Pin-based valve actuation system for processing biological samples

Information

  • Patent Grant
  • 11708597
  • Patent Number
    11,708,597
  • Date Filed
    Wednesday, September 5, 2018
    5 years ago
  • Date Issued
    Tuesday, July 25, 2023
    10 months ago
Abstract
A system and method for processing and detecting nucleic acids from a set of biological samples, comprising: a molecular diagnostic module configured to receive nucleic acids bound to magnetic beads, isolate nucleic acids, and analyze nucleic acids, comprising a cartridge receiving module, a heating/cooling subsystem and a magnet configured to facilitate isolation of nucleic acids, a valve actuation subsystem including an actuation substrate, and a set of pins interacting with the actuation substrate, and a spring plate configured to bias at least one pin in a configurations, the valve actuation subsystem configured to control fluid flow through a microfluidic cartridge for processing nucleic acids, and an optical subsystem for analysis of nucleic acids; and a fluid handling system configured to deliver samples and reagents to components of the system to facilitate molecular diagnostic protocols.
Description
TECHNICAL FIELD

This invention relates generally to the molecular diagnostics field, and more specifically to an improved system and method for processing biological samples.


BACKGROUND

Molecular diagnostics is a clinical laboratory discipline that has developed rapidly during the last 25 years. It originated from basic biochemistry and molecular biology research procedures, but now has become an independent discipline focused on routine analysis of nucleic acids (NA), including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) for diagnostic use in healthcare and other fields involving analysis of nucleic acids of biological samples. Molecular diagnostic analysis of biological samples can include the detection of one or more nucleic acid materials present in a specimen. The particular analysis performed may be qualitative and/or quantitative. Methods of analysis typically involve isolation, purification, and amplification of nucleic acid materials, and polymerase chain reaction (PCR) is a common technique used to amplify nucleic acids. Often, a nucleic acid sample to be analyzed is obtained in insufficient quantity, quality, and/or purity, hindering a robust implementation of a diagnostic technique. Current sample processing methods and molecular diagnostic techniques are often labor/time intensive, low throughput, and expensive, and systems of analysis are insufficient. Furthermore, methods of isolation, processing, and amplification are specific to certain sample matrices and/or nucleic acid types and not applicable across common biological sample and nucleic acid types.


Due to these and other deficiencies of current molecular diagnostic systems and methods, there is thus a need for and improved system and method to facilitate processing of biological samples. This invention provides such a system and method.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1B depict an embodiment of a system for processing biological samples;



FIGS. 2-3 depict embodiments of a molecular diagnostic module for processing biological samples;



FIGS. 4A-4B depict configurations of a linear actuator of an embodiment of a molecular diagnostic module;



FIGS. 5A-5D depict elements of an embodiment of a valve actuation subsystem of a molecular diagnostic module;



FIGS. 6A-6B depict configurations of an embodiment of a valve actuation subsystem of a molecular diagnostic module;



FIGS. 7A-7C depict elements of an embodiment of a valve actuation subsystem of a molecular diagnostic module;



FIGS. 8A and 8B depict elements of an example of a valve actuation subsystem of a molecular diagnostic module;



FIG. 9 depicts elements of an embodiment of an optical subsystem of a molecular diagnostic module;



FIGS. 10A-10B depict an embodiment of a microfluidic cartridge for processing biological samples;



FIGS. 11A-11C depict an embodiment of a fluid handling system of a system for processing and detecting nucleic acids; and



FIG. 12 depicts an embodiment of a method for processing and detecting nucleic acids.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.


1. System for Processing and Detecting Nucleic Acids


As shown in FIGS. 1A-1B, an embodiment of a system 100 for processing biological samples includes: a molecular diagnostic module 130 comprising a microfluidic cartridge receiving module 140, heating and cooling subsystem 150, a magnet 160, a valve actuation subsystem 170, and an optical subsystem 280. Other embodiments of the system 100 can further comprise a microfluidic cartridge 210 configured to facilitate sample processing; a liquid handling system 250 configured to facilitate gas and fluid delivery to different elements of the system 100; a processor 290 configured to analyze data resulting from a run of the system 100; and a user interface 295 configured to allow a user to interact with the system 100. The system 100 can additionally or alternatively include any other suitable elements, as described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013, which is incorporated herein in its entirety by this reference. The system 100 thus functions to receive biological samples containing nucleic acids (i.e., impure nucleic acid samples), separate nucleic acids from the biological samples, and analyze nucleic acid samples according to at least one molecular diagnostic protocol (e.g., PCR). Preferably, the system 100 is a walkaway system by which a user loads a set of biological samples containing nucleic acids, and receives a set of data resulting from a molecular diagnostic protocol without any further sample manipulation by the user. Alternatively, the system 100 facilitates aspects of sample preparation for a molecular diagnostic protocol, with some sample manipulation performed by the user.


In one example workflow of the system 100, a liquid handling system 250 aspirates a set of biological samples and dispenses the biological samples into a microfluidic cartridge 210, aligned within a cartridge receiving module 140 of a molecular diagnostic module 130, and configured to be manipulated by the molecular diagnostic module 130. A heating and cooling subsystem 150, a magnet 160, and a valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate separation of a set of nucleic acids from the biological samples, as the liquid handling system 250 dispenses wash solutions, release solutions, and/or air at appropriate stages. The liquid handling system 250 then aspirates the set of nucleic acids from the microfluidic cartridge 210 contained within the molecular diagnostic module 130, combines the set of nucleic acids with a set of molecular diagnostic reagents, and dispenses the set of nucleic acids combined with the set of molecular diagnostic reagents (i.e., set of nucleic acid-reagent mixtures) into the microfluidic cartridge 210 within the molecular diagnostic module 130. The heating and cooling subsystem 150, optical subsystem 180 and valve actuation subsystem 170 of the molecular diagnostic module 130 then facilitate analysis of the set of nucleic acid-reagent mixtures by a processor configured to display information on a user interface.


As stated, the above workflow is just one example workflow of the system 100. A detailed description of elements of an embodiment of the system 100 is described in sections 1.1-1.4 below.


1.1 System—Molecular Diagnostic Module


As shown in FIG. 1B, an embodiment of the molecular diagnostic module 130 of the system 100 includes a cartridge receiving module 140, a heating and cooling subsystem 150, a magnet 160, a valve actuation subsystem 170, and an optical subsystem 280, and functions to manipulate a microfluidic cartridge 210 for processing of a biological sample containing nucleic acids. The molecular diagnostic module 130 is preferably configured to operate in parallel with at least one other molecular diagnostic module 130, such that multiple microfluidic cartridges 210 containing biological samples may be processed simultaneously. In a first variation, the molecular diagnostic module 130 is configured to be stackable with another molecular diagnostic module 130 in a manner that enables access to a microfluidic cartridge 210 within each molecular diagnostic module 130. In another variation, the molecular diagnostic module 130 may not be configured to stack with another molecular diagnostic module, such that the molecular diagnostic modules 130 are configured to rest side-by-side on the same plane. Elements of an embodiment of the molecular diagnostic module 130 are further described in sections 1.1.1 to 1.1.4 below.


1.1.1 Molecular Diagnostic Module—Cartridge Receiving Module


As shown in FIGS. 1B, 2, and 3, the cartridge receiving module 140 of the molecular diagnostic module 130 comprises a cartridge platform 141 including a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of access regions 145; a linear actuator 146 configured to displace a microfluidic cartridge 210 resting on the cartridge platform 141; and a set of springs 148 coupled to the cartridge platform 141. The cartridge receiving module 140 thus functions to receive, align, and compress a microfluidic cartridge 210 for processing of a biological sample according to a molecular diagnostic assay protocol. The cartridge platform 141 is preferably configured to receive a microfluidic cartridge 210 along a cartridge loading guiderail 142 until it reaches a cartridge stop 143, and be vertically displaced by the linear actuator 146, which places a biasing force against the set of springs 148 coupled to the cartridge platform 141. The magnet receiving slot 144 and the set of access regions 145 provide access, by a magnet 160 and a valve actuation subsystem 170, to the microfluidic cartridge 210, as the microfluidic cartridge 210 is vertically displaced by the linear actuator 146.


The cartridge platform 141 includes a cartridge loading guiderail 142, a cartridge stop 143, a magnet receiving slot 144, and a set of access regions 145, and functions to receive and align a microfluidic cartridge 210, while providing access to the microfluidic cartridge 210 by a magnet 160 and a valve actuation subsystem 170. As shown in FIG. 2, an embodiment of the cartridge platform 141 includes a pair of parallel cartridge loading guiderails 142, initiating at a pair of inwardly tapering protrusions configured to guide a microfluidic cartridge toward the pair of parallel cartridge loading guiderails 142, and spanning two short edges of the cartridge platform 141. The embodiment of the cartridge platform 141 also includes a cartridge stop 143 comprising a vertical tab oriented perpendicular to the cartridge loading guiderails 142, and spanning a long edge of the cartridge platform. Preferably, the cartridge loading guiderails 142 and the cartridge stop 143 are configured such that a microfluidic cartridge 210 slides between the cartridge loading guiderails 142 and hits the cartridge stop 143 to signal proper alignment. Alternatively, the cartridge loading guiderails 142 and the cartridge stop 143 can be configured such that a microfluidic cartridge slides over or along the cartridge loading guiderails 142, after which the cartridge stop 143 couples to a portion of the microfluidic cartridge 210 to ensure proper alignment of the microfluidic cartridge. Additional variations of the cartridge loading guiderails 142 and the cartridge stop 143 can be used to enable reception and alignment of a microfluidic cartridge 210 by the molecular diagnostic module 130.


The embodiment of the cartridge platform 141 shown in FIG. 2 also includes a set of access regions 145, oriented perpendicular to the parallel cartridge loading guiderails 142 and configured to provide access to a valve actuation subsystem 170, and a magnet receiving slot 144 located among the set of access regions 145. Preferably, the magnet receiving slot 144 and the set of access regions 145 substantially span a long dimension of the cartridge platform 141, as shown in FIG. 2, and are configured to correspond to locations on a microfluidic cartridge 210 requiring a magnetic field and/or valving to enable processing of a biological sample and nucleic acid detection once the microfluidic cartridge 210 has been aligned within the molecular diagnostic module 130. Thus, alternative configurations of the magnet receiving slot 144 and the set of access regions 145 can accommodate other cartridges with alternative regions requiring magnetic fields and/or valving to enable other protocols. In one alternative embodiment, the magnet receiving slot 144 and the access regions can comprise one continuous void of the cartridge platform 141, such that the cartridge platform 141 supports a microfluidic cartridge 210 along the periphery of the microfluidic cartridge 210, but forms a continuous void under a majority of the footprint of the microfluidic cartridge 210.


The linear actuator 146 functions to linearly displace a microfluidic cartridge 210 resting on the cartridge platform 141, in order to compress the microfluidic cartridge 210 and position the microfluidic cartridge 210 between a cartridge heater 153 and an optical subsystem 280 on one side of the microfluidic cartridge 210, and a magnet 160 and detection chamber heaters 157 on another side of the microfluidic cartridge 210, as described in further detail below. The linear actuator 146 also functions to provide a sufficient counterforce to the valve actuation subsystem 170 such that a microfluidic cartridge 210 within the molecular diagnostic module 130 remains properly situation upon manipulation by the valve actuation subsystem 170. The linear actuator 146 further functions to move a nozzle 149 coupled to the liquid handling system 250, in order to couple the liquid handling system 250 to a fluid port 222 of the microfluidic cartridge 210. In the orientation of the molecular diagnostic module 130 shown in FIG. 1B, the linear actuator 146 is preferably coupled to the cartridge heater 153 and a portion of the optical subsystem 280, and vertically displaces the cartridge heater 153 and the optical subsystem 280 to position the cartridge heater 153 and the optical subsystem 280 over the microfluidic cartridge 210. The vertical displacement also allows the microfluidic cartridge 210 to receive a magnet 160, which provides a magnetic field to facilitate a subset of a molecular diagnostic protocol, and detection chamber heaters 157, which allows amplification of nucleic acids for molecular diagnostic protocols requiring heating and cooling of the nucleic acid (e.g. PCR). Preferably, the linear actuator 146 is a scissor jack actuator configured to apply substantially uniform pressure over all occlusion positions of a microfluidic cartridge 210 aligned within the molecular diagnostic module 130, and to operate in at least two configurations. In a retracted configuration 146a, as shown in FIG. 4A, the scissor jack actuator has not linearly displaced the cartridge platform 141, and in an extended configuration 146b, as shown in FIG. 4B, the scissor jack actuator has linearly displaced the microfluidic cartridge 210 to position the microfluidic cartridge 210 between the subsystems 153, and 180, and the magnet 160 and detection chamber heaters 157. Additionally, the extended configuration 146b of the scissor jack actuator is configured to couple the nozzle 149 to a fluid port 222 of the microfluidic cartridge 210, such that the liquid handling system 250 can deliver solutions and gases for processing of biological samples. The linear actuator 146 may alternatively be any appropriate linear actuator, such as a hydraulic, pneumatic, or motor-driven linear actuator, configured to linearly displace a microfluidic cartridge within the molecular diagnostic module 130.


As shown in FIGS. 1B, 4A, and 4B, a set of springs 148 is coupled to the cartridge platform 141 and functions to provide a counteracting force against the linear actuator 146 as the linear actuator 146 displaces a microfluidic cartridge 210 resting on the cartridge platform 141. The set of springs 148 thus allows the cartridge platform 141 to return to a position that allows the microfluidic cartridge 210 to be loaded and unloaded from the molecular diagnostic module 130 when the linear actuator 146 is in a retracted configuration 146b, as shown in FIG. 4B. Similarly, the nozzle 149, the heating and cooling subsystem 150, the cartridge heater 153, and the magnet 160 are preferably coupled to springs, such that springs are positioned between elements 149, 150, 153, and 160, and substrates that elements 149, 150, 153, and 160 are mounted to. Alternatively an elastomeric material is preferably positioned between elements 149, 150, 153, and 160, and substrates that elements 149, 150, 153, and 160 are mounted to. The springs and/or elastomeric material function to provide proper functioning and alignment of subsystems of the molecular diagnostic module 130 as the linear actuator 146 is extended or retracted, contributing to reliability and a reduction in stack up tolerance risk. The springs and/or elastomeric material further function to allow more pressure to be applied to occlusion positions of a microfluidic cartridge 210 aligned within the molecular diagnostic module 130, and an appropriate pressure to be applied to elements 149, 150, 153 and 160 of the molecular diagnostic module 130. Thus, proper contact is maintained between elements 149, 150, 153, and 160, and a microfluidic cartridge 210 being manipulated by the molecular diagnostic module. These elements are described in further detail below.


1.1.2 Molecular Diagnostic Module—Heating/Cooling Subsystem and Magnet


The heating and cooling subsystem 150 of the molecular diagnostic module 130 comprises a cartridge heater 153, a fan 155, and a set of detection chamber heaters 157 and functions to controllably heat portions of a microfluidic cartridge 210 for processing of a biological sample containing nucleic acids according to a molecular diagnostic protocol. In the orientation of an embodiment of the molecular diagnostic module 130 shown in FIG. 1B, the cartridge heater 153 is preferably coupled to the linear actuator 146 of the cartridge receiving module 140 and configured to span a central region of a microfluidic cartridge 210 aligned within the molecular diagnostic module 130, the fan 155 is located at a back wall of the cartridge receiving module 140, and the set of detection chamber heaters 157 is located inferior to a set of detection chambers of the microfluidic cartridge 210. In alternative embodiments of the molecular diagnostic module 130, the heating and cooling subsystem 150 can have any appropriate alternative configuration that provides controlled heating and cooling to a microfluidic cartridge within the molecular diagnostic module 130.


The cartridge heater 153, the fan 155, and the set of detection chamber heaters 157 are preferably those described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013, which is incorporated herein in its entirety by this reference; however, in other variations, the cartridge heater 153, the fan 155, and/or the set of detection chamber heaters 157 can be any other suitable cartridge heater 153, fan 155, and/or set of detection chamber heaters 157.


The magnet 160 of the molecular diagnostic module 130 functions to provide a magnetic field for isolation and extraction of nucleic acids bound to magnetic beads within a microfluidic cartridge 210, aligned within the molecular diagnostic module 130. Preferably, the magnet 160 is fixed within the molecular diagnostic module 130, such that the extended configuration 146b of the linear actuator 146 allows the magnet 160 to pass through the magnet receiving slot 144 of the cartridge receiving module 140 and into a magnet housing region 218 of the microfluidic cartridge 210. In an example, the magnet 160 is a rectangular prism-shaped magnet 160 fixed under the cartridge platform 141, and configured to pass through the cartridge platform 141, into a magnet housing region 218 located under the heating region of the microfluidic cartridge 210. Preferably, the magnet 160 is one of two or three magnets lined up in parallel, such that each of the fluidic pathways of a microfluidic cartridge housing the magnets is exposed to two or three times as much magnetic flux, and two to threes times as many opportunities to capture magnetic beads. Alternatively, the magnet 160 is a single magnet configured to expose a set of fluidic pathways to a magnetic field. Preferably, the magnet 160 or group of multiple magnets is coupled to a magnet holder within the molecular diagnostic module 130. Additionally, the magnet holder is preferably composed of an insulating material, such that the magnet holder does not interfere with proper functioning of the cartridge heater 153. Alternatively, the magnet holder may not be composed of an insulating material.


The magnet 160 is preferably a magnet 160 as described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013; however, in other variations, the magnet 160 can be any other suitable magnet. Alternative configurations and/or compositions of the magnet 160 may also be appropriate in facilitating isolation and extraction of nucleic acids bound to magnetic beads within the microfluidic cartridge 210.


1.1.3 Molecular Diagnostic Module—Valve Actuation Subsystem


As shown in FIGS. 5A-5D, the valve actuation subsystem 170 includes an actuation substrate 171 including an array of active regions 172; a set of pins 174, each pin 175 in the set of pins 174 including a base end 176, a distal end 177, and a displacement region 178; a pin housing 180 including a set of cavities 181 that surround and guide displacement of each pin 175 in the set of pins 174; a spring plate 183 including a set of springs 184 coupled to the set of pins 174; and an actuator 187 coupled to at least one of the actuation substrate 171, the pin housing 180, and the spring plate 183, and configured to provide relative displacement between the array of active regions 172 and the set of pins 174. The valve actuation subsystem 170 functions to manipulate a set of occlusion positions of a microfluidic cartridge 210, as described in further detail below, wherein the set of occlusion positions affect sample and/or fluid (e.g., air, reagent, etc.) transfer through fluidic pathways of the microfluidic cartridge 210. As such, the valve actuation subsystem 170 enables portions of the fluidic pathway(s) to be reversibly opened and closed, or maintained in a closed position, by actuation of the set of pins 174. The valve actuation subsystem 170 is preferably situated at a location inferior to that of the cartridge platform 141, as shown in FIG. 1B, such that the set of pins occlude occlusion positions of the microfluidic cartridge 210 in an inferior to superior direction; However, in one alternative variation, the valve actuation subsystem 170 can be situated at a location superior to that of the cartridge platform 141, such that the set of pins occlude occlusion positions of the microfluidic cartridge 210 in a superior to inferior direction. In still other variations, the valve actuation subsystem 170 can be situated relative to the cartridge platform 141 in any other suitable manner.


The actuation substrate 171 includes an array of active regions 172, which function to interact with one or more displacement regions 178 of the set of pins 174, in order to transition pins 175 of the set of pins 174 into extended configurations 175a and/or retracted configurations 175b, as shown in FIGS. 6A and 6B. The array of active regions 172 is preferably configured such that subsets of the set of pins 174 can be placed into specific and repeatable configurations (e.g., an array of extended and retracted configurations), in order to manipulate fluidic pathways of the microfluidic cartridge 210 in a repeatable manner for processing nucleic acids. Preferably, the actuation substrate 171 transforms lateral motion of the actuation substrate 171 into vertical actuation of one or more pins of the set of pins 174, in the orientation shown in FIGS. 5A and 5C; however, in other variations, the valve actuation subsystem 171 can be configured to transform any other suitable motion (e.g., rotational motion, non-lateral motion, etc.) of the actuation substrate 171 into actuation of one or more pins of the set of pins 174.


The array of active regions 172 preferably includes elements that physically contact the set of pins 174 during motion of the actuation substrate 171, thereby directly moving one or more pins 175 of the set of pins 174 into a desired configuration. In one such variation, the array of active regions 172 includes at least one protrusion (e.g., peak) and can additionally or alternatively include at least one recessed area (e.g., valley) that physically enable raising and/or lowering of the pin(s) of the set of pins 174. In one alternative, the array of active regions 172 can include elements that transmit forces to the pin(s) of the set of pins 174, thereby moving the pin(s) into a desired configuration without physical contact. In one such variation, the array of active regions 172 includes an array of magnetic elements that produce magnetic fields that enable raising and/or lowering of the pin(s) of the set of pins 174. In any of these variations, elements of the array of active regions 172 can be situated at a first surface 179 of the actuation substrate 171, such that motion of the actuation substrate 171 is transformed into actuation of pins contacting the first surface 179 of the actuation substrate. The first surface 179 can be an inferior surface of the actuation substrate 171, in the orientation shown in FIGS. 5A and 5C, or a superior surface of the actuation substrate 171. In other variations, however, the elements of the array of active regions 172 can be situated at multiple surfaces of the actuation substrate 171, and can additionally or alternatively be embedded within the actuation substrate 171 (e.g., as in an embedded array of magnetic elements). Furthermore, the actuation substrate 171 can include combinations of elements that physically contact the set of pins 174 and elements that transmit forces to the set of pins 174 without physical contact.


In a first variation, as shown in FIG. 5C, the actuation substrate 171 comprises a cam card 173 including a set of peaks 185 and valleys 186, and functions to transform linear motion in one plane to vertical motion in another plane. In the first variation, the cam card 173 contacts the displacement regions 178 of pins in a set of pins 172, such that when a peak 185 of the cam card 173 enters alignment with a displacement region 178, the pin is in one configuration, and when a valley 186 of the cam card 173 enters alignment with a displacement region, the pin is in a another configuration. Every peak in the set of peaks 185 and valleys 186 is preferably identical in morphology and dimension; however, in variations, the set of peaks 185 and valleys 186 can include one or more peaks having different dimensions and/or morphologies from other peaks in the set of peaks 185 and valleys 186. Similarly, every valley in the set of peaks 185 and valleys 186 is preferably identical in morphology and dimension; however, in variations, the set of peaks 185 and valleys 186 can include one or more valleys having different dimensions and/or morphologies from other valleys in the set of peaks 185 and valleys 186. As such, the set of peaks 185 and valleys 186 can be configured to provide an identical range of motion for every pin 175 in the set of pins 174, or can be configured to provide different ranges of motion for pins of the set of pins 175. In still other variations, peaks and/or valleys of the set of peaks 185 and valleys 186 can be adjustable in dimension in order to provide adjustable ranges of motion or to compensate for wear of peaks and/or valleys.


In the first variation of the actuation substrate 171, the peaks 185 and valleys 186 of the cam card 173 are preferably in a set configuration, as shown in FIG. 5C, such that lateral motion of the cam card 173 to a set position places the set of pins 174 in a specific configuration in a reversible and/or repeatable manner. The set configuration further functions to enable manipulation of normally closed and normally open occlusion positions, in a specific configuration, of a microfluidic cartridge 210 interacting with the valve actuation subsystem 170. As such, lateral movement of the cam card 173 to different positions of a set of positions consistently places subsets of the set of pins 172 into desired configurations to occlude different portions of a fluidic pathway of a microfluidic cartridge 210 in contact with the set of pins 174. Thus, desired portions of a fluidic pathway of the microfluidic cartridge 210 can be selectively occluded and opened to facilitate processing of a biological sample according to any appropriate tissue, cellular, or molecular diagnostic assay protocol.


In the first variation of the actuation substrate 171, the set of peaks 185 and valleys 186 of the cam card 173 are situated at a first face 179 of the cam card 173, such that lateral motion of the cam card 173 is transformed into actuation of pins contacting the first face 179 of the cam card 173. In the first variation, the first face 179 is oriented away from distal ends 177 of the set of pins 174, as described in further detail below, such that peaks 185 of the cam card 173 are configured to retract pins of the set of pins 174, and valleys of the cam card 173 are configured to enable extension of pins of the set of pins. In another variation, however, the set of peaks 185 and valleys 186 can be situated at multiple faces of the cam card 173.


In the first variation, the cam card 173 is configured to be laterally displaced in one coordinate direction within a plane (e.g., by a linear actuator); however in another variation, the cam card 173 is configured to be laterally displaced in only multiple directions within a plane (e.g., by multiple linear actuators, by an x-y linear actuator). In a specific example, the peaks 185 of the cam card 173 are raised 1 mm above the valleys 186 of the cam card 173. In the specific example, the peaks 185 are identical and have a substantially semicircular cross section with a radius of 1 millimeter, while the valleys 186 are substantially planar and situated in line with the base of each peak 185. Alternative variations can, however, include any appropriate configurations and geometries of a cam card 173 with peaks 185 and valleys 186, driven by any appropriate actuator.


In alternative embodiments of the actuation substrate 171, the actuation substrate 171 can be a cam wheel comprising an array of active regions 172 configured to enable actuation of pins contacting a cylindrical surface, and configured to convert rotary motion to linear (i.e., vertical) motion of the set of pins 174. The cam wheel can be configured to contact base ends 176 of pins in the set of pins 174, and can be coupled to a motor shaft and driven by a motor. In other alternative embodiments of the actuation substrate 171, the actuation substrate 171 can altogether be replaced by a set of cams, each configured to individually rotate about an axis. In these alternative embodiments, rotating subsets of the set of cams raises/lowers corresponding subsets of the set of pins 174, and occludes specific portions of a of a microfluidic cartridge 210 in contact with the set of pins 174.


The set of pins 174 is configured to interact with the actuation substrate 171, and functions to enable selective occlusion and/or opening of fluidic pathways of the microfluidic cartridge 210, by way of the set of occlusion positions. The pins of the set of pins 174 preferably include cylindrical portions and, in the orientation shown in FIGS. 5A and 5C, each pin in the set of pins 174 preferably has a portion defining a circular cross section configured to facilitate sliding within a pin housing 180. Alternatively, each pin can comprise any appropriate cross-sectional geometry (e.g., rectangular) and/or end shape (e.g., flat or pointed) to facilitate occlusion of a fluidic pathway of a microfluidic cartridge 210. Preferably, the surface of each pin in the set of pins 174 is composed of a low-friction material to facilitate sliding motions (i.e., in cooperation with an actuation substrate 171 or within a pin housing 180); however, each pin may alternatively be coated with a lubricant configured to facilitate sliding motions. In a specific example, the valve actuation subsystem 170 comprises 12 sets of pins 174 configured to selectively occlude 12 fluidic pathways of a microfluidic cartridge 210 aligned within the molecular diagnostic module 130; however, other embodiments can comprise any other suitable number of sets of pins 174.


Each pin 175 in the set of pins 174 preferably includes a base end 176, a distal end 177, and a displacement region 178. As shown in FIG. 5C, one or more pins 175 of the set of pins 174 can additionally include a stop region 188 configured to interface with the pin housing 180 in a manner that defines a range of motion for the pin(s) including a stop region 188. The base end 176 of a pin 175 functions to interact with springs of a spring plate 183, wherein the springs 184 provide a biasing force against pins of the set of pins 174, as described in further detail below. As such, the base end 176 can be configured to abut a spring of the spring plate 183, and can additionally or alternatively be coupled to the spring of the spring plate 183 in any other suitable manner. The distal end 177 of a pin 175 functions to interact with an occlusion position of a fluidic pathway of a microfluidic cartridge 210 aligned with the valve actuation subsystem 170 of an embodiment of the molecular diagnostic module 130. The base end 176 and/or the distal end 177 of a pin 175 can be cylindrical in morphology, in order to provide an occlusion surface that is substantially circular, ovaloid, or ellipsoidal. However, in some variations, the base end 176 and/or the distal end 177 of pin 175 can be polygonal prismatic (e.g., square prismatic, triangular prismatic) in order to provide an occlusion surface that is polygonal, or amorphous prismatic in morphology. Furthermore, in alternative variations, any suitable portion of a pin 175 can be configured to interact with a spring in order to provide a biasing force against the pin 175.


The displacement region 178 of a pin 175 functions to interact with one or more active regions of the array of active regions to enable actuation of the pin 175. Preferably, the displacement region 178 is substantially aligned with the actuation substrate 171, in order to facilitate interaction between an active region 172 of the actuation substrate 171 and a displacement region 178 of a pin 175. Additionally, the displacement region 178 preferably mechanistically complements one or more active regions 172 of actuation substrate 171. As such, the displacement region can include a portion that physically contact an active region 172 during motion of the actuation substrate 171, and in one such variation, the displacement region 178 includes at least one protrusion (e.g., peak) or recessed area (e.g., valley) that physically interacts with the active region to raise or lower the pin 175. In one alternative, the displacement region 178 can include additionally or alternatively include a portion that responds to forces provided by the active region(s) 172 of the actuation substrate 171, thereby moving the pin into a desired configuration without physical contact between the pin 175 and an active region. In one such variation, the displacement region can include a magnetic element that responds to magnetic fields produced by active regions of the actuation substrate 171 to raise or lowering the pin. In this variation, the magnetic element of the displacement region 178 can be configured to be drawn toward the magnetic element of an active region 172, or can be configured to be repelled away from the magnetic element of the active region 172.


As shown in FIGS. 7A-7C, the displacement region 178 of a pin 175 is preferably incorporated within the body of the pin 175, between the base end 176 and the distal end 177 of the pin 175. In one variation, the displacement region 178 can be incorporated within an opening 189 defined within the body of the pin 175. However, the displacement region 178 of a pin 175 can additionally or alternatively be biased toward an exterior surface of the pin 175, defined at least in part at a recessed region of the exterior surface of the pin 175, or coupled to the pin in any other suitable manner (e.g., using an extension configured to transmit motion from the displacement region to the pin).


In a first specific example, the displacement region 178 includes a semi-cylindrical protrusion defined within a slotted opening 189, wherein the base of the semi-cylindrical protrusion is situated at the base end of the slotted opening (i.e., toward the base end 176 of the pin 175). In the first specific example, the actuation substrate 171 thus comprises at least one arm 199 including an active region 172 (e.g., a peak, a valley), as shown in FIG. 7C, wherein the arm 199 is configured to pass through the slotted opening 189 of the pin 175, and wherein movement of the arm 199 to place the active region 172 into alignment with the protrusion (i.e., the displacement region 178) results in actuation of the pin 175. In a variation of the first specific example, a magnetic element proximal a surface of the slotted opening of the displacement region 178 of the pin 175 can be configured to interact with a corresponding magnetic element (i.e., an active region 172) of an arm 199 of the actuation substrate 171. In this variation, the magnetic element of the arm 199 can be configured to magnetically repel or draw the magnetic element of the displacement region 178 of the pin 175, in order to provide actuation of the pin. In other examples, however, the displacement region 178 of a pin can be configured to complement configurations of active regions 172 of the actuation substrate 171 in any other suitable manner.


The stop region 188 is preferably a protruding portion of a pin 175 that interacts with a complementary portion of the pin housing 180, such that the complementary portion of the pin housing obstructs further motion of the pin 175. The stop region 188 can comprise a region of the pin 175 that has a larger width or diameter than other regions of the pin 175, and can additionally or alternatively include a protrusion that limits range of motion of the pin in any other suitable manner. In an example shown in FIG. 5C, a pin 175 includes a stop region 188 located between the base end 176 and the distal end 177 of a pin 175 and defined by a larger diameter than that of the pin housing 180. In other variations of the specific example, however, the stop region 188 of the pin 175 can be located at any other suitable position along the length of the pin 175. Furthermore, each pin 175 of the set of pins 174 can include multiple stop regions 188 configured to define ranges of motion for the set of pins.


Each pin 175 in the set of pins 174 preferably operates in an extended configuration 175a and/or a retracted configuration 175b. Preferably, each pin 175 of the set of pins 174 is configured to reversibly and repeatably transition between the extended configuration 175a and the retracted configuration 175b. However, in alternative variations, one or more pins 175 of the set of pins 174 can be configured to achieve only one of the extended configuration 175a and the retracted configuration 175b, and/or a pin 175 of the set of pins 174 can be configured to be locked semi-permanently in a configuration 175a, 175b upon entering the configuration 188, 189. In the extended configuration 175a, the distal end 177 of the pin 175 is configured to protrude from an opening of the pin housing 180, in order to provide an occluding force at a fluidic pathway of a microfluidic cartridge 210 interacting with the valve actuation subsystem 170. In the retracted configuration 175b, the distal end 177 of the pin 175 is configured to retract from the opening of the pin housing 180, in order to remove an occluding force at a fluidic pathway of a microfluidic cartridge 210 interacting with the valve actuation subsystem 170. Preferably, in relation to variations described above, the extended configuration is activated by translation of the active region (e.g., a peak, a magnet) away from the displacement region, and the retracted configuration is activated by translation of an active region (e.g., a peak, a magnet) of the actuation substrate into alignment with the displacement region. As such, in an example with the orientation shown in FIGS. 6A and 6B, the extended configuration 175a is activated as a peak of the actuation substrate 171 is moved away from the protrusion of the displacement region 178 of a pin 175, and the retracted configuration 175b is activated as a peak of the actuation substrate 171 is moved into alignment with the protrusion of the displacement region 178 (i.e., the peak of the actuation substrate 171 pushes the pin 175 downward by way of the protrusion in the displacement region 178). The extended and retracted configurations 175a, 175b can, however, be activated in any other suitable manner.


The pin housing 180 includes a set of cavities 181, which function to surround and guide displacement of each pin 175 in the set of pins 174. As such, the pin housing 180 functions to constrain and guide motion of each pin 175 in the set of pins 174, as the actuation substrate 171 moves and interacts with the set of pins 174. In one variation, each pin 175 in the set of pins 174 is surrounded by an individual cavity of the set of cavities 181; however, in another variation a cavity of the set of cavities 181 can be configured to surround multiple pins in the set of pins 174. In an example shown in FIGS. 5A-5D, the pin housing 180 is located under the cartridge platform 141, such that the set of cavities 181 is aligned with the set of access regions 145, to provide access, by the set of pins 174, to a microfluidic cartridge 210 aligned on the cartridge platform 141. In the example, the pin housing 180 thus constrains the set of pins 174, such that each pin can only move linearly in a vertical direction, and with a set range of motion. Each cavity of the set of cavities 181 preferably has a constricted region (i.e., serving as a pin stop) configured to limit the motion of a pin within a cavity (i.e., by way of the stop region 188 of the pin); however, each cavity of the set of cavities 181 may alternatively not include a constricted region. Preferably, surfaces of the pin housing 180 contacting the set of pins 174 are composed of a low friction material to facilitate sliding of a pin 175 within a cavity of the pin housing 180; however, surfaces of the pin housing 180 contacting the set of pins 174 may alternatively be coated with a lubricant configured to facilitate sliding motions. Other variations of the pin housing 180 and the set of pins 174 may include no additional provisions to facilitate sliding of a pin 175 within a cavity of the set of cavities 181.


The spring plate 183 includes a set of springs 184 coupled to the set of pins 174, and functions to provide biasing forces against the set of pins, in order to bias each pin in the set of pins in a specific direction. The spring plate 183 is preferably situated proximal the base ends 176 of the set of pins 174; however, the spring plate 183 can alternatively be configured relative to other elements of the valve actuation subsystem 170 in any other suitable manner. A spring of the set of springs 184 preferably functions to provide a counteracting force to restore a pin to a desired configuration (e.g., an extended configuration 175a, a retracted configuration 175b). Furthermore, a spring of the set of springs 184 can additionally function to allow sufficient force to be transmitted through the pin 175 to fully occlude a microfluidic channel of a microfluidic cartridge 210, while preventing forces from being generated that could damage the pin 175, the microfluidic cartridge 210, and/or the actuation substrate 171. Preferably, a spring of the set of springs 184 is configured to abut the base end 176 of a pin 175, and/or a region substantially proximal the base end 176 of the pin 175 in order to transmit a biasing force to the pin 175. However, a spring of the set of springs 184 can additionally or alternatively be configured to couple to any other suitable portion of a pin 175. Furthermore, the set of springs 184 can be configured to bias every pin of the set of pins 174 in the same direction with identical magnitudes of force; however, in other variations, the set of springs 185 can be configured to bias different pins of the set of pins 175 in different directions, and/or with different magnitudes of force.


In a first variation, the set of springs 184 is configured to bias every pin 175 of the set of pins 174 toward an extended configuration 175a, such that when an active region (e.g., a peak, a magnet) of the actuation substrate 171 substantially enters alignment with a displacement region 178 of a pin 175, the pin 175 is transitioned into a retracted configuration 175b and the spring contacting the pin is compressed (e.g., further compressed, transitioned from a neutral state to a state of compression). Then, in the first variation, when the active region of the actuation substrate 171 is moved out of alignment with the displacement region 178, the pin 175 is restored to an extended state. In other variations, however, the spring(s) of the set of springs 184 can be configured to bias the pin(s) of the set of pins 174 toward a retracted configuration 175b, such that alignment of the active region(s) of the actuation substrate 171 with the displacement region(s) 178 of the pin(s) transitions the pin(s) into an extended configuration 175a. In still other variations, the springs can be configured to bias the pins in any other suitable manner.


The actuator 187 is coupled to at least one of the actuation substrate 171, the pin housing 180, and the spring plate 183, and functions to provide relative displacement between the array of active regions 172 and the set of pins 174, thus transforming motion of the actuation substrate 171 into motion of subsets of the set of pins 174. The actuator 187 is preferably a linear actuator; however, the actuator 187 can additionally or alternatively comprise any other suitable actuator. Preferably, the actuator 187 is coupled to the actuation substrate 171 with the set of pins 174, the spring housing 180, and the spring plate 183 substantially stationary, such that actuation of the actuator 187 manipulates motion of the set of pins 174 in order to occlude pathways of the microfluidic cartridge 210. In one such variation, as shown in FIGS. 5C and 5D, the actuator can be coupled to one end of the actuation substrate 171 (e.g., using a set of coupling points defined within the actuation substrate 171); however, in other variations, the actuator 187 can be coupled to any other suitable portion of the actuation substrate 171. Alternatively, the actuator 187 can be configured to move the set of pins 174, within the pin housing 180, relative to the actuation substrate 171, in order to occlude pathways of the microfluidic cartridge 210. In still other variations, the actuator 187 can be coupled to any other suitable portion of the valve actuation subsystem 170.


In one specific example of the valve actuation subsystem 170 shown in FIGS. 5A-5D, 7A-7C, and 8A-8B, the set of pins 174 and the pin housing 180 are located directly under the microfluidic cartridge 210, after the microfluidic cartridge 210 has been aligned within the molecular diagnostic module 130, such that the set of pins can access the microfluidic cartridge 210 through the access regions 145 of the cartridge platform 141. The actuation substrate 171 in the specific example is situated amongst the set of pins 174, between base ends and distal ends of the set of pins 174, and comprises a set of arms including the active regions 172 (i.e., peaks and valleys) defined at a bottom face of the arms 199 of the actuation substrate, in the orientation shown in FIG. 5C. In the specific example, peaks 185 of the actuation substrate 171 are configured to push pins downward to a retracted configuration 189 by way of semi-cylindrical protrusions defined within slotted openings 189 of the pins 175, and valleys 186 of the actuation substrate 171 are configured to restore pins 175 of an extended configuration 188. In the specific example, The actuation substrate 171 includes four parallel arms 199 configured to manipulate eight occlusion positions of a microfluidic cartridge 210, with each arm 199 configured to pass through slotted openings in two pins 175, in order to manipulate two occlusion positions of the microfluidic cartridge 210. The four parallel arms 199 include a first arm including two peaks and two valleys, in alternation, configured to manipulate two normally open occlusion positions, a second arm including two valleys, configured to manipulate two normally closed occlusion positions, a third arm including two peaks and two valleys, in alternation, configured to manipulate two normally open occlusion positions, and a fourth arm including a peak and two valleys, configured to manipulate one normally open occlusion position and one normally closed occlusion position. Normally open and normally closed occlusion positions are further described in U.S. application Ser. No. 13/765,996 filed on 13 Feb. 2013 and entitled “Microfluidic Cartridge for Processing and Detecting Nucleic Acids”, which is incorporated herein in its entirety by this reference. In the specific example, each arm has a width of ˜1.22 millimeters, and is spaced apart from other arms by a gap of ˜1 millimeter. The actuation substrate 171 in the specific example further has a maximum width of ˜8.74 millimeters and a length of 13.74 centimeters, with peaks having heights 1 millimeter and valleys having depths of 1 millimeter.


In the specific example, the actuation substrate 171 is coupled to an actuator 187 at an end opposite the arms 199 of the actuation substrate 171, by way of three coupling points, as shown in FIG. 5D. The actuator 187 is configured to laterally displace the actuation substrate 171 to vertically displace one or more pins 175 of the set of pins 174. The actuation substrate in the specific example travels on a low friction surface configured to facilitate lateral displacement of the actuation substrate 171; however, in other variations, the actuation substrate 171 can additionally or alternatively be configured to travel through any other suitable environment having low friction (e.g., air, lubricated surface, surface of ball bearings, etc.) in order to facilitate actuation of the actuation substrate 171.


While the system 100 preferably includes an embodiment, variation, or specific example of the valve actuation subsystem 170 described above, the system can alternatively or additionally include any other suitable valve actuation subsystem 170, such as a valve actuation subsystem described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013.


1.1.4 Molecular Diagnostic Module—Optical Subsystem


As shown in FIGS. 1B and 8, the optical subsystem 280 of the molecular diagnostic module 130 comprises a set of light emitting elements 281, a set of excitation filters 282 configured to transmit light from the set of light emitting elements 281, a set of dichroic mirrors 283 configured to reflect light from the set of excitation filters 282 toward a set of apertures 285 configured to transmit light toward a set of nucleic acid samples, a set of emission filters 286 configured to receive and transmit light emitted by the set of nucleic acid samples, and a set of photodetectors 287 configured to facilitate analysis of light received through the set of emission filters 286. The optical subsystem 280 can further comprise a set of lenses 284 configured to focus light onto the set of nucleic acid samples. The optical subsystem 280 thus functions to transmit light at excitation wavelengths toward a set of nucleic acid samples and to receive light at emission wavelengths from a set of nucleic acid samples. Preferably, the optical subsystem 280 is coupled to an optical subsystem actuator 288 configured to laterally displace and align the optical subsystem 280 relative to the set of nucleic acid samples, and is further coupled to a linear actuator 146 of the cartridge receiving module 140 to position the optical subsystem 280 closer to the set of nucleic acid samples. Alternatively, the optical subsystem 280 may not be coupled to a linear actuator 146 of the cartridge receiving module 140, and may only be configured to translate laterally in one direction. In a specific example, the optical subsystem 280 is located within the molecular diagnostic module 130 and coupled to the linear actuator 146 of the cartridge receiving module 140, such that, in the extended configuration 146b of the linear actuator 146, the optical subsystem 280 can be positioned closer to a microfluidic cartridge 210 aligned within the molecular diagnostic module. Conversely in the specific example, the optical subsystem 280 is positioned away from the microfluidic cartridge 210 in the retracted configuration 146a of the linear actuator 146. In the specific example, the optical subsystem 280 is further coupled to an optical subsystem actuator 288 configured to laterally displace the optical subsystem 280 relative to the microfluidic cartridge 210, such that the optical subsystem 280 can be aligned with a set of detection chambers of the microfluidic cartridge 210.


The optical subsystem 280 is preferably an optical subsystem 280 as described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013; however, in other variations, the optical subsystem 180 can additionally or alternatively include any other suitable optical subsystem elements configured to transmit excitation wavelengths of light to samples, and/or receive emission wavelengths of light from the samples.


1.2 System—Microfluidic Cartridge


The microfluidic cartridge 210 functions to receive a set of magnetic bead-samples, facilitate separation of nucleic acids from the set of magnetic bead-samples, receive a set of nucleic acid-reagent samples, and facilitate analysis of nucleic acids from the set of nucleic acid-reagent samples. In one embodiment, as shown in FIGS. 9A and 9B, the microfluidic cartridge 210 comprises a top layer 211 including a set of sample port-reagent port pairs 212 and a set of detection chambers 213; an intermediate substrate 214, coupled to the top layer 211 and partially separated from the top layer 211 by a film layer 215, configured to form a waste chamber 216; an elastomeric layer 217 partially situated on the intermediate substrate 214; a magnet housing region 218 accessible by a magnet 160 providing a magnetic field; and a set of fluidic pathways 219, each formed by at least a portion of the top layer 211, a portion of the film layer 215, and a portion of the elastomeric layer 217. In the embodiment, the microfluidic cartridge 10 further comprises a bottom layer 221 coupled to the intermediate substrate 214 and configured to seal the waste chamber 216. Furthermore, in the embodiment, the top layer 211 of the microfluidic cartridge 210 further comprises a shared fluid port 222, a vent region 223, and a heating region 224, such that each fluidic pathway 220 in the set of fluidic pathways 219 is fluidically coupled to a sample port-reagent port pair 229, the shared fluid port 222, the waste chamber 216, and a detection chamber 225, comprises a turnabout portion configured to pass through the heating region 224 and the magnetic field, and is configured to pass through the vent region 223 upstream of the detection chamber 225. Each fluidic pathway 220 thus functions to receive and facilitate processing of a sample fluid containing nucleic acids as it passes through different portions of the fluidic pathway 220.


The microfluidic cartridge 210 is preferably configured to be received and manipulated by the molecular diagnostic module 130, such that the cartridge receiving module 140 of the molecular diagnostic module 130 receives and aligns the microfluidic cartridge 210 within the molecular diagnostic module 130, the heating and cooling subsystem 150 of the molecular diagnostic module 130 is configured to transfer heat to the heating region 224 of the microfluidic cartridge 210, and the magnet 160 of the molecular diagnostic module 130 is configured to be received by the magnet housing region 218 of the microfluidic cartridge 210 to provide a magnetic field for separation of nucleic acids. Additionally, the shared fluid port 222 of the microfluidic cartridge 210 is configured to couple to a nozzle 149 coupled to the linear actuator 146 of the cartridge receiving module 140, such that the liquid handling system 250 can deliver fluids and gases through the shared fluid port 222. The elastomeric layer 217 of the microfluidic cartridge 210 is also preferably configured to be occluded at a set of occlusion positions 226 by the valve actuation subsystem 170 of the molecular diagnostic module, in order to occlude portions of a fluidic pathway 220 of the microfluidic cartridge 210 for processing of a set of biological samples. The optical subsystem 180 of the molecular diagnostic module 130 is further configured to align with the set of detection chambers 213 of the microfluidic cartridge 210, to facilitate analysis of a set of nucleic acid samples. The microfluidic cartridge 210 is preferably the microfluidic cartridge 210 described in U.S. application Ser. No. 13/765,996 and filed on 13 Feb. 2013, which is incorporated in its entirety by this reference, but can alternatively be any appropriate cartridge or substrate configured to receive and process a set of samples containing nucleic acids.


1.3 System—Liquid Handling System


The liquid handling system 250 of the system 100 includes a liquid handling arm 255 and a syringe pump 265, as shown in FIGS. 10A-10C and functions to deliver biological samples, reagents, and gases to elements of the system 100. As described in Section 1, an embodiment of the liquid handling system 250 is configured to aspirate a set of biological samples containing nucleic acids (i.e., impure nucleic acid samples), and dispense the set of biological samples into microfluidic cartridge 210 located in a molecular diagnostic module 130. The embodiment of the liquid handling system 100 is further configured to facilitate separation of a set of nucleic acids from the magnetic bead-samples, by dispensing a wash solution, a release solution, and/or air into the molecular diagnostic module 130, by the nozzle 149 coupled to the linear actuator 146, at appropriate stages, aspirate the set of nucleic acids from the molecular diagnostic module 130, combine the set of nucleic acids with a set of molecular diagnostic reagents, and dispense the set of nucleic acids combined with the set of molecular diagnostic reagents (i.e., set of nucleic acid-reagent mixtures) into the molecular diagnostic module 130 for further processing and analysis. Other embodiments of the liquid handling system 250 can be configured to perform alternative molecular diagnostic assay protocols and/or dispense and aspirate alternative fluids into and from other elements supporting a molecular diagnostic protocol.


The liquid handling system 250 is preferably an embodiment of the liquid handling system described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013; however, the liquid handling system 250 can additionally or alternatively include any other suitable elements configured to facilitate delivery of biological samples, reagents, and gases to elements of the system 100.


1.4 System—Additional Elements


The system 100 can further comprise a controller coupled to at least one of the molecular diagnostic module 130 and the liquid handling system 250, and functions to facilitate automation of the system 100. In a variation wherein the controller is coupled to the molecular diagnostic module 130, the controller preferably functions to automate reception of a microfluidic cartridge, heating of biological samples within the molecular diagnostic module 130 and the detection chambers 213, occlusion of fluidic pathways 220 by the valve actuation subsystem 170, and analysis of a set of nucleic acid-reagent mixtures by the optical subsystem 280. In a variation wherein the controller is coupled to the liquid handling system 250, the controller preferably functions to automate aspiration, transfer, and delivery of fluids and/or gases to different elements of the system 100. Other variations of a controller can function to automate handling, transfer, and/or storage of other elements of the system 100, using a robotic arm or gantry or any other suitable element. Alternative combinations of the above variations can involve a single controller, or multiple controllers configured to perform all or a subset of the functions described above.


The system 100 can also further comprise a processor 290, which functions to receive and process data received from the optical subsystem 280 of the molecular diagnostic module 130. Preferably, the processor 290 is coupled to a user interface 295, which functions to display processed and/or unprocessed data produced by the system 100, settings of the system 100, information obtained from a tag reader, or any other appropriate information. Alternatively, the processor 290 is not coupled to a user interface 295, but comprises a connection configured to facilitate transfer of processed and/or unprocessed data produced by the system 100, settings of the system 100, or any other appropriate information to a device external to the system 100.


The system 100 can further comprise any other suitable element(s) as described in U.S. application Ser. No. 13/766,359 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013, or any other suitable element to facilitate reception or processing of biological samples. As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made the described embodiments of the system 100 without departing from the scope of the system 100.


2. Method for Processing and Detecting Nucleic Acids


As shown in FIG. 11, an embodiment of a method 400 for processing and detecting nucleic acids from a set of biological samples comprises: producing a set of magnetic bead-sample mixtures from the set of biological samples S410; heating the set of magnetic bead-sample mixtures to produce a set of nucleic acid-magnetic bead samples S420; transferring each nucleic acid-magnetic bead sample of the set of nucleic acid-magnetic bead samples to a corresponding fluidic pathway of a set of fluidic pathways S430; producing a set of nucleic acid volumes from the set of nucleic acid-magnetic bead samples S440; combining each nucleic acid volume of the set of nucleic acid volumes with a molecular diagnostic reagent of a set of molecular diagnostic reagents to produce a set of nucleic acid-reagent mixtures S450; transferring each of the set of nucleic acid-reagent mixtures, through the corresponding fluidic pathway of the set of fluidic pathways, to a detection chamber of a set of detection chambers S460; and receiving light from the set of nucleic acid-reagent mixtures S470. The method 400 can further include generating a set of data based on light received form the set of nucleic acid-reagent mixtures S480. The method 400 functions to isolate and extract a set of nucleic acid volumes from a biological sample, and to facilitate analysis of the nucleic acid volumes according to at least one molecular diagnostic protocol.


The method 400 is preferably implemented at least in part at an embodiment of the system 100 described in Section 1 above; however, the method 400 can additionally or alternatively be implemented at any other suitable system configured to process and detect nucleic acids from a set of biological samples. Preferably, the method 400 is implemented, at least in part, as described in U.S. application Ser. No. 13/766,377 entitled “System and Method for Processing and Detecting Nucleic Acids” and filed on 13 Feb. 2013, and U.S. application Ser. No. 14/060,214 entitled “Method and Materials for Isolation of Nucleic Acid Materials” and filed on 22 Oct. 2013, which are both incorporated herein in their entirety by this reference; however, the method 400 can additionally or alternatively be implemented in any other suitable manner.


Embodiments of the method 400 and variations thereof can be embodied and/or implemented at least in part by a machine configured to receive a computer-readable medium storing computer-readable instructions. The instructions are preferably executed by computer-executable components preferably integrated with the system 100 and one or more portions of the processor 273 and/or the controller 272. The computer-readable medium can be stored on any suitable computer-readable media such as RAMs, ROMs, flash memory, EEPROMs, optical devices (CD or DVD), hard drives, floppy drives, or any suitable device. The computer-executable component is preferably a general or application specific processor, but any suitable dedicated hardware or hardware/firmware combination device can alternatively or additionally execute the instructions.


The FIGURES illustrate the architecture, functionality and operation of possible implementations of systems, methods and computer program products according to preferred embodiments, example configurations, and variations thereof. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block can occur out of the order noted in the FIGURES. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.


As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.

Claims
  • 1. A system comprising: a cartridge platform configured to receive a cartridge including a fluidic pathway, wherein the cartridge platform comprises an access region configured to align with the fluidic pathway; anda valve actuation subsystem comprising: a pin comprising: a first end;a second end opposite the first end; anda slotted opening disposed along a length of the pin on an exterior surface of the pin between the first and the second end; andan actuation substrate translatable along an actuation axis between first and second substrate positions, wherein the actuation substrate comprises an array of active regions comprising: a first active region configured to engage the pin through the slotted opening to move the pin through the access region along a displacement axis, the displacement axis extending through the first end, the second end, and the access region; anda second active region configured to engage the pin through the slotted opening to move the pin out of the access region.
  • 2. The system of claim 1, wherein the valve actuation system further comprises a spring coupled to a region of the pin such that the pin is biased along the displacement axis.
  • 3. The system of claim 2, wherein the spring is mounted proximal an inferior end of the pin such that the pin is biased towards the access region, wherein compression of the spring transmits the pin away from the access region.
  • 4. The system of claim 3, wherein a portion of the actuation substrate is disposed through the slotted opening above the spring, wherein the first and the second active regions are disposed on an inferior broad face of the actuation substrate, and wherein the first active region is a groove and the second active region is a protrusion.
  • 5. The system of claim 2, wherein the spring is mounted to a superior end of the pin such that the pin is biased away from the access region, wherein compression of the spring transmits the pin towards the access region.
  • 6. The system of claim 5, wherein a portion of the actuation substrate is disposed through the slotted opening below the spring, wherein the first and the second active regions are disposed on a superior broad face of the actuation substrate, and wherein the first active region is a protrusion and the second active region is a groove.
  • 7. The system of claim 1, wherein the slotted opening contains a pin protrusion energetically coupled to a spring that biases the pin along the displacement axis, wherein the pin protrusion is disposed relative to the actuation axis so as to be accessible by one of the first and the second active regions as the actuation substrate is translated along the actuation axis through the slotted opening.
  • 8. The system of claim 7, wherein the pin protrusion is disposed at an inferior end of the slotted opening, and a portion of the actuation substrate is disposed through the slotted opening to align one of the first and the second active regions above the pin protrusion.
  • 9. The system of claim 7, wherein the pin protrusion is disposed at a superior end of the slotted opening, and a portion of the actuation substrate is disposed through the slotted opening to align one of the first and the second active regions below the pin protrusion.
  • 10. The system of claim 7, wherein the pin protrusion is physically coupled to the spring.
  • 11. The system of claim 1, wherein the valve actuation subsystem further comprises a substrate actuator configured to transmit the actuation substrate along the actuation axis between the first substrate position and the second substrate position along the actuation axis.
  • 12. The system of claim 11, wherein the actuation substrate is oriented such that the actuation axis is perpendicular to the displacement axis of the pin.
  • 13. The system of claim 12, wherein the actuation axis of the actuation substrate is disposed below the slotted opening proximal the second end of the pin, and the first and the second active regions are disposed on a broad face of the actuation substrate and deviate from a plane of the broad face in a direction parallel to the displacement axis of the pin in order to pass through the slotted opening as the actuation substrate is translated along the actuation axis.
  • 14. The system of claim 12, wherein the actuation axis of the actuation substrate is disposed adjacent to the slotted opening, and the first and the second active regions are disposed on an edge of the actuation substrate and extend in a direction perpendicular to the displacement axis of the pin in order to pass through the slotted opening as the actuation substrate is translated along the actuation axis.
  • 15. The system of claim 11, wherein the actuation substrate is oriented such that the actuation axis is parallel to the displacement axis of the pin.
  • 16. The system of claim 1, wherein the actuation substrate is configured to transform lateral motion of the actuation substrate into vertical actuation of the pin.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/465,796, filed 22 Mar. 2017, which is a continuation of U.S. application Ser. No. 14/229,396, filed 28 Mar. 2014, which is a continuation-in-part of U.S. application Ser. No. 13/766,359, filed 13 Feb. 2013, which claims the benefit of U.S. Provisional Application No. 61/667,606, filed 3 Jul. 2012 and U.S. Provisional Application No. 61/598,240, filed 13 Feb. 2012, all of which are incorporated herein in their entirety by this reference.

US Referenced Citations (269)
Number Name Date Kind
77674 Stockton et al. May 1868 A
776747 Kling Dec 1904 A
778036 Hepp et al. Dec 1904 A
780030 Fleming Jan 1905 A
2125007 Ossing Jul 1938 A
3963151 North Jun 1976 A
5681529 Taguchi et al. Oct 1997 A
5725831 Reichler et al. Mar 1998 A
5750338 Collins et al. May 1998 A
5783148 Cottingham et al. Jul 1998 A
5824478 Mueller Oct 1998 A
5853667 Seaton et al. Dec 1998 A
5863502 Southgate et al. Jan 1999 A
6168948 Anderson et al. Jan 2001 B1
6331266 Powell et al. Dec 2001 B1
6368871 Christel et al. Apr 2002 B1
6374684 Dority Apr 2002 B1
6374685 Daly Apr 2002 B1
6431476 Taylor et al. Aug 2002 B1
6440725 Pourahmadi et al. Aug 2002 B1
6664104 Pourahmadi et al. Dec 2003 B2
6692700 Handique Feb 2004 B2
6818185 Petersen et al. Nov 2004 B1
6852287 Ganesan Feb 2005 B2
6860993 Effenhauser et al. Mar 2005 B2
6872315 Effenhauser et al. Mar 2005 B2
6878540 Pourahmadi et al. Apr 2005 B2
6887693 McMillan et al. May 2005 B2
6893879 Petersen et al. May 2005 B2
6899838 Lastovich May 2005 B2
6987018 Taylor et al. Jan 2006 B2
7052268 Powell et al. May 2006 B2
7135144 Christel et al. Nov 2006 B2
7186383 Webster et al. Mar 2007 B2
7192557 Wu et al. Mar 2007 B2
7252501 Pruden et al. Aug 2007 B2
7270786 Parunak et al. Sep 2007 B2
7323140 Handique et al. Jan 2008 B2
7332130 Handique Feb 2008 B2
7372616 Bang et al. May 2008 B2
7445901 Kudlicki et al. Nov 2008 B2
7473397 Griffin et al. Jan 2009 B2
7556858 Rasmussen et al. Jul 2009 B2
7569346 Petersen et al. Aug 2009 B2
7580533 Schwartz Aug 2009 B2
7666681 Ammann et al. Feb 2010 B2
7674431 Ganesan Mar 2010 B2
7682820 Bader Mar 2010 B2
7704735 Facer et al. Apr 2010 B2
7731906 Handique et al. Jun 2010 B2
7738094 Goldberg Jun 2010 B2
7763209 Haley Jul 2010 B2
7767447 Breidenthal et al. Aug 2010 B2
7820030 Althaus et al. Oct 2010 B2
7863035 Clemens et al. Jan 2011 B2
7906758 Stults et al. Mar 2011 B2
7914994 Petersen et al. Mar 2011 B2
7935537 Haley May 2011 B2
7943388 Baetzold et al. May 2011 B2
7955798 Mauritz Jun 2011 B2
7955864 Cox et al. Jun 2011 B2
7964413 Macioszek et al. Jun 2011 B2
7987022 Handique et al. Jul 2011 B2
7995798 Krupnik et al. Aug 2011 B2
7998708 Handique et al. Aug 2011 B2
8003329 Macevicz Aug 2011 B2
8008046 Maltezos et al. Aug 2011 B2
8008066 Lair et al. Aug 2011 B2
8043581 Ganesan Oct 2011 B2
8048375 Breidenthal et al. Nov 2011 B2
8048386 Dority et al. Nov 2011 B2
8052929 Breidenthal et al. Nov 2011 B2
8057446 Kane et al. Nov 2011 B2
8088616 Handique Jan 2012 B2
8105477 Althaus et al. Jan 2012 B2
8105783 Handique Jan 2012 B2
8110158 Handique Feb 2012 B2
8133671 Williams et al. Mar 2012 B2
8163535 Reed et al. Apr 2012 B2
8168134 Lehto May 2012 B2
8182763 Duffy et al. May 2012 B2
8183359 Becker et al. May 2012 B2
8187557 Van et al. May 2012 B2
8247176 Petersen et al. Aug 2012 B2
8248597 Goldberg Aug 2012 B2
8268245 Wahl Sep 2012 B2
8268603 Taylor et al. Sep 2012 B2
8273308 Handique et al. Sep 2012 B2
8287820 Williams et al. Oct 2012 B2
8288520 Eder et al. Oct 2012 B2
8323584 Ganesan Dec 2012 B2
8323899 Sherman et al. Dec 2012 B2
8323900 Handique et al. Dec 2012 B2
8324372 Brahmasandra et al. Dec 2012 B2
8349564 Macioszek et al. Jan 2013 B2
8388908 Blaga et al. Mar 2013 B2
8394336 Curcio Mar 2013 B2
8404198 Amshey et al. Mar 2013 B2
8414845 Chen et al. Apr 2013 B2
8415103 Handique Apr 2013 B2
8420015 Ganesan et al. Apr 2013 B2
8431413 Dority et al. Apr 2013 B2
8440149 Handique May 2013 B2
8449833 Nieuwenhuis May 2013 B2
8470586 Wu et al. Jun 2013 B2
8470588 Boehm et al. Jun 2013 B2
8473104 Handique et al. Jun 2013 B2
8480976 Breidenthal et al. Jul 2013 B2
8491178 Breidenthal et al. Jul 2013 B2
8501461 Knight et al. Aug 2013 B2
8506908 Benn et al. Aug 2013 B2
8513962 Kiyokawa et al. Aug 2013 B2
8640555 Zenhausern et al. Feb 2014 B2
8642787 Fukushima et al. Feb 2014 B2
8672532 Jovanovich et al. Mar 2014 B2
8709787 Handique Apr 2014 B2
8734761 Willard et al. May 2014 B2
8738106 Rabinowitz et al. May 2014 B2
8852862 Wu et al. Oct 2014 B2
9040288 Handique et al. May 2015 B2
9050594 Williams et al. Jun 2015 B2
9101930 Williams et al. Aug 2015 B2
9180451 Ziglioli et al. Nov 2015 B2
9238809 Khripin et al. Jan 2016 B2
9339812 Williams et al. May 2016 B2
9382532 Brahmasandra et al. Jul 2016 B2
9618506 Lowe et al. Apr 2017 B2
9663779 Fabis et al. May 2017 B2
9789481 Petersen et al. Oct 2017 B2
10364456 Wu et al. Jul 2019 B2
10443088 Wu et al. Oct 2019 B1
10494663 Wu et al. Dec 2019 B1
10590410 Brahmasandra et al. Mar 2020 B2
10604788 Wu et al. Mar 2020 B2
20020039783 McMillan et al. Apr 2002 A1
20020042125 Petersen Apr 2002 A1
20020045246 McMillan et al. Apr 2002 A1
20020055167 Pourahmadi May 2002 A1
20020087110 Effenhauser Jul 2002 A1
20020110492 Handique Aug 2002 A1
20020141903 Parunak et al. Oct 2002 A1
20020142471 Handique et al. Oct 2002 A1
20020142482 Wu et al. Oct 2002 A1
20020160518 Hayenga et al. Oct 2002 A1
20020175079 Christel et al. Nov 2002 A1
20020187547 Taylor et al. Dec 2002 A1
20030049174 Ganesan Mar 2003 A1
20030162304 Dority et al. Aug 2003 A1
20030170686 Hoet et al. Sep 2003 A1
20040007796 Lastovich Jan 2004 A1
20040018611 Ward et al. Jan 2004 A1
20040032001 Gilmer et al. Feb 2004 A1
20040053268 Karlsen Mar 2004 A1
20040138154 Yu et al. Jul 2004 A1
20040166031 Taylor et al. Aug 2004 A1
20040186111 Sun et al. Sep 2004 A1
20040209331 Ririe Oct 2004 A1
20040219070 Handique Nov 2004 A1
20040222349 Powell et al. Nov 2004 A1
20050006309 Effenhauser et al. Jan 2005 A1
20050106742 Wahl May 2005 A1
20050112754 Yoon et al. May 2005 A1
20050152808 Ganesan Jul 2005 A1
20050180891 Webster et al. Aug 2005 A1
20050194316 Pourahmadi et al. Sep 2005 A1
20050205199 Green Sep 2005 A1
20050214927 Hialey Sep 2005 A1
20050221529 Bang et al. Oct 2005 A1
20050233370 Ammann et al. Oct 2005 A1
20050250199 Anderson Nov 2005 A1
20050272169 Griffin et al. Dec 2005 A1
20060030038 Taylor et al. Feb 2006 A1
20060036348 Handique et al. Feb 2006 A1
20060046262 Mauritz Mar 2006 A1
20060068204 Rasmussen et al. Mar 2006 A1
20060099719 Curcio May 2006 A1
20060166233 Wu et al. Jul 2006 A1
20060182300 Schwartz Aug 2006 A1
20060182842 Pruden Aug 2006 A1
20060205085 Handique et al. Sep 2006 A1
20060207891 Althaus et al. Sep 2006 A1
20060211130 Macioszek et al. Sep 2006 A1
20070031282 Zucchelli et al. Feb 2007 A1
20070062583 Cox et al. Mar 2007 A1
20070148174 Kudlicki et al. Jun 2007 A1
20070184463 Molho et al. Aug 2007 A1
20070190662 Baetzold et al. Aug 2007 A1
20070196912 Facer et al. Aug 2007 A1
20070243600 Lair et al. Oct 2007 A1
20070292941 Handique et al. Dec 2007 A1
20080014114 Van et al. Jan 2008 A1
20080050804 Handique et al. Feb 2008 A1
20080057572 Petersen et al. Mar 2008 A1
20080146896 Rabinowitz et al. Jun 2008 A1
20080160601 Handique Jul 2008 A1
20080182301 Handique et al. Jul 2008 A1
20080193384 Willard et al. Aug 2008 A1
20080200343 Clemens et al. Aug 2008 A1
20080212069 Goldberg et al. Sep 2008 A1
20080213755 Geiser et al. Sep 2008 A1
20080217246 Benn et al. Sep 2008 A1
20080219894 Ganesan et al. Sep 2008 A1
20080227189 Bader Sep 2008 A1
20080241569 Qin et al. Oct 2008 A1
20080262213 Wu et al. Oct 2008 A1
20080275409 Kane et al. Nov 2008 A1
20080280285 Chen et al. Nov 2008 A1
20090047713 Handique Feb 2009 A1
20090057550 Stults et al. Mar 2009 A1
20090097725 Krupnik et al. Apr 2009 A1
20090130719 Handique May 2009 A1
20090130745 Williams et al. May 2009 A1
20090131650 Brahmasandra et al. May 2009 A1
20090136386 Duffy et al. May 2009 A1
20090136913 Breidenthal et al. May 2009 A1
20090142745 Breidenthal et al. Jun 2009 A1
20090155123 Williams et al. Jun 2009 A1
20090191643 Boehm et al. Jul 2009 A1
20090215125 Reed et al. Aug 2009 A1
20090269248 Falb et al. Oct 2009 A1
20090275014 Maltezos et al. Nov 2009 A1
20100009351 Handique et al. Jan 2010 A1
20100009375 Sherman et al. Jan 2010 A1
20100029544 Thompson et al. Feb 2010 A1
20100068706 Pourahmadi et al. Mar 2010 A1
20100075311 Barrault et al. Mar 2010 A1
20100075336 Knight et al. Mar 2010 A1
20100120129 Amshey et al. May 2010 A1
20100158754 Ganesan Jun 2010 A1
20100159463 Eder et al. Jun 2010 A1
20100159561 Becker et al. Jun 2010 A1
20100165784 Jovanovich et al. Jul 2010 A1
20100166612 Lehto Jul 2010 A1
20100261197 Goldberg et al. Oct 2010 A1
20100279430 Haley Nov 2010 A1
20100300563 Ramunas et al. Dec 2010 A1
20100303687 Blaga et al. Dec 2010 A1
20100310423 Nieuwenhuis Dec 2010 A1
20100323919 Chen et al. Dec 2010 A1
20110003281 Woudenberg et al. Jan 2011 A1
20110020793 Macevicz Jan 2011 A1
20110038768 Handique Feb 2011 A1
20110039345 Althaus et al. Feb 2011 A1
20110043237 Umemura et al. Feb 2011 A1
20110053169 Macioszek et al. Mar 2011 A1
20110053289 Lowe Mar 2011 A1
20110071031 Khripin et al. Mar 2011 A1
20110100101 Zenhausern et al. May 2011 A1
20110165562 Pourahmadi et al. Jul 2011 A1
20110189661 Breidenthal et al. Aug 2011 A1
20110193017 Snelling et al. Aug 2011 A1
20110201099 Anderson et al. Aug 2011 A1
20110207140 Handique et al. Aug 2011 A1
20110275087 Breidenthal et al. Nov 2011 A1
20110318840 Ziglioli et al. Dec 2011 A1
20120022695 Handique et al. Jan 2012 A1
20120034705 Dority et al. Feb 2012 A1
20120046203 Walsh et al. Feb 2012 A1
20120085416 Ganesan Apr 2012 A1
20120122108 Handique May 2012 A1
20120183454 Handique Jul 2012 A1
20120231456 Breidenthal et al. Sep 2012 A1
20120245218 Fukushima Sep 2012 A1
20120245337 Fabis et al. Sep 2012 A1
20130209326 Williams et al. Aug 2013 A1
20130210015 Williams et al. Aug 2013 A1
20130210127 Williams et al. Aug 2013 A1
20130336814 Kamen Dec 2013 A1
20140147892 Brahmasandra et al. May 2014 A1
Foreign Referenced Citations (15)
Number Date Country
101432698 May 2009 CN
1773190 May 2010 CN
101842690 Jun 2013 CN
0707077 Apr 1996 EP
2125007 Feb 1984 GB
200248164 Jun 2002 WO
2004003200 Jan 2004 WO
2007064635 Jun 2007 WO
2008097342 Aug 2008 WO
2008115626 Sep 2008 WO
2009022994 Feb 2009 WO
2009038536 Mar 2009 WO
2010072821 Jul 2010 WO
2010121315 Oct 2010 WO
2013123035 Aug 2013 WO
Non-Patent Literature Citations (13)
Entry
Oh, Tae Jeong et al: “Polyamines Protect Against DNA Strand Breaks and Aid Cell Survival Against Irradiation in Escherichia coli”, Biotechnology Techniques, vol. 12, No. 10, Oct. 1998 (Oct. 1998), pp. 755-758.
Ahsan U Khan et al: “Spermine and Spermidine Protection of Plasmid DNA Against Single-Strand Breaks Induced by Singlet Oxygen”, Proceedings of the National Academy of Sciences of the United States PNAS), National Academy of Science, US, vol. 89, Dec. 1, 1992 Biophysics.
Compton, Cancer and Metastasis Rev., vol. 11, pp. 105-119 (1992).
“Compton, Cancer and Metastasis Rev., vol. 11, pp. 105-119 (1992).”, Jun. 29, 2017 00:00:00.0.
“Compton, Cancer and Metastasis Rev., vol. 11, pp. 105-119 (1992).”, Jul. 21, 2017 00:00:00.0.
“Compton, Cancer and Metastasis Rev., vol. 11, pp. 105-119 (1992).”, Feb. 8, 2018 00:00:00.0.
“Compton, Cancer and Metastasis Rev., vol. 11, pp. 105-119 (1992).”, Feb. 28, 2018 00:00:00.0.
Marton L J et al “Polyamine-DNA Interactions Possible Site of New Cancer Chemotherapeutical Research (New York) vol. 3, No. 6, 1986, pp. 311-317, XP007914671, ISSN: 0724-8741 p. 311, col. 2, line 26-line 35; figure 1”.
Marton L J et al “Polyamine-DNA Interactions Possible Site of New Cancer Chemotherapeutical Research (New York) vol. 3, No. 6, 1986, pp. 311-317, XP007914671, ISSN: 0724-8741 p. 311, col. 2, line 26-line 35; figure 1”, Jun. 22, 2017 00:00:00.0.
Marton L J et al “Polyamine-DNA Interactions Possible Site of New Cancer Chemotherapeutical Research (New York) vol. 3, No. 6, 1986, pp. 311-317, XP007914671, ISSN: 0724-8741 p. 311, col. 2, line 26-line 35; figure 1”, Feb. 8, 2018 00:00:00.0.
“Oh Tae Jeong et al: “Polyamines Protect Against DNA Strand Breaks and Aid Cell Survival Against Irradiation in Escherichia coli”, Biotechnology Techniques, vol. 12, No. 10, Oct. 1998 (Oct. 1998), pp. 755-758, XP002599273, ISSN: 0951-208X the whole docu”.
“Oh Tae Jeong et al: “Polyamines Protect Against DNA Strand Breaks and Aid Cell Survival Against Irradiation in Escherichia coli”, Biotechnology Techniques, vol. 12, No. 10, Oct. 1998 (Oct. 1998), pp. 755-758, XP002599273, ISSN: 0951-208X the whole docu”, Jun. 22, 2017 00:00:00.0.
“Oh Tae Jeong et al: “Polyamines Protect Against DNA Strand Breaks and Aid Cell Survival Against Irradiation in Escherichia coli”, Biotechnology Techniques, vol. 12, No. 10, Oct. 1998 (Oct. 1998), pp. 755-758, XP002599273, ISSN: 0951-208X the whole docu”, Feb. 8, 2018 00:00:00.0.
Related Publications (1)
Number Date Country
20190002959 A1 Jan 2019 US
Provisional Applications (2)
Number Date Country
61667606 Jul 2012 US
61598240 Feb 2012 US
Continuations (2)
Number Date Country
Parent 15465796 Mar 2017 US
Child 16121864 US
Parent 14229396 Mar 2014 US
Child 15465796 US
Continuation in Parts (1)
Number Date Country
Parent 13766359 Feb 2013 US
Child 14229396 US