Not Applicable
Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates to a latch and extractor for flat boards or cards within a housing, and more particularly, to a latch and extractor for plug-in modules mounted within guides in an electronic device.
2. Description of the Prior Art
Many devices include flat boards or cards that are slid into guides within the device. These flat boards are also often latched within the guides to prevent their movement due to various forces such as earthquakes, being bumped into by people, and general movement of the device.
Generally, these devices are electronic in nature and thus, the flat boards or cards are often circuit boards or plug-in modules. Thus, if the plug-in modules lose contact with the appropriate plugs within the device, the device may not function properly, if it even functions at all. Thus, it is important that the plug-in modules are securely mounted or “plugged-in” within the electronic device.
Generally, in order to ensure that the plug-in modules are securely mounted within the electronic device, latches and extractors are located along the leading edge of the plug-in module. These latches and extractors are actuated by rotating them outwardly. Due to their geometry and location, these latches and extractors sacrifice valuable space on the plug-in modules. Additionally, latches and extractors of this type are generally injection molded. Thus, such latches and extractors do not help prevent electromagnetic interference (EMI) with regard to the modules.
The present invention provides a system for latching and extracting a board-type device from a housing, wherein the board-type device includes a face, a bottom edge and a top edge and is mounted within a guide in the housing. The system includes a latch that includes a handle portion, a pivot portion coupled to the handle, and a securement portion coupled to the pivot portion. The securement portion includes an extraction segment and a latching segment. A pivot couples the latch to the board-like device and the latch is coupled to the board-type device along one of the top edge and bottom edge such that it is oriented perpendicular to the face.
In accordance with one aspect of the present invention, the securement portion includes a hook that engages a slot defined within the guide and an extractor corner.
In accordance with another aspect of the present invention, a spring is included between the latch and the board-type device and biases the latch in a latching position.
In accordance with a further aspect of the present invention, the handle portion includes an extension perpendicular to the latch.
In accordance with yet another aspect of the present invention, the system includes two latches, with a first latch being located at the top edge of the board-like device and a second latch being located at the bottom edge.
The present invention also provides methods for manipulating board-like devices within a housing and for removing board-like devices from a housing. The methods include placing at least one board-like device within a guide within the housing and moving at least one latch in a first direction perpendicular to a face of the board-like device until it engages a slot defined within the guide. The methods also include moving at least one latch in a second direction perpendicular to the face, engaging a portion of the at least one latch with a corresponding guide, and then removing at least one board-like device from the corresponding guide.
The systems and methods disclosed herein are especially useful with plug-in modules for electronic devices such as, for example, computers, servers, etc. Because the latch is perpendicular to the face of the plug-in modules and is located along the top and bottom edges of the modules, board or module space is not sacrificed. Additionally, the latches in accordance with the present invention are preferably made of a conductive material such as metal and therefore, help prevent electromagnetic interference with regard to the operation of the modules when the latches are latched to the guides.
The preferred exemplary embodiments of this invention will now be discussed in detail. These embodiments depict the novel and nonobvious latching/extracting systems and methods of this invention shown in the accompanying drawings, which are included for illustrative purposes only, with like numerals indicating like elements.
End customer devices 4 are computing devices, such as personal computers (PCs), workstations, personal digital assistants (PDAs), cellular phones, personal PCs, and the like, that communicate data. The data are transmitted to access equipment system 6 through communication lines.
Access equipment systems 6 aggregate and multiplex the data received from end customer devices 4. Examples of access equipment systems 6 include digital subscriber line access multiplexer (DSLAM), multiplexers, etc. Data received at access equipment systems 6 are then sent to aggregators 8. Data from a single access equipment system 6 are typically sent in a specific data format and a specific data rate. For example, the data formats include SONET/SDH (OC3, OC12, OC48, etc.), DS3/E3, Ethernet, Gigabit Ethernet, etc. Data in these formats are also transferred at various data rates, where a fixed data rate is associated with a format.
Aggregator 8 receives the data from access equipment systems 6 in the different formats. Aggregator 8 processes the data in the different formats and may send the data to one or more other aggregators 8. Data may be sent in different formats than the received data format. Data are then sent to access equipment system 6 and to another end customer 4 through network 10. Network 10 may be any network, such as the Internet.
A plurality of network communication modules 12 are provided within network 10 to receive data from a variety of ports. Network communications modules 12 generally are in the form of computer-type devices that include a housing with a plurality of electronic circuit boards or cards. Many of these are in the form of plug-in modules that are slid into guides within the housing. The plug-in modules are often latched into place to secure them within the guides.
As can be seen in
As can be further seen in
When the latch is in the fully closed and latched position, as indicated in solid lines in
Preferably, the latch is cut or stamped from sheet metal and is therefore conductive. Accordingly, when the latch is used to secure the plug-in module within the guide, the latch helps ground the plug-in module and block electromagnetic noise due to its contact with the guide.
Thus, the present invention provides a latch/extractor for use with flat board-type devices such as circuit boards and cards in the form of plug-in modules. The latch does not interfere with components and cables on the face of the board or protruding from the side edge of the board since the latch is coupled to the plug in module on the top and bottom edges of the module and are thus, perpendicular to the face of the module.
The above description is illustrative but not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5293303 | Fletcher et al. | Mar 1994 | A |
6185106 | Mueller | Feb 2001 | B1 |
6282101 | Hanas et al. | Aug 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040087195 A1 | May 2004 | US |