This application claims priority to U.S. Provisional Patent Application No. 61/736,111, entitled “Pilum Round,” filed Dec. 12, 2012 by the same inventor, which application is hereby incorporated by reference into this application.
There have been several attempts in the past to create a sub-sonic cartridge that would function within a semi or fully automatic firearm as would a conventional super-sonic cartridge would. The previous attempts have either failed to achieve consistent and reliable performance or cannot be stabilized by the firearms barrel twist rate thus severely affecting accuracy.
U.S. Pat. No. 2,821,924 for a Fin Stabilized Projectile issued to Hansen discloses an “a fin stabilized artillery projectile provided with a compact, foldable fin arrangement containable within a standard artillery cartridge case and which will travel through a gun tube without appreciable damage to the bore” (Col 1, 17-21). The “foldable fin” design here is described as “a compact, foldable fin arrangement receivable in a standard artillery cartridge case” (Col 1, 61-65).
As with so many of such patents this patent also is applied to artillery cartridges to be fired from a large caliber cannon and through a smooth bore barrel imposing no flight stabilizing spin to the projectile. Hansen further describes his projectile as “having compact foldable fins pivotably mounted on the boat-aft of the projectile, a differential pressure hollow piston translatable in the boat-aft of the projectile and a chamber to trap some of the propellant gases which in turn are release as the projectile is exposed to atmosphere to cause the piston to move rearwardly to thereby unfold the fins to fully open position” (Col 2, 1-9).
U.S. Pat. No. 3,292,879 awarded to Willard for a Projectile with Stabilizing Surfaces is a projectile whose purpose is to be fired from a smooth bore barreled cannon at super-sonic velocities greater than 2400 feet per second. The projectile body 20 here is filled with an explosive charge 22 to be ignited by fuse 24 upon impact. This projectile does have a aft fin unit 34 on the aft portion of the projectile but this arrangement relies upon an intricate arrangement and application of elements such as a high viscous braking fluid 46 and openings 50 to successfully operate the deployment and securing of its aft fin unit 34 into its desired position. Overall Willard's design may be applicable to large and expensive cannon rounds but would prove to be too complicated and expensive for use in small arms weapons.
Hansen's design is complex and costly in design by the use of foldable fins rather a static sized aft fin unit whose overall diameter in the cartridge an in flight is the same. The complicated and costly design of a chamber to trap propellant gases used later in flight to deploy fins is also a drawback of Hansen's design. Hansen's patent pertains to artillery rounds whose complexity and cost are more justified than the designs used for small arms ammunition such as the Pilum cartridge whose complexity and cost must be maintained at a minimum.
U.S. Pat. No. 6,240,849 issued to Holler for a Projectile with Expanding Members disclosed “open-biased arm members that can be mounted directly onto the projectile base or may be mounted to a mutual connection means which is then attached to the projectile base”. These arm members “extend to the unrestrained position” upon firing and as the projectile “projectile penetrates the target . . . the extended arm members engage the target surface to cause widespread damage while slowing the projectile. The open-biased arm members are complicated and may prove to be too delicate for effective use as elements of a high velocity projectile. These arm members are also subjected to the same rotational forces the bullet itself will be subjected to thus the arm would create destabilizing forces to the bullet adversely affecting the trajectory and accuracy.
US patent 2008/0127850 issued to Radchenko for a Bullet with Aerodynamic Fins and Ammunition using the same discloses a “tubular blank having a aft section in the shape of aft fins”. Radchenko's invention relies upon fins made from the same material the “tubular blank” is made from thus is a statically positioned aft fin unit unable to rotate independently from the “tubular blank”. This arrangement would produce an unstable projectile if fired through a rifled barrel, as the aft fin unit would generate a great amount of fluid resistance from the ambient atmosphere as they spin. Radchenko's bullet here also utilizes an “aerodynamic needle inside the core . . . shaped like a spring. Also a part of Radchenko's bullet is a “cap mated to a front section of the tubular blank”, the Pilum bullet is absent of this feature. Both the needle and the cap add to the complexity and cost of Radchenko's bullet thus making the design undesirable as a cost effective bullet.
Patent U.S. Pat. No. 8,307,766 awarded to Liberty Ammunition details a Drag effect trajectory enhanced projectile. Here propellant fills the cartridge as well as the hollow bullet to increase the velocity of the bullet similar to the function of a rocket. This arrangement would define this bullet as a hybrid bullet/rocket, the propellant-burning portion of the trajectory may be a fire causing hazard if used in forested areas exposed to tinder and brush.
Also here the Center or Pressure is forward the Center of Gravity, a condition Liberty Ammunition believes would create a more stable projectile but in fact the opposite is a valid orientation for a stable finned projectile trajectory. A forward Center of Pressure orientation would create an unstable projectile, as the Center of Gravity rearward would attempt to lead the projectile in its trajectory causing the projectile to tumble and create an unstable trajectory.
Liberty Ammunition also added a flattened leading end to further lend a forward Center of Pressure orientation in relation to the Center of Gravity. Unfortunately this would also create a projectile that is more unstable than the leading edge were to reflect the Spitzer shape leading edge of the Pilum Cartridge.
Liberty Ammunition also includes a second embodiment where “a plurality of circumferentially spaced apart fins is thereby formed in the trailing end of the projectile”. This design would necessitate the fins be constructed from the projectiles exterior jacket material and would be dependant on expansion during firing for fin deployment. The deployment of these fins would occur upon exiting the barrel and thus would create a destabilizing force onto the bullet if all of the fins do not deploy simultaneously and identically thus affecting trajectory and accuracy of the bullet.
Some over seas patents have also some attributes that maybe construed as constructing a cartridge that relies upon finned stabilization method for accuracy. Patent application number 88902175.4 issued to Smith and Gladwell details “sub-caliber kinetic energy projectile . . . fired with an associated surrounding discard sabot from a larger caliber gun so as to impart a supersonic velocity and thereby high kinetic energy to the projectile” (Col 1, 2-10). The projectile here is for use against light to heavy armored personnel carriers. The use of a sabot alone is a method of increasing the velocity of a projectile beyond the capability of the caliber weapon being used. The sabot shed allows a much slender projectile to achieve much greater velocity than without a sabot. This type of projectile is the opposite in desired purpose than a sub-sonic cartridge.
The fins used here are designed to impart a 20-200 rpm spin upon the projectile in flight in order to correct any spin yaw resistance. This characteristic means the fins are not independent of the rotational action of the projectile but rather in sync with the rotational action of the projectile.
The Pilum cartridge is a sub-sonic firearm cartridge that will function within the action of semi or fully automatic firearms as would traditional ammunition would without short cycling the action. The Pilum bullet itself has a Calibers value (length/diameter) of at least 6.0, which is a much larger value then traditional super-sonic and sub-sonic bullets currently available. This greater Calibers value will allow the Pilum cartridge to have a greater kinetic energy value and ballistic coefficient compared to lighter sub-sonic bullets. The Pilum bullet utilizes an fin unit on the aft portion of the bullet whose rotational orientation is independent of the bullets rotation imparted upon it by the rifling of the barrel. The aft fin unit adds an element of stability to the bullet in flight, as the barrel rifling would be inadequate to stabilize the bullet alone. The Pilum cartridge will also eliminate inconsistent performance, such as varying bullet velocities, due to irregular propellant distribution.
Operation: Pilum SA (Static Axel) Bullet and Cartridge
The twist rate of conventional firearm barrels are specific to stabilize smaller conventional super-sonic bullets whose length would be significantly less than the Pilum bullet assembly (1), and would not be sufficient alone to stabilize the Pilum bullet (1). The Stabilizer (3), positioned at the aft portion of the bullet (1) would position the center of pressure further rearward of the Pilum bullets (1) center of gravity thus stabilizing the bullet (1) through it flight and in its trajectory. The Stabilizer (3) is able to rotate independently from the Pilum shaft 4 as the Pilum bullet (1) is forced to rotate from the barrel rifling during firing. The addition of a Stablizer (4) is unique among non-sabot supported bullets fired through rifled barrels and in addition to the insufficient gyrocopic stablization imparted to the Pilum assembly (1) via the rifle barrel is the most effective stabilizing technique for the same.
The Pilum bullet (1) has an length substantially greater than conventional supersonic and subsonic bullets of the same caliber, which is necessary for the Pilum bullet (1) to create a sufficient kinetic energy to adequately and reliably function the action of a semi or fully automatic as would a conventional supersonic bullet. Since the Pilum bullet (1) is sub-sonic, about 1100 ft/sec or less at sea level, its kinetic energy must be derived largely from its mass rather than its velocity.
The purpose of the Pilum cartridge (17) is to transfer the greatest amount of kinetic energy achievable to the Pilum bullet (1) at a subsonic velocity, maintaining a stable flight orientation from the firing of the cartridge throughout its trajectory, and deliver the maximum kinetic energy transfer from the Pilum bullet (1) to the target material. The Pilum bullet will also provide consistent chamber pressure and velocity from a plurality of similar rounds fired and throughout a variety of firing orientations and environmental conditions due to the Propellant (20) occupying a volume within the Pilum shell (18) without a substantial void that would otherwise contribute to inconsistent Propellant (20) burns.
Description: Pilum EA (Extendable Axel) Bullet and Cartridge
The Pilum EA jacket (15) and the Pilum EA core (16) combined has a numerical value in Calibers (Length/Diameter) of at least 6.0, and whose value can be applied across the range of calibers intended for the EA Pilum bullet (9).
Operation: Pilum EA (Extendable Axel) Bullet and Cartridge
The twist rate of the firearm set for smaller conventional super-sonic bullets whose length would be significantly less than the Pilum EA bullet (9), would not be sufficient to stabilize the Pilum EA bullet (9) through its trajectory. The Pilum EA bullet aft fin unit (11) and Pilum EA axel (12) are positioned at the far aft portion of the bullet (9), and in the deployed position, would position the Center of Pressure further rearward of the Pilum EA bullets (9) Center of Gravity thus stabilizing the EA bullet (9) through its trajectory. This stabilization technique is unique among non-sabot bullets fired through rifled barrels and is the most effective stabilizing technique for the same.
The Pilum EA bullet (9) has a Calibers value of at least 6.0, Calibers measured as (Length/Diameter), which is much larger than a smaller super-sonic conventional bullet of the same caliber. The large Calibers value is necessary for the Pilum EA bullet (9) to create a sufficient kinetic energy to adequately and reliably function the action of a semi or fully automatic as would a conventional super-sonic bullet. Since the Pilum EA bullet (9) is sub-sonic, about 1100 ft/sec or less at sea level, its kinetic energy must be derived largely from its mass, the larger Calibers value of the Pilum EA bullet (9) will increase the kinetic energy of the EA bullet (9).
The purpose of the Pilum EA cartridge (28) is to transfer the greatest amount of kinetic energy possible to the Pilum EA bullet (9) while maintaining the EA bullet's (9) sub-sonic velocity, maintaining a stable flight orientation from the firing of the cartridge throughout a predictable and reliable trajectory, and deliver the maximum kinetic energy transfer from the Pilum EA bullet (9) to the target material.
Description: Pilum SA-FS (Static Axel-Filled Shell) Cartridge
Operation: Pilum SA-FS (Static Axel-Filled Shell) Cartridge
Description: Pilum EA-FS (Extendable Axel-Filled Shell) Cartridge
Operation: Pilum EA-FS (Extendable Axel-Filled Shell) Cartridge
Thus is should be evident to the reader the Pilum cartridge is a vast improvement to current sub-sonic cartridges currently available. The Pilum cartridge address several shortcomings that has plagued the performance and limited the application of current sub-sonic ammunition. The Pilum cartridge achieves these improvements in a simple and cost effective design by not relying upon exotic materials or complex designs.
While the above description contains many specificities, these should not be construed as limitations on the scope, but rather as an exemplification of one or several embodiments thereof. Accordingly, the scope should be determined no by the embodiments illustrated, but by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
46490 | Orwig | Feb 1865 | A |
114807 | Hancock | May 1871 | A |
142394 | Hope | Sep 1873 | A |
336556 | Douglas | Feb 1886 | A |
582982 | Cope | May 1897 | A |
609003 | Borelli | Aug 1898 | A |
656933 | Brown | Aug 1900 | A |
1278786 | Teleszky | Sep 1918 | A |
1442080 | Lyburis | Jan 1923 | A |
1611431 | Froelich | Dec 1926 | A |
2145508 | Denoix | Jan 1939 | A |
2671401 | Abramson | Mar 1954 | A |
2821924 | Hansen et al. | Jul 1954 | A |
3292879 | Chilowsky | Dec 1966 | A |
3643599 | Hubich | Feb 1972 | A |
4055104 | Osofsky | Oct 1977 | A |
4520972 | Diesinger | Jun 1985 | A |
4561357 | Maudal | Dec 1985 | A |
4682546 | Chovich | Jul 1987 | A |
6240849 | Holler | Jun 2001 | B1 |
8307766 | Marx | Nov 2012 | B2 |
8590453 | Bender | Nov 2013 | B2 |
20080127850 | Radchenko | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
0354210 | Aug 1993 | EP |