/ACSSC.1996.600812, p. 35, col. 2, paragraph 4 through p. 36, col. 1. |
Tarighat, A. et al. “Performance Analysis of Different Algorithms for cdma2000 Antenna Array System and a New Multi User Beamforming (MUB) Algorithm”, Wireless Communications and Networking Conference, vol. 1, pp. 409-414, Sep. 23, 2000. |
The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, IEEE Press: New York (Dec. 2000), p. 902. |
Theon, S. et al.: “Improved Adaptive Downlink for OFDM/SDMA-Based Wireless Networks,” IEEE VTS 53rd Vehicular Technology Conference, pp. 707-711, Rhodes, Greece, May 6-9, 2001. |
Tujkovic, D.: “High bandwidth efficiency space-time turbo coded modulation”, Institute of Electrical and Electronics Engineers, ICC 2001. 2001 IEEE International Conference on Communications, Conference Record, pp. 1104-1109, Helsinki, Finland, Jun. 11-14, 2001. |
Van Zelst, A. et al.: “Space Division Multiplexing (SDM) for OFDM Systems,” IEEE 51st Vehicular Technology Conference Proceedings, pp. 1070-1074, Tokyo, Japan, May 15-18, 2000. |
Varanasi M.K, et al., “Optimum decision feedback multiuser equalization with successive decoding achieves the total capacity of the Gaussian multiple-access channel”, Signals, Systems & Computers, 1997. Conference Record of the Thirty-First Asilomar Conference on Pacific Grove, CA, USA Nov. 2-5, 1997, Los Alamitos, CA, USA,IEEE Comput. Soc, US, vol. 2, Nov. 2, 1997 (Nov. 2, 1997), pp. 1405-1409 , XP010280667, DOI: 10.1109/ACSSC.1997 . 679134 ISBN : 978-0-8186-8316-9 pp. 1,3,5; figures 1,3. |
Vook, F. W. et aL, “Adaptive antennas for OFDM”, Vehicular Technology Conference, vol. 1, May 18-21, 1998, pp. 606-610, XP010287858, New York, NY, USA, IEEE, US DOI: 10.1109/VETEC.1998.686646 ISBN: 978-0-7803-4320-7. |
Wales, S.W. “A mimo technique within the UTRA TDD standard,” MIMO: Communications Systems from Concept to Implementations (Ref. No. 2001/175), IEE Seminar on, (Dec. 12, 2001), pp. 1-8., London, UK. |
Warner, W. et al.: “OFDM/FM Frame Synchronization for Mobile Radio Data Communication”, IEEE Transactions on Vehicular Technology, Aug. 1993, vol. 42, No. 3, pp. 302-313. |
Wolniansky P.W., et al., “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium, pp. 295-300, (Sep. 29-Oct. 2, 1998), doi: 10.1109/ISSSE.1998.738086. |
Wong, et al., “Multiuser OFDM With Adaptive Subcarrier, Bit, and Power Allocation,” Oct. 1999, IEEE Journal on Selected Areas in Communications, vol. 17, No. 10, pp. 1747-1758. |
Wong K. K., et al., “Optimizing time and space MIMO antenna system for frequency selective fading channels,” IEEE Journal on Selected Areas in Communications, vol. 19, No. 7, Jul. 2001, Sections II and III and V, 1396, pp. 1395-1407. |
Wyglinski, Alexander. “Physical Layer Loading Algorithms for Indoor Wireless Multicarrier Systems,” Thesis Paper, McGill University, Montreal, Canada, Nov. 2004, p. 109. |
Yamamura, T et al., “High Mobility OFDM transmission system by a new channel estimation and ISI cancellation scheme using characteristics of pilot symbol inserted OFDM signal”., Vehicular Technology Conference, vol. 1, Sep. 19, 1999-Sep. 22, 1999, pp. 319-323, XP010352958 IEEE, Piscataway, NJ, USA, ISBN: 0-7803-5435-4. |
Yoshiki, T., et al., “A Study on Subcarrier Adaptive Demodulation System using Multilevel Transmission Power control for OFDM/FDD System,” The Institute of Electronics, Information and Communications Engineers general meeting, lecture collection, Japan, Mar. 7, 2000, Communication 1, p. 400. |
Number | Date | Country | |
---|---|---|---|
20180227021 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
60438601 | Jan 2003 | US | |
60432617 | Dec 2002 | US | |
60421462 | Oct 2002 | US | |
60421309 | Oct 2002 | US | |
60421428 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14836620 | Aug 2015 | US |
Child | 15939145 | US | |
Parent | 13155916 | Jun 2011 | US |
Child | 14836620 | US | |
Parent | 10610446 | Jun 2003 | US |
Child | 13155916 | US |